The expected payout is
2 × 0.5 + 4 × 0.2 + 6 × 0.15 + 8 × 0.1 + 10 × 0.05
= 1 + 0.8 + 0.9 + 0.8 + 0.5
= 4
The expected value of the winnings from this game is $3.90.
What is probability?It is the chance of an event to occur from a total number of outcomes.
The formula for probability is given as:
Probability = Number of required events / Total number of outcomes.
Example:
The probability of getting a head in tossing a coin.
P(H) = 1/2
We have,
To find the expected value of the winnings, we multiply each possible payout by its probability and then sum these products.
So,
Expected Value = (2 x 0.5) + (4 x 0.2) + (6 x 0.15) + (8 x 0.1) + (10 x 0.05)
Expected Value = 1 + 0.8 + 0.9 + 0.8 + 0.5
Expected Value = 3.9
Therefore,
The expected value of the winnings from this game is $3.90.
Learn more about probability here:
https://brainly.com/question/14099682
#SPJ7
Lisa bought a house The value of the house increased by 1.5% each year for 2 years. At the end of 2 years, the value of the house was £123,627. Work out the value of the house when Lisa bought it.
Answer:
$370,881
Step-by-step explanation:
firstly we we multiply 1,5% by 2yrs. the answer we get is 3,0%. we then multiply 3 % by $123,627 and get $370,881
If Lisa bought a house The value of the house increased by 1.5% each year for 2 years. The value of the house was £123,627. The initial amount of the house is 95120.7.
What is Percentage?Percentage, a relative value indicating hundredth parts of any quantity.
Given,
Lisa bought a house The value of the house increased by 1.5% each year for 2 years
By the end of 2 years, the value of the house was £123,627.
A=P(1+rt)
A is the final amount,
r is rate of interest
t is the time
P is principle amount.
123,627=P(1+1.5/100 (2))
123657=P(1+0.15(2))
123657=P(1+0.3)
123657=1.3P
Divide both sides by 1.3
P=95120.7
The initial amount of the house when Lisa bought is 95120.7
To learn more on Percentage click:
https://brainly.com/question/28269290
#SPJ2
Please help
Find the value of x,
m∠5 = x-6, m∠4 = 2x+4, m∠2 = 2x-26
9514 1404 393
Answer:
x = 30 2/3
Step-by-step explanation:
Angles 4 and 5 are complementary, so we have ...
m∠4 +m∠5 = 90°
(2x +4) +(x -6) = 90
3x -2 = 90 . . . . . . . . . collect terms
3x = 92 . . . . . . . . . . add 2; next, divide by 3
x = 92/3 = 30 2/3
Which formula can be used to describe the sequence?
O f(x + 1) = f(x)
O f(x + 1) = - f(x)
O f(x) = f(x + 1)
O f(x) = - 3 f(x + 1)
Answer:
f(x+1) = -3/4 × f(x)
Step-by-step explanation:
first of all, the sign of the numbers in the sequence is alternating. so, there must be a "-" involved.
that eliminates the first and third answer options.
and the absolute values of the numbers in the sequence are going down. |f(x+1)| < |f(x)|
that eliminates the fourth answer option, as this says that
|f(x)| < |f(x+1)|. and that is the opposite of how the actual sequence behaves.
Verify that the equation is an identity.
Step-by-step explanation:
We need to prove that ,
cot x / csc x - csc x / cot x = - tan x sec x .
LHS :-
> cot x / csc x - csc x / cot x
> cos x / sin x ÷ csc x - sin x × csc x / cos x
> cosx - 1/ cos x
> cos² x - 1 / cos x
> - sin²x / cosx
> -sin x / cos x × sin x
> -tan x sin x
= RHS
Hence Proved !
PLEASE HELP!!! What is the equation of the line perpendicular to 2x – 3y = 13 that passes through the point (–6, 5)?
