Answer:
i'm pretty sure 41 is not an expression
Step-by-step explanation:
angle 1 is congruent to angle 2 prove p is parallel to q
You'll need 2 more lines to complete this two column proof.
---------------------
Line 4
For the "statement" portion, you'll say something like [tex]\angle 2 \cong \angle 3[/tex]
The reason for this statement is "transitive property"
We're basically combining lines 1 and 3 to form this new line.
The transitive property is the idea that if A = B and B = C, then A = C. We connect the statements like a chain.
---------------------
Line 5
The statement is what you want to prove since this is the last line.
So the statement is [tex]p || q[/tex]
The reason is "converse of corresponding angles theorem"
As you can probably guess, this theorem says "If two corresponding angles are congruent, then the lines are parallel".
The sum of two numbers is 44 . One number is 3 times as large as the other. What are the numbers?
Answer:
11 and 33
Step-by-step explanation:
The the smaller number be [tex]x[/tex]. Since the other number is 3 times as large as the other, we can represent the large number as [tex]3x[/tex]. Because they add up to 44, we have the following equation:
[tex]x+3x=44[/tex]
Combine like terms:
[tex]4x=44[/tex]
Divide both sides by 4:
[tex]x=\frac{44}{4}=\boxed{11}[/tex]
Substitute [tex]x=11[/tex] into [tex]3x[/tex] to find the larger number:
[tex]11\cdot 3=\boxed{33}[/tex]
Therefore, the two numbers are 11 and 33.
PLESE HELp ANYONE. SOLVE ABC. ROUND YOUR ANSWERS TO THE NEAREST HUNDREDTH IF NECESSARY
Answer:
C=25°
a=11
b=12
Step-by-step explanation:
Find angle c,since angles in a triangle add up to 180 and we know angleA andB angle C will be
65+90+C=180
C=180-155
C=25°
To find a
use trig ratios
tanA=opposite/adjacent
tan65=a/5
a=tan65×5
a=10.72 round off to 11
To find b
sinC=opposite/hypotenuse
sin25=5/b
sin25 b=5
b=11.8 or rather 12
Answer:
Step-by-step explanation:
First find side a and to find this calculate tan 65
Tan 65 = [tex]\frac{opposite \ side}{adjacent\ side}=\frac{a}{5}\\\\[/tex]
2.144 = a/5
a = 2.144 * 5
b² = a² + c²
= 121+25
= 146.
b = √146 = 12.08 = 12
a = 10.72 = 11
Now find Tan C
[tex]Tan \ C = \frac{5}{10.72}\\\\Tan \ C = 0.4664\\[/tex]
C = tan⁻¹ 0.4664
C = 25°
While preparing for their comeback tour, The Flaming Rogers find that the average time it takes their sound tech to set up for a show is 56.1 minutes, with a standard deviation of 6.4 minutes. If the band manager decides to include only the fastest 23% of sound techs on the tour, what should the cutoff time be for concert setup? Assume the times are normally distributed.
Answer:
The cutoff time be for concert setup should be of 51.4 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Average time it takes their sound tech to set up for a show is 56.1 minutes, with a standard deviation of 6.4 minutes.
This means that [tex]\mu = 56.1, \sigma = 6.4[/tex]
If the band manager decides to include only the fastest 23% of sound techs on the tour, what should the cutoff time be for concert setup?
The cutoff time would be the 23rd percentile of times, which is X when Z has a p-value of 0.23, so X when Z = -0.74.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.74 = \frac{X - 56.1}{6.4}[/tex]
[tex]X - 56.1 = -0.74*6.4[/tex]
[tex]X = 51.4[/tex]
The cutoff time be for concert setup should be of 51.4 minutes.
The top and bottom ends of a windshield wiper blade are R = 24 in. and r = 14 in., respectively, from the pivot point. While in operation, the wiper sweeps through 135°. Find the area swept by the blade. (Round your answer to the nearest whole number.)
Answer:
Area swept by the blade = 448[tex]in^{2}[/tex]
Step-by-step explanation:
The arc the wiper wipes is for 135 degrees angle.
So, find area of sector with radius 24 inches. And the find area of arc with r=14 inches.
Then subtract the area of sector with 14 inches from area of sector with radius as 24 inches.
So, area of sector with r=24 in =[tex]\frac{135}{360} *\pi *24^{2}[/tex]
Simplify it,
=216[tex]\pi[/tex]
Now, let's find area of sector with radius 14 inches
Area of sector with r=14 in = [tex]\frac{135}{360} *\pi *14^{2}[/tex]
Simplify it
=73.5[tex]\pi[/tex]
So, area swept by the blade = 216[tex]\pi[/tex] -73.5[tex]\pi[/tex]
Simplify it and use pi as 3.14.....
