find x in this similar triangles
Answer:
6. x = 4
8. x = 13
Step-by-step explanation:
Using similar triangles theorem,
6. (5+4)/5 = (4x + 2)/(4x + 2 - 8)
9/5 = (4x + 2)/(4x - 6)
Cross multiply
9(4x - 6) = 5(4x + 2)
36x - 54 = 20x + 10
Collect like terms
36x - 20x = 54 + 10
16x = 64
16x/16 = 64/16
x = 4
8. (4x + 13)/20 = 52/16
(4x + 13)/20 = 13/4
Cross multiply
4(4x + 13) = 13(20)
16x + 52 = 260
16x = 260 - 52
16x = 208
x = 208/16
x = 13
which of the following is not an asymptote of the hyperbola xy = -42? y = 0 x = 0 y = x
Given:
The equation of the hyperbola is:
[tex]xy=-42[/tex]
To find:
The the equation which is not an asymptote of the hyperbola.
Solution:
We have,
[tex]xy=-42[/tex]
It can be written as:
[tex]y=\dfrac{-42}{x}[/tex]
Equating denominator and 0, we get
[tex]x=0[/tex]
So, the vertical asymptotic is [tex]x=0[/tex].
The degree of numerator is 0 and the degree of denominator is 1.
Since the degree of numerator is greater that the degree of denominator, therefore the horizontal asymptote is [tex]y=0[/tex] and there is no oblique asymptote.
Therefore, [tex]y=x[/tex] is not an asymptote of the given hyperbola and the correct option is C.
When a fridge is imported, a customs value of 10% must be paid for its value. If the value of the fridge after paying the customs value is rs. 55,000/-. What is the value before paying customs duty?
Answer:
55000×100/90
61,111.111
If all possible random samples of size N are drawn from a population with a mean of mu and a standard deviation of sigma, then as N becomes larger, the sampling distribution of sample means becomes approximately normal with a mean of muy(bar) and a standard deviation of sigmay(bar). This statement is known as the:
Answer:
"Central limit theorem" is the right answer.
Step-by-step explanation:
A hypothesis essentially claims that whenever there seems to be a small variance throughout the big confidence intervals, the sampling is based on averages as well as the sampling distribution (mean) usually nearly the same as the public's median.
When,
Mean = [tex]\mu_y[/tex]Standard deviation = [tex]\sigma_y[/tex]Sample size = Nis sufficiently larger than [tex]\bar Y \sim N(\mu_y, \sigma_y)[/tex]
Thus, the above is the right answer.
write your answer in simplest radical form
Step-by-step explanation:
5ft hight this ancle 90°so
answer is 5ft
use the function to find f(-2) f(x)=[tex]3^{x}[/tex]
Answer:
[tex] \frac{1}{9} [/tex]
Step-by-step explanation:
[tex]f( - 2) = {3}^{ - 2} [/tex]
[tex]1 \div 9 = .111[/tex]
A researcher surveyed 8 people to see if there is a
relationship between years of education and starting
salaries. The data points are shown on the graph.
Which best represents the equation of the trend line
shown on the graph? (Note that the graph has a break
on the x-axis.)
O y = 0.25x + 15
O y = 0.25x + 17.5
* y = 1.25x - 10
O y = 1.25x + 7.5
Answer:
[tex]y=1.25x+7.5[/tex]
Step-by-step explanation:
We can see that the trend line is the line of best fit to the data points.
The equation of a straight line is given by:
y = mx + b:
where y, x are variables, m is the slope of the line and b is the y intercept.
From the graph, we can see that the line passes through the points (10, 20) and (14, 25). Therefore the equation of the line is given by:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)\\\\y-20=\frac{25-20}{14-10}(x-10)\\\\y-20=1.25(x -10)\\\\y-20=1.25x-12.5\\\\y=1.25x+7.5[/tex]
Help please!! Based on Pythagorean identities, which equation is true ??