Answer:
2x + 3y -3=0
Step-by-step explanation:
The given equation of the line is ,
[tex]\implies 2x - 3y = 13 [/tex]
Now convert it into slope intercept form to get the slope , we get ,
[tex]\implies 3y = 2x - 13 \\\\\implies y =\dfrac{2}{3}x -\dfrac{13}{2}[/tex]
Therefore the slope is ,
[tex]\implies m = \dfrac{2}{3} [/tex]
We know that the product of slope of perpendicular lines is -1 . Therefore the slope of the perpendicular line will be ,
[tex]\implies m_{perpendicular}= -\dfrac{2}{3} [/tex]
Now one of the point is (-6,5) .On Using point slope form , we have ,
[tex]\implies y-y_1 = m( x - x_1) \\\\\implies y - 5 = -\dfrac{2}{3}( x + 6 ) \\\\\implies 3y - 15 = -2x -12
\\\\\implies 2x + 3y -15+12=0 \\\\\implies \underline{\underline{ 2x + 3y -3=0 }}[/tex]
Answer:
y = - [tex]\frac{3}{2}[/tex]x - 4
Step-by-step explanation:
2x – 3y = 13
3y = 2x + 13
y = [tex]\frac{2}{3}[/tex]x + [tex]\frac{13}{3}[/tex]
slope = 2/3
negative reciprocal = -3/2
y = -3/2x + b
(-6, 5)
5 = (-3/2)(-6) + b
5 = 9 + b
b = -4
y = -3/2x - 4
25/24 as a decimal rounded to nearest hundredth
Divide 25 by 24:
25 / 24 = 1.0416
The hundredth place is the second decimal place, because the third decimal place is less than 5, the hundredths place stays the same:
Answer: 1.04
We are throwing darts on a disk-shaped board of radius 5. We assume that the proposition of the dart is a uniformly chosen point in the disk. The board has a disk-shaped bullseye with radius 1. Suppose that we throw a dart 2000 times at the board. Estimate the probability that we hit the bullseye at least 100 times.
Answer:
the probability that we hit the bullseye at least 100 times is 0.0113
Step-by-step explanation:
Given the data in the question;
Binomial distribution
We find the probability of hitting the dart on the disk
⇒ Area of small disk / Area of bigger disk
⇒ πR₁² / πR₂²
given that; disk-shaped board of radius R² = 5, disk-shaped bullseye with radius R₁ = 1
so we substitute
⇒ π(1)² / π(5)² = π/π25 = 1/25 = 0.04
Since we have to hit the disk 2000 times, we represent the number of times the smaller disk ( BULLSEYE ) will be hit by X.
so
X ~ Bin( 2000, 0.04 )
n = 2000
p = 0.04
np = 2000 × 0.04 = 80
Using central limit theorem;
X ~ N( np, np( 1 - p ) )
we substitute
X ~ N( 80, 80( 1 - 0.04 ) )
X ~ N( 80, 80( 0.96 ) )
X ~ N( 80, 76.8 )
So, the probability that we hit the bullseye at least 100 times, P( X ≥ 100 ) will be;
we covert to standard normal variable
⇒ P( X ≥ [tex]\frac{100-80}{\sqrt{76.8} }[/tex] )
⇒ P( X ≥ 2.28217 )
From standard normal distribution table
P( X ≥ 2.28217 ) = 0.0113
Therefore, the probability that we hit the bullseye at least 100 times is 0.0113
Find the missing term in the pattern.
Answer:
20
Step-by-step explanation:
6 + 2 = 8
8 + 3 = 11
11 + 4 =15
15 + 5 =20
Answer:
20
Step-by-step explanation:
the pattern is increase the number by one more than the increase before. so 6,8=2 greater
8-11=3 greater. 11-15=4 greater. so, 15+5=20 (with this answer being 5 greater continuing the pattern.)
Necesito ayuda con esto
Answer:
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Step-by-step explanation:
Considerando que se tratan de dos matrices de igual dimensión y cuyos elementos son números reales, conocemos que la adición entre dos matrices consiste en las sumas de los elementos de igual posición, esto es, los elementos que están localizados en las mismas filas y columnas, entonces, la suma es:
[tex]\vec A = \left[\begin{array}{cc}1&2\\-1&0\end{array} \right][/tex], [tex]\vec B = \left[\begin{array}{cc}-2&9\\3&5\end{array}\right][/tex]
[tex]\vec U = \vec A + \vec B = \left[\begin{array}{cc}1 + (-2)&2+9\\-1 + 3&0 + 5\end{array}\right][/tex]
[tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex]
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
This is the graph of y=x^2+2x-2 what is the range of this function
In an international film festival, a penal of 11 judges is formed to judge the best film. At last two films FA and FB were considered to be the best where the opinion of judges got divided. Six judges where in favor of FA whereas five in favor of FB. A random sample of five judges was drawn from the panel. Find the probability that out of five judges, three are in favor of film FA.
