Answer:
Domain: [-2,1)
Range: [0,4]
Step-by-step explanation:
The required domain and range of the function graphed are -2 ≤ x < 1 and 0 ≤ y ≤ 4.
Given that,
To determine the domain and range of the function graphed below, in interval notation.
Range, it is the set of the values that come out to an outcome for a certain mathematical operations.
Here,
The projected line of the curve on the horizontal axis is from greater and equal to -2 to less than 1,
Domain = -2 ≤ x < 1
The projected line of the curve on the vertical axis is from greater or equal to 0 to less than or equal to 4,
Range = 0 ≤ y ≤ 4.
Thus, the required domain and range of the function graphed are -2 ≤ x < 1 and 0 ≤ y ≤ 4.
Learn more about range here:
https://brainly.com/question/12239390
#SPJ2
Identify the level of measurement of the data, and explain what is wrong with the given calculation. Ina set of data, alert levels are represented as 1 for low, 2 for medium, and 3 for high. The average mean of the 522 alert levels is 1.3. The data are at the ________ level of measurement. a. Nominalb. Ordinalc. Ratiod. IntervalWhat is wrong with the given calculation?a. Such data should not be used for calculations such as an average.b. One must use a different method to take the average of such datac. The true average is 2.5d. There is nothing wrong with the given calculation.
Answer:
(1) Ordinal
(2) Such data should not be used for calculations such as an average.
Step-by-step explanation:
Given
[tex]1 \to Low[/tex]
[tex]2 \to Medium[/tex]
[tex]3 \to High[/tex]
[tex]Average = 1.3[/tex]
Solving (a): The level of measurement
When observations are presented in ranks such as:
[tex]1 \to Low[/tex]
[tex]2 \to Medium[/tex]
[tex]3 \to High[/tex]
The level of measurement of such observation is ordinal
Solving (b): What is wrong with the computation?
Ordinal level of measurement are not numerical values whose average can be calculated because they are used as ranks.
Hence, (a) is correct
find the equation of the circle centre (3-2)radius 2 unit
Answer:
(x - 3)^2 + (x + 2)^2 = 4
Step-by-step explanation:
Equation of circle:
(x - h)^2 + (x - k)^2 = r^2
(h, k) = (3, -2)
r = 2
(x - 3)^2 + (x - (-2))^2 = 2^2
(x - 3)^2 + (x + 2)^2 = 4
Need help on last question
Answer:
Step-by-step explanation:
so let the equation equal 13
13 = 3[tex]x^{3}[/tex]-12x+13
so when ever 3[tex]x^{3}[/tex]-12x=0 then this is equation is true, soooo
x (3[tex]x^{2}[/tex] - 12) =0
so when x = 0 this is true, but also when
3[tex]x^{2}[/tex]-12=0 also
3[tex]x^{2}[/tex] = 12
[tex]x^{2}[/tex] = 4
x = 2
so when x = 2 or -2 or 0 , then this is true
What is the area of this composite figure?
Answer:
Well, divide the shape into rectangles,
triangles or other shapes after that, you can find the area of and then add the areas back together.
Step-by-step explanation:
The area of composite shapes is defined as the area covered by any composite shape. A composite shape is made up of basic shapes put together. Thus, the area of the composite shape is found by individually adding all the basic shapes.
To calculate the area of a composite shape you must divide the shape into rectangles, triangles or other shapes you can find the area of and then add the areas back together.es
36x^2=y^2
Does the equation define y as a function of x ?