Area of swept =678.584 - 230.907
=447.6769
Round to nearest whole number
So, area swept by the blade = 448[tex]in^{2}[/tex]
Suppose that two balanced, six sided dice are tossed repeatedly and the sum of the two uppermost faces is determined on each toss. (a) What is the probability that we obtain a sum of 3 before we obtain a sum of 7
Answer:
[tex]\frac{(2/36)}{(1-(28/36))} = 1/4[/tex]
Step-by-step explanation:
Which of the following situations WOULD NOT represent a binomial application? A. Choosing a card randomly from a standard deck and noting its color (remember color has only two outcomes black or red) B. Choosing a card randomly from a standard deck and noting whether its a face card C. Choosing a card randomly from a standard deck and noting its suit D. Choosing a card randomly from a standard deck and noting whether or not it's an ace
Answer:
Choosing a card randomly and noting its suit
Step-by-step explanation:
Choosing a card randomly and noting its suit
This is because binomial distributions only work for bernoulli trials (a trail in which there are only two outcomes)
Change 9/3 to percentage
Answer:
300%
Step-by-step explanation:
because 9/3×100=900/3=300 so it is 300%
Answer:
300%
Step-by-step explanation:
9/3 * 100%
900%/3 = 300%
Please help. Solve the triangle. Round ans to the nearest tenth.
9514 1404 393
Answer:
C = 21°a = 13.3c = 5.4Step-by-step explanation:
The third angle can be found from the sum of angles in a triangle.
A + B + C = 180°
C = 180° -62° -97°
C = 21°
__
The remaining side lengths can be found using the Law of Sines.
a/sin(A) = b/sin(B)
a = sin(62°)(15/sin(97°)) ≈ 13.34
Similarly, ...
c/sin(C) = b/sin(B)
c = sin(21°)(15/sin(97°)) ≈ 5.42
The remaining side lengths are approximately ...
a ≈ 13.3
c ≈ 5.4
The reference desk of a university library receives requests for assistance. Assume that a Poisson probability distribution with an arrival rate of 10 requests per hour can be used to describe the arrival pattern and that service times follow an exponential probability distribution with a service rate of 12 requests per hour. What is the probability that no requests for assistance are in the system
Answer:
0.1667
Step-by-step explanation:
We are given;
Arrival rate, λ = 10 requests per hour
Service rate, μ = 12 requests per hour
From queuing theory, we know that;
ρ = λ/μ
Where ρ is the average proportion of time which the server is occupied.
Thus;
ρ = 10/12
ρ = 0.8333
Now, the probability that no requests for assistance are in the system is same as the probability that the system is idle.
This is given by the Formula;
1 - ρ
probability that no requests for assistance are in the system = 1 - 0.8333 = 0.1667
Which equation represents the line that passes through points (1, –5) and (3, –17)?
Answer:
y = -6x + 1
Step-by-step explanation:
y = mx + b
b = slope = (-5 - (-17))/(1 - 3) = 12/(-2) = -6
y = -6x + b
-5 = -6(1) + b
b = 1
y = -6x + 1
Answer:
[tex]y=-6x+1[/tex]
Step-by-step explanation:
The linear equation with slope m and intercept c is given as follows:
[tex]y=mx+c[/tex]
The formula for slope of line with points [tex](x_{1} ,y_{2} )[/tex] and [tex](x_{2} ,y_{2} )[/tex] can be expressed as,
[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]
The line passes the points that are [tex](1,-5)[/tex] and [tex](3,-17)[/tex]
The slope of the line can be obtained as follows:
[tex]m=\frac{-17-(-5)}{(3)-1}[/tex]
[tex]m=\frac{-12}{2}[/tex]
[tex]m=-6[/tex]
The slope of the line is [tex]-6[/tex]
The line passes through the point [tex](3,-17)[/tex]
Substitute 3 for x, - 6 for m and -17 for y in equation [tex]y=mx+c[/tex] to obtain the value of c.
[tex]-17=-6(3)+c[/tex]
[tex]-17=-18+c[/tex]
[tex]-17+18=c[/tex]
[tex]1=c[/tex]
The equation is [tex]y=-6x+1[/tex]
Hence, the equation of the line that passes through the points [tex](1,-5)[/tex] and [tex](3,-17)[/tex] is [tex]y=-6x+1[/tex]
A business woman wants to open a coffee stand across the street from a competing coffee company. She notices that the competing company has an average of 170 customers each day, with a standard deviation of 45 customers. Suppose she takes a random sample of 31 days. Identify the following to help her decide whether to open her coffee stand, rounding to the nearest whole number when necessary:
μ =_____customers per day
σ =_____customers per day
n =____
μ-x =____
σ-x =_____customers per day
Answer:
μ = 170 customers per day
σ = 45 customers per day
n = 31
[tex]\mu_x = 170[/tex]
[tex]\sigma_x = 8[/tex]
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
She notices that the competing company has an average of 170 customers each day, with a standard deviation of 45 customers.