Answer:
The answer is "0.4329 ".
Step-by-step explanation:
P( three in favor of FA)
Select 3 out of 6 FA supporters then select 2 out of 5 FB supportive judges
[tex]=\frac{^{6}_{C_{3}}\times ^{5}_{C_{2}}}{^{11}_{C_{5}}}\\\\=\frac{\frac{6!}{3!(6-3)!}\times \frac{5!}{2!(5-2)!}}{\frac{11!}{5!(11-5)!}}\\\\=\frac{\frac{6!}{3! \times 3!}\times \frac{5!}{2! \times 3!}}{\frac{11!}{5! \times 6!}}\\\\=\frac{\frac{6 \times 5 \times 4 \times 3!}{3 \times 2 \times 1\times 3!}\times \frac{5 \times 4 \times 3!}{2 \times 1 \times 3!}}{\frac{11 \times10 \times 9 \times 8 \times 7 \times 6! }{5 \times 4 \times 3 \times 2 \times 1 \times 6!}}\\\\[/tex]
[tex]=\frac{ (5 \times 4) \times(5 \times 2)}{(11 \times 3 \times 2 \times 7 )}\\\\=\frac{ 20 \times 10 }{(11 \times 42)}\\\\=\frac{ 200 }{462}\\\\=\frac{100 }{231}\\\\=0.4329[/tex]
Paul writes newspaper articles. He earns a base rate of $500 per month and an additional $100 per article he writes. Last month he earned $2000.
Write an equation to determine the number of articles (a) he sold last month.
Answer:
Total earning last month with x articles is:
x*100 + 500This is same amount as 2000
The equation is:
100x + 500 = 2000Please help me on this real quick
A population has mean j = 18 and standard deviation o = 20. Find I, and oz for samples of size n = 100, Round your answers to
one decimal place if needed,
Answer:
))
Step-by-step explanation:
just place your decimal once to the left I think
The diagram below is divided into equal parts. Which fraction of the parts is white?
A diagram is divided into 4 blue parts and 3 white parts.
Three-sevenths
Four-sevenths
Three-fourths
Four-thirds
Answer: This problem is a fraction since we have several equal parts that make up one whole. The problem asks us to talk about the relationship of white pieces to the whole. Since we know the whole is made up of 7 pieces (4 blue parts and 3 white parts = 7 total parts), then 7 will be our denominator (number on the bottom of the fraction).
Now that we have our number on the bottom, we need to look back at the question to carefully decide what parts of the whole we are looking at. The question wants to know how many of the parts are white. We know that 3 of the parts are white, so that is our numerator (number of the top of the fraction).
Our final answer is 3/7 or "three-sevenths." Said another way, three of the seven pieces are white.
Step-by-step explanation:
Simplify.
Rewrite the expression in the form 6^n6
n
6, start superscript, n, end superscript.
\dfrac{6^{4}}{6}=
6
6
4
Answer:
6^3
6 to the third power
or 3x3x3
Step-by-step explanation:
The solution of the expression 6⁻⁴.6⁶ will be 6².
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given that the expression is 6⁻⁴.6⁶. The expression will be solved as below:-
6⁻⁴.6⁶ = 6⁻⁴⁺⁶
Use the exponent property when the bases are the same then the powers will be added.
6⁻⁴.6⁶ = 6²
Therefore, the solution of the expression 6⁻⁴.6⁶ will be 6².
The complete question is to simplify the expression 6⁻⁴.6⁶.
To know more about an expression follow
https://brainly.com/question/8844911
#SPJ2
Two different types of injection-molding machines are used to form plastic parts. Two random samples, each of size 300, are selected. 15 defective parts are found in the sample from machine 1 and 8 defective parts are found in the sample from machine 2. Is it reasonable to assume that both machines have the same defective rate
Answer:
No it is not since there is 15 defectice parts in 2machines and there is 8 broken parts in the one machine
Hope This Helps!!!
Suppose triangle ABC is reflected over the x-axis. If the distance between point A and A’ is 14, what is the distance between the x-axis and A’.
1. 7
2. -7
3. 3.5
4. There is not enough information given.
Given:
The triangle ABC is reflected over the x-axis.