Answer:
ya the equation divides y as a function of x
Divide the following complex numbers:
[tex](2 + i) \div (1 - 4i)[/tex]
Answer:
[tex]-\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
Step-by-step explanation:
[tex] (2 + i) \div (1 - 4i) = [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} \times \dfrac{1 + 4i}{1 + 4i} [/tex]
[tex] = \dfrac{(2 + i)(1 + 4i)}{(1 - 4i)(1 + 4i)} [/tex]
[tex] = \dfrac{2 + 8i + i + 4i^2}{1 + 16} [/tex]
[tex] = \dfrac{2 + 9i - 4}{17} [/tex]
[tex] = \dfrac{-2 + 9i}{17} [/tex]
[tex]= -\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
g(x)=(cosθsinθ)^4 what's the differential
Answer:
sin²2θ. (cos θ sin θ). cos 2θ
Step-by-step explanation:
finding g'(x)
g'(x)
(x^n)' = nx^(n -1)= 4 (cosθsinθ)³ . { cosθ. (sinθ)' + sinθ. (cosθ)' }
(cosθ)' = - sinθ (sinθ)' = cosθ= 4 (cosθsinθ)³ { cosθ. cos θ + sinθ.(-sin θ)}
= 4 (cosθsinθ)³{ cos²θ - sin²θ}
cos²θ - sin²θ = cos 2θ2sinθ cosθ = sin 2θ= (4 cosθ sinθ)². (cosθ sinθ). { cos²θ - sin²θ}
= sin²2θ. (cos θ sin θ). cos 2θ
Someone pls help me due in 30 min. Given that x and y show inverse variation, complete the table.
Answer:
1st blank=[tex]y_{1}[/tex]
2nd blank=[tex]x_{1}[/tex]
3rd blank= [tex]y_{2}[/tex]
3*27=81
so 1*[tex]y_{1}[/tex]=81
hence [tex]y_{1}[/tex]=81
9* [tex]x_{1}[/tex]= 81
[tex]x_{1}[/tex]=9
27*[tex]y_{2}[/tex]=81
[tex]y_{2}[/tex]=3
Thus solved.
Hope this helps.
Please mark me as brainliest.
What do you add to 2 7/8 to make 5
Answer:
2 1/8
Step-by-step explanation:
7/8 is the same as 0.875 and therefore you need 0.125 also known as 1/8 to make it a whole number. When you add it to the already existing whole 2 you get three. Subtract three from five to make two which is what you need to add on top to finally get 5.
A random sample of 35 employees of the local green technologies plant Greenies, who completed two years of college, were asked to take a basic mathematics test. The mean and standard deviation of their scores were 75.1 and 12.8, respectively. In a random sample of 50 employees who had only completed high school, the mean and standard deviation of the test scores were 72.1 and 14.6, respectively. Assuming equal variance between the two populations, can we infer at the .10 level of significance that students who completed two years of college had a higher average than students who had only completed high school
Answer:
There is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
n1 = 35 ; x1 = 75.1 ; s1 = 12.8
n2 = 50 ; x2 = 72.1 ; s2 = 14.6
Pooled variance = Sp² = (df1*s1² + df2*s2²) ÷ (n1 + n2 - 2)
df1 = n1 - 1 = 35 - 1 = 34
df2 = n2 - 1 = 50 - 1 = 49
(x1 - x2) ÷ Sp(√(1/n1 + 1/n2))
Sp² = (34*12.8^2 + 49*14.6^2) / (35+50-2)
Sp² = (5570.56 + 10444.84) / 83
Sp² = 192.95662
Sp = √192.95662
Sp = 13.89
Test statistic = (75.1 - 72.1) / 13.89 * √(1/35 + 1/50)
Test statistic = 3 / (13.89 * 0.2203892)
Test statistic = 0.980
df = n1 + n2 - 2
df = 35 + 50 - 2 = 83
Using the Pvalue calculator :
Pvalue(0.980, 83) = 0.165
α = 0.1
Pvalue > α ; We fail to reject the H0; and conclude that there is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
There's a three in the tens
placed
The digit is the ones places is
third multiple of three
It is a two-digit number
Answer:
That number is 39
Find the value of x in each case:
Answer:
36
Step-by-step explanation:
2x is an exterior angle
Exterior angles = the sum of the two remote (unconnected - non supplementary interior angles).
Put symbolically
<LEG = <EGF + <EFG
<EFG = 180 - 4x In this case you need to find the supplemtnt
<LEG = x + 180 - 4x
2x = 180 - 3x Add 3x to both sides
5x = 180 Divide by 5
x = 36
the campus bookshop sells exercise books and textbooks, where, the total cost of 10 exercise books and 2 textbooks is $1400.00. One also finds the total cost of 3 textbooks and 30 exercise books is $3000. Then determine the price of 1 exercise book?
Answer:
The price of 1 exercise book is $122.45.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the price of one exercise book.
y is the price of one textbook.
Total cost of 10 exercise books and 2 textbooks is $1400.00.