This means that [tex]\mu = 170, \sigma = 45[/tex]
Suppose she takes a random sample of 31 days.
This means that [tex]n = 31[/tex]
For the sample:
By the Central Limit Theorem, the mean is [tex]\mu_x = 170[/tex] and the standard deviation is [tex]\sigma_x = \frac{45}{\sqrt{31}} = 8[/tex]
alvin is 5 years older than elga. the sum of their age is 85. what is elga age
Answer:
40 years old.
Step-by-step explanation:
We can let Elga's age equal [tex]x[/tex]. Alvin's age can be equal to [tex]y[/tex]. We can make several equations from the information we know. We know that Elga's age plus five equal's Alvin's age.
[tex]x+5=y[/tex]
We also know that the sum of their ages is 85.
[tex]x+y=85[/tex]
We can substitute [tex]x+5[/tex] for [tex]y[/tex] in the second equation since [tex]x+5=y[/tex], so we have the following equation:
[tex]x+(x+5)=85[/tex]
We can combine like terms to get
[tex]2x+5=85[/tex]
Subtracting 5 from both sides results in
[tex]2x=80[/tex]
After that, we can divide both sides by 2 to get
[tex]x=40[/tex]
Thus, Elga is 40 years old.
Answer:
e = 40
a=45
Step-by-step explanation:
a + e = 85
a = e+5
e + 5 + e = 85
2e = 80
e = 40
a=45
If you draw a card with a value of three or less from a standard deck of cards, I will pay you $41. If not, you pay me $11. (Aces are considered the highest card in the deck). If you played this game 877 times how much would you expect to win or lose?
There are 12 cards with a value ≤ 3 (3 between 1, 2, and 3, and multiply by 4 to count each suit). So the probability of drawing one of these cards and thus winning the game is 12/52 = 3/13.
The expected winnings for playing this game once are
3/13 × ($41) + 10/13 × (-$11) = $1
so after playing 877 times, you can expect to win a total of $877.
math help plz
how to solve parabola and its vertex, how to understand easily and step by step with an example provided please
Answer:
The general equation for a parabola is:
y = f(x) = a*x^2 + b*x + c
And the vertex of the parabola will be a point (h, k)
Now, let's find the values of h and k in terms of a, b, and c.
First, we have that the vertex will be either at a critical point of the function.
Remember that the critical points are the zeros of the first derivate of the function.
So the critical points are when:
f'(x) = 2*a*x + b = 0
let's solve that for x:
2*a*x = -b
x = -b/(2*a)
this will be the x-value of the vertex, then we have:
h = -b/(2*a)
Now to find the y-value of the vertex, we just evaluate the function in this:
k = f(h) = a*(-b/(2*a))^2 + b*(-b/(2*a)) + c
k = -b/(4*a) - b^2/(2a) + c
So we just found the two components of the vertex in terms of the coefficients of the quadratic function.
Now an example, for:
f(x) = 2*x^2 + 3*x + 4
The values of the vertex are:
h = -b/(2*a) = -3/(2*2) = -3/4
k = -b/(4*a) - b^2/(2a) + c
= -3/(4*2) - (3)^2/(2*2) + 4 = -3/8 - 9/4 + 4 = (-3 - 18 + 32)/8 = 11/8
)
Gos
1. Select all the relations that represent a
function.
(3,2), (2,1), (3,9) (4,7)
(1,7), (2,2), (3,5) (4,8)
(2,6), (6,5), (3,2) (5,3)
(4,3), (3,3), (2,3) (1,3)
(2,2), (2,5), (2,1) (2,3)
Answer:
(1,7), (2,2), (3,5) (4,8)
(2,6), (6,5), (3,2) (5,3)
(4,3), (3,3), (2,3) (1,3)
Step-by-step explanation:
those represent functions b/c the domain of the relation is not written twice
Hope that'll help!