Answer:
Last answer: [tex]cot^{2} \alpha - csc^{2} \alpha = -1[/tex]
sorry couldn't find theata so I just used alpha.
help help me please!!!!!!!
9514 1404 393
Answer:
a) 3092.5 (rounded to tenths)
b) 39,600
c) ₹28,755
Step-by-step explanation:
These are all simple calculator problems. The arithmetic involved is something you learned in 2nd or 3rd grade.
__
a) Since we divide using the division algorithm, it isn't clear what "check your answer by division algorithm" is intended to mean. The result of the division (stopping at 1 decimal place) is 3092.5.
The usual method of checking a division problem is to multiply the quotient by the divisor to see if the dividend value is the result. Here, we have ...
13×3092.5 = 40202.5
This differs by from the dividend of 40203 by 0.5, which is the remainder showing in our long division. In short, the answer checks OK.
__
b) The value of each 4 is found by setting other digits to 0.
Most significant 4: 40,000
Least significant 4: 400
Difference in place value: 40,000 -400 = 39,600
__
c) The balance in the account is found by subtracting withdrawals from deposits:
₹35000 -6245 = ₹28,755
A random sample of 64 students at a university showed an average age of 25 years and a sample standard deviation of 2 years. The 98% confidence interval for the true average age of all students in the university is
Answer:
24.4185<x<25.5815
Step-by-step explanation:
Given the following:
n = 64
mean x = 25
s = 2
z is the z score at 98% CI = 2.326
Get the Confidence Interval:
CI = x±z*s/√n
CI = 25±2.326*2/√64
CI = 25±2.326*2/8
CI = 25±0.5815
CI = (25-0.5815, 25+0.5815)
CI = (24.4185, 25.5815)
CI = 24.4185<x<25.5815
Hence the 98% confidence interval for the true average age of all students in the university is 24.4185<x<25.5815
If 800g of a radioactive substance are present initially and 8 years later only 450g remain, how much of the substance will be present after 16 years? (Round answer to a whole number)
A=Pe^(rt)
P = 800g
t = 8 years
A = 450g
r = This is what we will try and find to start with
450=800e^(r*8)
After running the math through a calculator, we end with r = -0.07192
Now we just re-input this information into our equation: A=800e^(-0.07192*16)
A=800e^(1.15072)
Now we will re-write the equation using the negative exponent rule:
A = 800 1/e^1.15072
Combine right side:
A = 800/e^1.15072
Then do the math:
A = 253.12709836......
That will give us A = 253 (rounded to the whole number)
I hope this helps! :)
The substance that should be presented after 16 years is 253.
Given that,
If 800g of a radioactive substance are present initially and 8 years later only 450g remain.Based on the above information, the calculation is as follows:
We know that
[tex]A=Pe^{rt}[/tex]
Here
P = 800g
t = 8 years
A = 450g
[tex]450=800e^{r\times 8}\\\\A=800e^{-0.07192\times 16}\\\\A=800e^{1.15072}\\\\A = 800 \ 1 \div e^{1.15072}\\\\A = 800\div e^{1.15072}[/tex]
A = 253
Therefore we can conclude that the substance that should be presented after 16 years is 253.
Learn more: brainly.com/question/16115373
Game consoles: A poll surveyed 341 video gamers, and 95 of them said that they prefer playing games on a console, rather than a computer or hand-held device. An executive at a game console manufacturing company claims that the proportion of gamers who prefer consoles differs from . Does the poll provide convincing evidence that the claim is true
Answer:
proportion of gamers who prefer console does not differ from 29%
Step-by-step explanation:
Given :
n = 341 ; x = 95 ; Phat = x / n = 95/341 = 0.279
H0 : p = 0.29
H1 : p ≠ 0.29
The test statistic :
T = (phat - p) ÷ √[(p(1 - p)) / n]
T = (0.279 - 0.29) ÷ √[(0.29(1 - 0.29)) / 341]
T = (-0.011) ÷ √[(0.29 * 0.71) / 341]
T = -0.011 ÷ 0.0245725
T = - 0.4476532
Using the Pvalue calculator from test statistic score :
df = 341 - 1 = 340
Pvalue(-0.447, 340) ; two tailed = 0.654
At α = 0.01
Pvalue > α ; We fail to reject the null and conclude that there is no significant evidence that proportion of gamers who prefer console differs from 29%
Rate of change or rate of change
A farmer has 80 feet of wire mesh to surround a rectangular pen.