This means that:
[tex]10x + 2y = 1400[/tex]
Since we want x:
[tex]2y = 1400 - 10x[/tex]
[tex]y = 700 - 5x[/tex]
One also finds the total cost of 3 textbooks and 30 exercise books is $3000.
This means that:
[tex]3x + 30y = 3000[/tex]
Since [tex]y = 700 - 5x[/tex]
[tex]3x + 30(700 - 5x) = 3000[/tex]
[tex]3x + 21000 - 150x = 3000[/tex]
[tex]147x = 18000[/tex]
[tex]x = \frac{18000}{147}[/tex]
[tex]x = 122.45[/tex]
The price of 1 exercise book is $122.45.
What is the equation of the line that is perpendicular to
and has the same y-intercept as the given line?
(0,0)
(5,0)
O y = x+1
O y = x+5
o y = 5x + 1
O y = 5x + 5
-6 -5 -4 -3 -2 -1
23
4 5 6
Mark this and return
Save and Exit
Nyt
Submit
Answer:
y = 5x + 1
Step-by-step explanation:
Given the coordinate points (0,1) and (5,0)
First, get the slope
Slope m =(0-1)/5-0
m = -1/5
Since the required line is perpendicular, then the required slope is;
M = -1/(-1/5)
M = 5
Since 1the y intecept id (0,1) i.e. 1
Required equation is y = mx+b
y = 5x + 1
This gives the required equation
Note that the coordinate (0,1) was used instead os (0,0)
You want to make a playlist with all different songs. How many ways can you make a playlist of 16 songs if you must play Leavon, Dream on, Here Comes the Sun, and Clocks in that order?
Answer in permutations
Answer: [tex]_{13} P _{13}[/tex]
Another acceptable answer is 13! where the exclamation mark is needed.
The numeric form is 6,227,020,800 which is a little over 6 billion.
==============================================================
Explanation:
Let's lump those four songs together to form a so called "mega song". So we treat those four items as one single item. This is ensure that those songs are played in the order we want. The other songs aren't treated this way.
We start with 16 songs and drop to 16-4 = 12 songs when taking out those four named songs. Then we add 1 to get 12+1 = 13 since we're adding in that "mega song" block.
---------------------------
So to recap so far, we've gone from 16 songs to 13 songs. The goal is to find out how many arrangements of 13 songs are possible. Order matters.
We'll use the nPr permutation function
[tex]_{n} P _{r} = \frac{n!}{(n-r)!}\\\\[/tex]
where in this case n = 13 and r = 13. Your teacher doesn't want you to evaluate this function. You simply need to state the symbolic form. So that's why we go from [tex]_{n} P _{r}[/tex] to [tex]_{13} P _{13}[/tex]
If you wanted to answer this in terms of factorial notation, then you could say this
[tex]_{n} P _{r} = \frac{n!}{(n-r)!}\\\\_{13} P _{13} = \frac{13!}{(13-13)!}\\\\_{13} P _{13} = \frac{13!}{(0)!}\\\\_{13} P _{13} = \frac{13!}{1}\\\\_{13} P _{13} = 13!\\\\[/tex]
So we can see that the notations [tex]_{13} P _{13}[/tex] and [tex]13![/tex] mean the exact same thing.
If you wanted to know the actual number of permutations, then,
13! = 13*12*11*10*9*8*7*6*5*4*3*2*1 = 6,227,020,800
which is a little over 6 billion permutations.
(10 points!) The function below has an input, x, and produces a specific output, c. (Pictured below.)
Answer:
x =[tex]x =(\frac{c}{4} )^{1/3} \\[/tex]
input 2 output 32
output 256 input 4
Step-by-step explanation:
The sales department has determined that the average purchase value for their catalog business is normally distributed with a mean of $41.34 and a standard deviation of $13.54. What is the purchase value at the 30th percentile
Answer:
The purchase value at the 30th percentile=34.24
Step-by-step explanation:
We are given that
Mean,[tex]\mu=41.34[/tex]
Standard deviation,[tex]\sigma=13.54[/tex]
We have to find the purchase value at the 30th percentile.