Which one of these functions is a power function? A. F(x) = |x| B. F(x) = sin x C. F(x) = x^4 D. F(x) = 5x + 1 / x^2 - 1
Answer:
A F(x) it is the power function, make sure to take notes as well
Using the following image, solve for x
Answer:
x= -3
Step-by-step explanation:
2x+14= 8
2x= -6
x = -3
Answer:
-3
Step-by-step explanation:
According to the question,
[tex]\longrightarrow[/tex] CE = CD + DE
[tex]\longrightarrow[/tex] 8 = (x + 10) + (x + 4)
[tex]\longrightarrow[/tex] 8 = x + 10 + x + 4
[tex]\longrightarrow[/tex] 8 = 2x + 14
[tex]\longrightarrow[/tex] 8 ― 14 = 2x
[tex]\longrightarrow[/tex] ―6 = 2x
[tex]\longrightarrow[/tex] ―6 ÷ 2 = x
[tex]\longrightarrow[/tex] –3 = x
Therefore, the value of x is ― 3.
What is the point estimate for the number of cars sold per week for a sample consisting of the following weeks: 1, 3, 5, 7, 10, 13, 14, 17, 19, 21?
A.
4.8
B.
5.22
C.
6.38
D.
6.1
Answer: A.
Step-by-step explanation:
Hope this helps!
Emily is standing 150 feed from a circular target with a radius of 3 inches. To hit a bulls's eye, she must hold the gun perfectly level. Will she hit the target if her aim is off by two-tenths of a degree in any direction? (please show work - not just answer the question yes or no).
Answer:
yes
Step-by-step explanation:
She aims at the center of the target. If she is off by 1.5 in. or less, she hits the target. We need to find what distance from the bull's eye an angle of 0.2° will make at 150 ft distance.
tan A = opp/adj
tan 0.2° = opp/150
opp = 150 * tan 0.2°
opp = 0.52 in.
Since 0.52 in. < 1.5 in. she will hit the target.
If someone can pls give the answer with steps that would be greatly appreciated :)
hope it helps.
stay safe healthy and happy..Answer: look below
Step-by-step explanation:
A straight angle is 180
180-50=130
the opposite is also the same angle which is the same
180-50-50=80 and 80 + 2x =180
x=50
the angles are 50, 50, 50, 50, 80, 130 and 130 degrees respectively
What is the following product?
(Xv7-3v8)(xv7-3v8)
Answer:
B
Step-by-step explanation:
I'm not really sure tho
Compute ????×????, where ????=????−2????+5????, ????=2????+????+3????. (Write your solution using the standard basis vectors ????, ????, and ????. Use symbolic notation and fractions where needed.)
Given: ????=????−2????+5????
and ????=2????+????+3????
To find: We need to find the value of ????×????
Solution: Here given,
????=????−2????+5????
and ????=2????+????+3????
Therefore, solving these two we have, ????=0
So,????×????=0
What is A∪ϕ and A∩ϕ for a set A?
Answer:
1 ans A second phi okay yed
14 Calculate the mode from the following data: 7,8, 6, 5, 10, 11, 4, 5,2 b. 5: а. 3.' 4 6 с. d: 6
MODE IS THE NUMBER THAT IS REPEATED THE HIGHEST TIME..
HERE, IN YOUR QUESTION 5CAME 2 TIMES i.e. it is repeated highest time .so mode=5....
please help!! What is the equation of the line that passes through (0, 3) and (7, 0)?
Answer: y= -3/7x + 3
Step-by-step explanation:
I used some graph paper for this, mark the two points and use a ruler to connect the lines. y=-3/7x is slope, and 3 is the y intercept.
Answer:
3x + 7y -2=0
Step-by-step explanation:
Two points are given to us and we need to find the Equation of the line passing through the two points . The points are (0,3) and (7,0) . We can use here two point form of the line as ,
[tex]\implies y-y_1 = \dfrac{y_2-y_1 }{x_2-x_1} ( x - x_1) \\\\\implies y - 3 =\dfrac{3-0}{0-7}(x - 0 ) \\\\\implies y - 3 =\dfrac{-3}{7}x \\\\\implies 7y - 2 = -3x \\\\\implies \underline{\underline{3x + 7y -2 = 0 }}[/tex]
what is the value of -2(7-15)/4
What is the correct definition for sec theta?
Answer:
D Is the correct answer Thats was too easy
Answer:
sec(θ) = hypotenuse / adjacent.
Step-by-step explanation:
sec theta= cos -1 theta
What is the slope of (-1,3) and (3,1)
Work Shown:
Apply the slope formula
m = (y2-y1)/(x2-x1)
m = (1-3)/(3-(-1))
m = (1-3)/(3+1)
m = -2/4
m = -1/2 is the slope
In decimal form, this converts to -0.5, though usually slopes are in fraction form.
Suppose f(x) = x2. What is the graph of g(x)= 1/4 f(x)?
NEWD HELP ASAP!
Answer:
g(x) =1/4 x²
The choose (1)
first drawing