For a closed rectangular box, with a square base x by x cm and height h cm, find the dimensions giving the minimum surface area, given that the volume is 18 cm3.

Answers

Answer 1

Answer:

∛18 * ∛18 * 18/(∛18)²

Step-by-step explanation:

Let the surface area of the box be expressed as S = 2(LB+BH+LH) where

L is the length of the box = x

B is the breadth of the box = x

H is the height of the box = h

Substituting this variables into the formula, we will have;

S = 2(x(x)+xh+xh)

S = 2x²+2xh+2xh

S = 2x² + 4xh and the Volume V = x²h

If V = x²h; h = V/x²

Substituting h = V/x² into the surface area will give;

S = 2x² + 4x(V/x²)

Since the volume V = 18cm³

S = 2x² + 4x(18/x²)

S =  2x² + 72/x

Differentiating the function with respect to x to get the minimal point, we will have;

dS/dx = 4x - 72/x²

at dS/dx = 0

4x - 72/x² = 0

- 72/x² = -4x

72 = 4x³

x³ = 72/4

x³  = 18

[tex]x = \sqrt[3]{18}[/tex]

Critical point is at [tex]x = \sqrt[3]{18}[/tex]

If x²h = 18

(∛18)²h =18

h = 18/(∛18)²

Hence the dimension is  ∛18 * ∛18 * 18/(∛18)²


Related Questions

The diagonals of a rhombus bisect each other of measures 8cm and 6cm .Find its perimeter. please help !!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

20 cm

Step-by-step explanation:

20 cm

8/2 = 4

6/2 = 3

3 and 4 are the sides of the triangle (four triangles in rhombus)

a²+b²=c²

4³+3²=c²

c = 5

5 x 4 = 20

Hope this helped

Answer:

perimeter = 20 cm

Step-by-step explanation:

consider breaking the rhombus into four equal parts.

and that gives you a triangle.

(refer to image attached for more clarification)

let a = 3, b = 4

to get the side c, use Pythagorean theorem = c² = a² + b²

c = sqrt (3² + 4²)

side c = 5

therefore,

perimeter = 4 x sides (c)

perimeter = 4 x 5

perimeter = 20 cm

A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4

Answers

The wording in this question is off... I am assuming you’re asking for the number of white discs and red discs if the probability of picking a red disc is 1/4.
If the probability of picking a red disc is 1/4, there are 10 red discs and 30 white discs.

Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. [Start 4 By 4 Matrix 1st Row 1st Column 4 2nd Column 5 3rd Column 7 4st Column 5 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 3 4st Column 8 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Yes, it is invertible

Step-by-step explanation:

We need to find in the matrix determinant is different from zero, since iif it is, that the matrix is invertible.

Let's use co-factor expansion to find the determinant of this 4x4 matrix, using the column that has more zeroes in it as the co-factor, so we reduce the number of determinant calculations for the obtained sub-matrices.We pick the first column for that since it has three zeros!

Then the determinant of this matrix becomes:

[tex]4\,*Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] +0+0+0[/tex]

And the determinant of these 3x3 matrix is very simple because most of the cross multiplications render zero:

[tex]Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] =1 \,(3\,*\,1-0)+4\,(0-0)+6\,(0-0)=3[/tex]

Therefore, the Det of the initial matrix is : 4 * 3 = 12

and then the matrix is invertible

A bag contains 6 red marbles, 3 blue marbles and 1 green marble. What is the probability that a randomly selected marble is not blue?

Answers

Answer:

3/10

Step-by-step explanation:

6+3+1=10

since there are 3 blue marbles, we put the 3 into the place of the numerator

and since there is 10 marbles in total it goes into the denominator

The probability that a randomly selected marble is not blue will be 0.70.

What is probability?

Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.

A bag contains 6 red marbles, 3 blue marbles and 1 green marble.

The total number of the event will be

Total event = 6 + 3 + 1

Total event = 10

Then the probability that a randomly selected marble is not blue will be

Favorable event = 7 {red, green}

Then the probability will be

P = 7 / 10

P = 0.70

More about the probability link is given below.

https://brainly.com/question/795909

#SPJ2

1-What is the sum of the series? ​∑j=152j​ Enter your answer in the box.

2-What is the sum of the series? ∑k=14(2k2−4) Enter your answer in the box.