[tex]xth percentile =\mu+Z\times \sigma[/tex]
Where Z is the critical value of x% confidence interval
x=30
Critical value of Z at 30% confidence interval=-0.5244
Using the formula
30th percentile=[tex]41.34+(-0.5244)(13.54)[/tex]
30th percentile=[tex]41.34-7.100376[/tex]
30th percentile[tex]\approx 34.24[/tex]
Hence, the purchase value at the 30th percentile=34.24
There are 4 contestants in a beauty pageant. How many results are possible for the first, second, and third place?
Explanation:
There are 4 choices for first place, 3 choices for second place, and 2 choices for third place. Overall, there are 4*3*2 = 24 permutations.
Enter an equation in point-slope form for the line.
Slope is −6 and (1, 1) is on the line.
Answer:
y - 1 = -6(x - 1)
General Formulas and Concepts:
Algebra I
Point-Slope Form: y - y₁ = m(x - x₁)
x₁ - x coordinate y₁ - y coordinate m - slopeStep-by-step explanation:
Step 1: Define
Identify
Point (1, 1)
Slope m = -6
Step 2: Find Equation
Substitute in variables [Point-Slope Form]: y - 1 = -6(x - 1)
Solve the expression using the correct order of operations.
0.75x3.2+ (9.1)2-((-2.3)-(-0.9))2
Answer:
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2 = 83.25[/tex]
Step-by-step explanation:
Given
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2[/tex]
Required
Solve
Start with the bracket
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2 = 0.75 * 3.2+ (9.1)^2-(-1.4)^2[/tex]
Evaluate all exponents
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2 = 0.75 * 3.2+ 82.81-1.96[/tex]
Evaluate all products
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2 = 2.4+ 82.81-1.96[/tex]
[tex]0.75 * 3.2+ (9.1)^2-((-2.3)-(-0.9))^2 = 83.25[/tex]
Х/10 is between 1/5
and 0.6. What could the value of x be?
Answer:
2 < x < 6
Step-by-step explanation:
x/10
1/5 = 2/10
.6 = 6/10
2 < x < 6
F (x) = 1/3 x for x=4
Answer:
4/3
Step-by-step explanation:
Substitute in 4.
(1/3)4
Multiply
4/3
I hope this helps!
Does it pay to ask for a raise? A national survey of heads of households showed the percentage of those who asked for a raise and the percentage who got one. According to the survey, of the men interviewed, 21% had asked for a raise and 60% of the men who had asked for a raise received the raise. If a man is selected at random from the survey population of men, find the following probabilities. (Enter your answers to three decimal places.)
Answer:
a) P(man asked for a raise) = 0.21.
b) P(man received raise, given he asked for one) = 0.6.
c) P(man asked for raise and received raise) = 0.126.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
Question a:
21% asked for a raise, so:
P(man asked for a raise) = 0.21.
Question b:
Event A: Asked for a raise.
Event B: Received a raise:
21% had asked for a raise and 60% of the men who had asked for a raise received the raise:
This means that [tex]P(A) = 0.21, P(A \cap B) = 0.21*0.6[/tex], thus:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.21*0.6}{0.6} = 0.6[/tex]
P(man received raise, given he asked for one) = 0.6.
Question c:
[tex]P(A \cap B) = 0.21*0.6 = 0.126[/tex]
P(man asked for raise and received raise) = 0.126.
Help please!!!!!!!!!!!
Answer:
AB IS THE ANSWER !!!!!!!!!!
Answer: AB
Step-by-step explanation:
Hi! I don't know if you need help anymore ,but here you go!
Because BC=ED, I asume that AE=AB
Symposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use ???? = 0.01.
Complete Question
ymposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use = 0.01.
a. What is the value of the sample test statistic? (Round your answer to two decimal places.)
b. Find the P-value of the test statistic. (Round your answer to four decimal places.)