The distance between point A and A’ is 14.
To find:
The distance between the x-axis and A’.
Solution:
If a figure is reflected across the x-axis then the corresponding parts are mirror image of each other about the x-axis.
It means the distance between A and x-axis is same as the distance between x-axis and A'.
The distance between point A and A’ is 14.
Let d be the distance between the x-axis and A’. Then,
[tex]d+d=14[/tex]
[tex]2d=14[/tex]
[tex]d=\dfrac{14}{2}[/tex]
[tex]d=7[/tex]
Therefore, the correct option is 1.
Which figure can be formed from the net?
pls answer fast for brainiest !
Answer:
It should be the top right one
(with 6ft as the height)
Step-by-step explanation:
Answer:
It must be the lower to the left choice.
Step-by-step explanation:
As you can see, the net we have is composed of only triangles.
So we should be choosing a figure with a triangular base.
Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.
The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.
Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.
If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.
Hope this helps
In a survey, 250 adults and children were asked whether they know how to
swim. The survey data are shown in the relative frequency table.
Can swim
Cannot swim
Total
0.34
Adults
Children
0.06
0.48
0.12
Total
What percentage of the people surveyed can swim?
O A. 18%
B. 82%
C. 48%
D. 34%
Answer:
B - 82%
Step-by-step explanation:
.34+.48
The percentage of people who can swim is 82%.
Option B is the correct answer.
What is a percentage?
The percentage means the required value out of 100.
It is calculated by dividing the required value by the total value and multiplying it by 100.
The percentage change is also calculated using the same method.
In percentage change, we find the difference between the values given.
Example:
Required percentage value = a
total value = b
Percentage = a/b x 100
We have,
The relative frequency table shows the proportion of people in each group who can and cannot swim.
To find the percentage of people who can swim, we need to add up the proportion of adults who can swim (0.34) and the proportion of children who can swim (0.48).
Percentage of people who can swim
= (0.34 + 0.48) x 100%
= 82%
Therefore,
The percentage of people who can swim is 82%.
Learn more about percentages here:
https://brainly.com/question/11403063
#SPJ5
LOOK AT THE BOTTOM PLEASE BE RIGHT
Answer:
Translation
Step-by-step explanation:
A translation is when the triangle is moved around on the graph without it being reflected or changed in any way. I will be the same exact triangle, just with different coordinates.
Hope this helps!
A piece of wood is cut into three pieces in the ratio 6: 5: 2. If the log is 61/2 feet long, what will be the length of the longest piece
Answer:
14.077 feet to the nearest thousandth.
Step-by-step explanation:
First let's work out the multiplier:
6 + 5 + 2 = 13.
61/2 = 30.5
- so the multiplier is 30.5/13 = 2.34615
The longest piece refers to the 6 in the ratio its length
= 6 * 2.34615
= 14.0769 ft.
if a=(1 2 3 4) find A×A and the relation determined by (I) y=2x (II) x+y
Answer:
HOPE IT HELPS PLZ MARK ME BRAINLIEST
Step-by-step explanation:
A={1,2,3,4,5,6}
R={(x,y):y is divisible by x}
We know that any number (x) is divisible by itself.
(x,x)∈R
∴R is reflexive.
Now,(2,4)∈R [as 4 is divisible by 2]
But,(4,2)∈ /
R. [as 2 is not divisible by 4]
∴R is not symmetric.
Let (x,y),(y,z)∈R. Then, y is divisible by x and z is divisible by y.
∴z is divisible by x.
⇒(x,z)∈R
∴R is transitive.
Hence, R is reflexive and transitive but not symmetric.
Can someone help me please!!
A study of the pay of corporate chief executive officers (CEOs) examined the increase in cash compensation of the CEOs of 104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%. Is this good evidence that the mean real compensation μ of all CEOs increased that year? The hypotheses are
Answer:
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
Step-by-step explanation:
At the null hypothesis, we test if there was no increase, that is, the mean is 0, so:
[tex]H_0: \mu = 0[/tex]
At the alternative hypothesis, we test if there was an increase, that is, the mean is greater than 0, so:
[tex]H_1: \mu > 0[/tex]
The test statistic is:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%.