A) Express the area A of the pen as a function of x, also draw the figure of A indicating the admissible values of x for this problem.
B) What are the dimensions of the maximum area pen?
Answer:
Step-by-step explanation:
A). Let the dimensions of the rectangular pen are,
Length = l
Width = x
Since, farmer has the wire measuring 80 feet to surround the the pen.
Perimeter of the pen = 80 feet
2(l + x) = 80
l + x = 40
l = 40 - x ------(1)
Area of the rectangular pen = Length × width
= lx
By substituting the value of l from equation (1),
Area (A) of the pen will be modeled by the expression,
A = (40 - x)
A = 40x - x²
B). For maximum area of the pen,
Derivative of the area = 0
[tex]\frac{d}{dx}(A)=0[/tex]
[tex]\frac{d}{dx}(A)=\frac{d}{dx}(40x-x^2)[/tex]
= 40 - 2x
And (40 - 2x) = 0
x = 20
Therefore, width of the pen = 20 feet
And length of the pen = 40 - 20
= 20 feet
Dimensions of the pen should be 20 feet by 20 feet.
How would yo expand ln (1/49k)?
Answer:
Step-by-step explanation:
It depends on whether you mean ln(1/49k) or ln(1/(49k)).
Which expression is equivalent to 9+y+y+3
Answer:
b
Step-by-step explanation:
You only need to add the real numbers and the ys.
Answer:
12 + 2y
Step-by-step explanation:
9+y+y+3
Combine like terms
9+3 + y+y
12 + 2y
Jean threw a disc in the air. The height of the disc can be modelled by the function
h = -5t^2 + 31.5t + 2, where h is the height in metres after t seconds.
Patrick fired a paintball at the disc. The path of the paintball is modelled by the function h = 30t + 1, with the same units. How long will it take the paint ball to hit the disc?
Answer:
It will take 0.62 seconds for the paint ball to hit the disc.
Step-by-step explanation:
Height of the disk:
[tex]H_d = -5t^2 + 31.5t + 2[/tex]
Height of the paintball:
[tex]H_p = 30t + 1[/tex]
When the paintball will hit the disk?
When they are at the same height, so:
[tex]H_d = H_p[/tex]
[tex]-5t^2 + 31.5t + 2 = 30t + 1[/tex]
[tex]5t^2 - 1.5t - 1 = 0[/tex]
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}[/tex]
[tex]\Delta = b^{2} - 4ac[/tex]
In this question:
Quadratic equation with [tex]a = 5, b = -1.5, c = -1[/tex]
So
[tex]\Delta = (-1.5)^2 - 4(5)(-1) = 22.25[/tex]
[tex]t_{1} = \frac{-(-1.5) + \sqrt{22.25}}{2(5)} = 0.62[/tex]
[tex]t_{2} = \frac{-(-1.5) - \sqrt{22.25}}{2(5)} = -0.32[/tex]
Time is a positive measure, so 0.62.
It will take 0.62 seconds for the paint ball to hit the disc.
A rope is 56 in length and must be cut into two pieces. If one piece must be six times as long as the other, find the length of each piece. Round your answers to the nearest inch, if necessary.
Answer:
48, 6
Step-by-step explanation:
The ratio of the pieces is 6 to 1
Add them together to get the total
6+1 = 7
Divide the total length by 7
56/7 = 8
Multiply the ratios by 8
6*8 = 48
1*8 = 6
The peices are 48 and 6
After the booster club sold 40 hotdogs at a football game, it had $90 in profit.