Answer:
a) [tex]Z=2.45[/tex]
b) [tex]P Value=0.0073[/tex]
Step-by-step explanation:
From the question we are told that:
Probability of Wishart and Leach [tex]P=21.4=>0.214[/tex]
Population Size [tex]N=498[/tex]
Sample size [tex]n=12[/tex]
Therefore
[tex]P'=\frac{129}{498}[/tex]
[tex]P'=0.2590[/tex]
Generally the Null and Alternative Hypothesis is mathematically given by
[tex]H_0:P=0.214[/tex]
[tex]H_a:=P>0.214[/tex]
Test Statistics
[tex]Z=\frac{P'-P}{\sqrt{\frac{P(1-P)}{n}}}[/tex]
[tex]Z=\frac{0.2590-0.214}{\sqrt{\frac{0.214(1-0.214)}{498}}}[/tex]
[tex]Z=2.45[/tex]
Therefore P Value is given as
[tex]P Value =P(Z\geq 2.45)[/tex]
[tex]P Value =1-P(Z\leq 2.45)[/tex]
[tex]P Value =1-0.99268525[/tex]
[tex]P Value=0.0073[/tex]
Solve the given system by the substitution method.
3x + y = 8
7x - 4y = 6
Answer:
[tex]{ \tt{y = 8 - 3x}} - - - (i) \\ \\ = > 7x - 4(8 - 3x) = 6 \\ 7x - 32 + 12x = 6 \\ 19x - 32 = 6 \\ 19x = 38 \\ x = 2 \\ \\ = > y = 8 - 3(2) \\ y = 2[/tex]
Is AFGH ~ AJKL? If so, identify the similarity postulate or theorem that
applies.
G
K
10
6
30°
30°
Н
A. Similar - SAS
B. Cannot be determined
C. Similar - SSS
D. Similar - AA
Answer: B. Cannot be determined
Explanation:
We can't use SAS since we don't have two pairs of proportional sides. We only know one pair of sides. This also rules out SSS as well since we'd need 3 pairs of proportional sides.
We can't use AA because we don't have two pairs of congruent angles.
Currently, we simply don't have enough information to determine if the triangles are similar or not.
solve the inequality x^3+4x>5x^2 please show steps and interval notation. thank you.
Answer: [tex]x\in (0,1)\cup (4,\infty)[/tex]
Step-by-step explanation:
Given
In equality is [tex]x^3+4x>5x^2[/tex]
Taking terms one side
[tex]\Rightarrow x^3-5x^2+4x>0\\\Rightarrow x(x^2-5x+4)>0\\\Rightarrow x(x^2-4x-x+4)>0\\\Rightarrow x(x-4)(x-1)>0\\\Rightarrow (x-0)(x-1)(x-4)>0[/tex]
Using wavy curve method
[tex]x\in (0,1)\cup (4,\infty)[/tex]
NEED HELP ASAP GIVING BRAINLIEST!!!!!!!!!!!!!!!!!!
Answer:
option D
Step-by-step explanation:
[tex]sin^2 ( \frac{3\pi}{2}) + cos^2(\frac{3\pi}{2}) = 1\\\\( -1)^2 + 0^2 = 1[/tex]
Explanation:
[tex]sin x = cos( \frac{\pi}{2} - x)\\\\sin(\frac{3\pi}{2}) = cos ( \frac{\pi}{2} - \frac{3\pi}{2})\\[/tex]
[tex]=cos(\frac{\pi - 3\pi}{2})\\\\ =cos(\frac{2\pi}{2})\\\\=cos \ \pi\\\\= - 1[/tex]
Therefore ,
[tex]sin^2( \frac{3\pi}{2}) = ( - 1)^2[/tex]
The functions f(x) and g(x) are shown on the graph.
f(x) = x2
What is g(x)?
10-
If(x)
1
х
10
-5
5
10
g(x)
-10
A. g(x) = (– x)2 - 3
B. g(x) = – x2 + 3
c. g(x) = (-x)2 + 3
D. g(x) = -X2 - 3
Answer:
[tex]g(x) = -x^2 + 3[/tex]
Step-by-step explanation:
Given
[tex]f(x) = x^2[/tex]
Required
Determine g(x)
First, shift f(x) down by 3 units
The rule is:
[tex]f'(x) = f(x) - 3[/tex]
So:
[tex]f'(x) = x^2 - 3[/tex]
Next, reflect f'(x) across the x-axis to get g(x)
The rule is:
[tex]g(x) = -f(x)[/tex]
So, we have:
[tex]g(x) = -(x^2 - 3)[/tex]
Open bracket
[tex]g(x) = -x^2 + 3[/tex]
Answer:
D
Step-by-step explanation:
I figured out the hard way