This means that [tex]n = 104, X = 6.9, s = 55[/tex]
Value of the test-statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{6.9 - 0}{\frac{55}{\sqrt{104}}}[/tex]
[tex]t = 1.28[/tex]
P-value of the test:
The p-value of the test is a right-tailed test(test if the mean is greater than a value), with 104 - 1 = 103 df and t = 1.28.
Using a t-distribution calculator, this p-value is of 0.1017.
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
in the diagram below, BD is parallel to XY. what is the value of y?
a. 70
b. 130
c. 110
d. 20
I can't see the diagram sorry.
Step-by-step explanation:
Is there supposed to be a picture attached?
what is equivalent to x-2(3x-1)=3x
Answer:
1/4 = x
Step-by-step explanation:
x - 2( 3x - 1 ) = 3x
Step 1 :- Distribute 2
x - 2 × 3x - 2 × 1 = 3x
x - 6x + 2 = 3x
Step 2:- Combine like terms
-5x + 2 = 3x
Step 3 :- Add 5x to both sides
-5x + 5x + 2 = 3x + 5x
2 = 8x
Step 4 :- Divide both side by 8
2/8 = 8x / 8
1/4 = x
Think of 5 positive integers that have a mode of 5 and 6, a median of 6 and a mean of 7.
Answer:
5,5,6,6,13
Step-by-step explanation:
Mode means most often. The 5 numbers has 2 modes 5 and 6
This means that 4 of the numbers must be 5,5,6,6
Median means the middle number must be 6
5,5,6,6,x is the only way to to get the middle number to be 6
We need to average to 7
(5+5+6+6+x) /5 = 7
(5+5+6+6+x) /5 *5= 7*5
(5+5+6+6+x) =35
22+x = 35
x = 35-22
x = 13
The other number is 13
Complete the steps to solve the equation. 3x - 6(5x + 3) = 9x + 6 1. The distributive property 3x - 30x 18 = gr + 6 2 Combine like terms. -27x - 18 = 9x + 6 3. Addition property of equality: -18 = 36x + 6 4. Subtraction property of equality: -24 = 36x 5. Division property of equality I
Answer:
see below
Step-by-step explanation:
3x - 6(5x + 3) = 9x + 6
Distribute
3x -30x-18 = 9x+6
Combine like terms
-27x - 18 = 9x+6
Add 27x to each side
-27x+27x-18 = 9x+27x+6
-18 = 36x+6
Subtract 6 from each side
-18-6 = 36x+6-6
-24 = 36x
Divide by 36
-24/36 = 36x/36
Simplify
-2/3 = x
Answer:
[tex]\small \sf x = \frac{2}{-3} \\ [/tex]
Step-by-step explanation:
3x - 6(5x + 3) = 9x + 6.
Use the distributive property to multiply -6 by 5x + 3.
3x - 30x - 18 = 9x + 6
Combine 3x and -30x to get -27x.
-27x - 18 = 9x + 6
Subtract 9x from both sides.
-27x - 9x - 18 = 9x - 9x + 6
-36x - 18 = 6
Add 18 to both sides.
-36x - 18 + 18 = 6 + 18
-36x = 24
Divide both sides by -36.
[tex]\small \sf \frac{ -36x}{ -36} = \frac{24}{-36} \\ [/tex]
Reduce the fraction [tex]\frac{24}{-36} [/tex] to lowest terms by extracting and canceling out 12.
[tex]\small \sf x = \frac{2}{-3} \\ [/tex]
Exam grades: Scores on a statistics final in a large class were normally distributed with a mean of 75 and a standard deviation of 9. Use the TI-84 PLUS calculator to answer the following. Round the answers to at least two decimals. (a) Find the 41st percentile of the scores. (b) Find the 74th percentile of the scores. (c) The instructor wants to give an A to the students whose scores were in the top 8% of the class. What is the minimum score needed to get an A
Solution :
Using the TI-84 PLUS calculator
a). Area : 0.41
μ = 75
σ = 9
InvNorm(0.41,75,9)
= 72.95209525
Therefore, the 41st percentile of the scores is 72.95209525
b). Area : 0.74
μ = 75
σ = 9
InvNorm(0.74,75,9)
= 80.79010862
Therefore, the 74st percentile of the scores is 80.79010862
c). 8%
So, Area : 0.92
μ = 75
σ = 9
InvNorm(0.92,75,9)
= 87.64564405
Therefore, X = 80.79010862