After the next game, it had sold a total of 80 hotdogs and had a total of $210
profit. Which equation models the total profit, y, based on the number of
hotdogs sold, X?
Step-by-step explanation:
x = goods y = $
x Sold = 40, Y = $90
x Sold = 80, Y = $210
sum of xHotdogs = 40+80 = 120 Hotdogs
Sum of Y$ = $90 + 210 = 300
so
X = 2A & Y = 3 its mean one hotdogs can sold for one each = $2.25 and we round it to $3
So = XY = 2A + 3
sorry if i wrong
Ethan buys a video game on sale. If the video game usually costs $60, and it was on sale for 20% off, how much did Ethan pay? Round to the nearest whole dollar.
Ethan will pay $31.99 with the discount.
How? This is the answer because:
If 39.99 is 100%, and you are trying to find 20%...
1. you need to set it up as a ratio (of course, you do not need to do this, but it is easier for me to do it this way)
2. the ratio will look like this: 39.99/100% x/20%
3. all we need to do from here is to cross multiply!
4 39.99 x
---------- = ----------
100 20
-price is on the top and percent on the bottom
-you would now do 39.99 times 20
-then divide by 100
5. once you have 20% of 39.99, you need to subtract that answer from the total
6. 39.99 - 7.998 = 31.992 (you need to round to the nearest hundredth)
Hope this helps <3
what’s the missing side of the polygons
Answer:
the missing side is 21!!!!!!!!
Please help on this initial amount problem
what 30 + 30+60+(56)-82=?
94 is the correct answer for that question
Step-by-step explanation:
30+30+60+56-82=94
Suppose you make napkin rings by drilling holes with different diameters through two wooden balls (which also have different diameters). You discover that both napkin rings have the same height 5h. Use cylindrical shells to compute the volume V of a napkin ring of height 5 h created by drilling a hole with radius r through the center of a sphere of radius R and express the answer in terms of h .
Answer:
V = 1/6 π ( 5h)^3
Step-by-step explanation:
Height of napkin rings = 5h
Compute the volume V of a napkin ring
let a = 5
radius = r
express answer in terms of h
attached below is the detailed solution
cho f(x)= sign x và g(x) = x(1-x^2). tìm f(g(x))
Answer:
[tex]f(g(x))= sign(x(1-x^{2})) = sign(x-x^{3})[/tex]
Step-by-step explanation:
Hshejoffpeowhwbwbwhjskfofofoekwwoksnfnf Helppp
Answer:
Step-by-step explanation:
3. ZW ≅ WX
Solve the equation
P=100x-0.1x^2
Answer:
100x - 0.01x
Step-by-step explanation:
100x-0.1x^2
100x - 0.01x
The stem-and-leaf plot above shows house sale prices over the last week in Tacoma. What was the most
expensive house sold? Give your answer in dollars
$
Answer:
the answer is 2
Step-by-step explanation:
Find the missing length indicated
Answer:
x = 175
Step-by-step explanation:
The following data represents the age of 30 lottery winners.
22 30 30 35 36 37 37
37 39 39 41 51 51 54
54 55 57 57 58 58 61
64 68 69 72 74 75 78 79 80
Complete the frequency distribution for the data.
Age Frequency
20-29
30-39
40-49
50-59
60-69
70-79
80-89
Bill invested $4000 at 6%
compounded annually. Find the
accumulated amount at the end of
12 years.
Answer:
$ 8048.79Step-by-step explanation:
P = $4000t = 12 yearsr = 6% = 0.06Formula:
A = P(1 + r)^tThe total amount:
A = 4000*(1 + 0.06)^12 = 8048.79We have to find the,
Accumulated amount at end of 12 years.
The formula we use,
→ A = P(1+r)^t
It is given that,
→ P = $4000
→ t = 12 years
Then r will be,
→ 6%
→ 6/100
→ 0.06
Then the total amount is,
→ P(1+r)^t
→ 4000 × (1 + 0.06)^12
→ 8048.79
Thus, $ 8048.79 is the amount.