3-What is the sum of the series? ∑k=36(2k−10)

4-Which answer represents the series in sigma notation? 1+12+14+18+116+132+164 ∑j=1712(j+1) ∑j=172j−1 ∑j=1712j+1 ∑j=17(12)j−1

5-Which answer represents the series in sigma notation? −3+(−1)+1+3+5 ∑j=155j−1 ∑j=15(3j−6) ∑j=15(2j−5) ∑j=15−3(13)j−1

Answers

Answer:

Please see the Step-by-step explanation for the answers

Step-by-step explanation:

1)

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] 2j

The sum of series from j=1 to j=5 is:

∑ = 2(1) + 2(2) + 2(3) + 2(4) + 2(5)

  =  2 + 4 + 6 + 8 + 10

∑ = 30

2)

This question is not given clearly so i assume the following series that will give you an idea how to solve this:

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²

The sum of series from k=1 to j=4 is:

∑ = 2(1)² + 2(2)² + 2(3)² + 2(4)²

  = 2(1) + 2(4) + 2(9) + 2(16)

  =  2 + 8 + 18 + 32

∑ = 60

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²

∑ = (2*1)² + (2*2)² + (2*3)² + (2*4)²

  = (2)² + (4)² + (6)² + (8)²

  = 4 + 16 + 36 + 64

∑ = 120

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²- 4

∑ = (2*1)²-4 + (2*2)²-4 + (2*3)²-4 + (2*4)²-4

  = (2)²-4 + (4)²-4 + (6)²-4 + (8)²-4

  = (4-4) + (16-4) + (36-4) + (64-4)

  = 0 + 12 + 32 + 60

∑ = 104

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²- 4

∑ = 2(1)²-4 + 2(2)²-4 + 2(3)²-4 + 2(4)²-4

  = 2(1)-4 + 2(4)-4 + 2(9)-4 + 2(16)-4

  = (2-4) + (8-4) + (18-4) + (32-4)

  = -2 + 4 + 14 + 28

∑ = 44

3)

∑[tex]\left \ {{6} \atop {k=3}} \right.[/tex] (2k-10)

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)  

  = (6-10) + (8-10) + (10-10) + (12-10)

  = -4 + -2 + 0 + 2  

∑ = -4

4)

1+1/2+1/4+1/8+1/16+1/32+1/64

This is a geometric sequence where first term is 1 and the common ratio is 1/2 So

a = 1

This can be derived as

1/2/1 = 1/2 * 1 = 1/2

1/4/1/2 = 1/4 * 2/1 = 1/2

1/8/1/4 = 1/8 * 4/1  = 1/2

1/16/1/8 = 1/16 * 8/1  = 1/2

1/32/1/16 = 1/32 * 16/1  = 1/2

1/64/1/32 = 1/64 * 32/1  = 1/2

Hence the common ratio is r = 1/2

So n-th term is:

[tex]ar^{n-1}[/tex] = [tex]1(\frac{1}{2})^{n-1}[/tex]

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{7} \atop {j=1}} \right.[/tex] [tex](\frac{1}{2})^{j-1}[/tex]

5)

−3+(−1)+1+3+5

This is an arithmetic sequence where the first term is -3 and the common difference is 2. So  

a = 1

This can be derived as

-1 - (-3) = -1 + 3 = 2

1 - (-1) = 1 + 1 = 2

3 - 1 = 2

5 - 3 = 2

Hence the common difference d = 2

The nth term is:

a + (n - 1) d

= -3 + (n−1)2

= -3 + 2(n−1)

= -3 + 2n - 2

= 2n - 5

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] (2j−5)

For (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

We have different series in the question.

It is required to find the sum of all series.

What is a series?

In mathematics, a series can be defined as a group of data that followed certain rules of arithmetic.

1) We have:

[tex]\rm \sum j=2j[/tex]   where j = 1 to j = 5

After expanding the series, we get:

= 2(1)+2(2)+2(3)+2(4)+2(5)

=2(1+2+3+4+5)

= 2(15)

=30

2) We have:

[tex]\rm \sum k=(2k^2-4)[/tex]  where k = 1 to k = 4

After expanding the series, we get:

[tex]\rm = (2(1)^2-4)+(2(2)^2-4)+(2(3)^2-4)+(2(4)^2-4)+(2(5)^2-4)\\[/tex]

[tex]\rm = 2[1^2+2^2+3^2+4^2+5^2]-4\times5\\\\\rm=2[55]-20\\\\\rm = 90[/tex]

3) We have:

[tex]\rm \sum k= (2k-10)[/tex]  where k = 3 to k = 6

After expanding the series, we get:

[tex]= (2(3)-10)+(2(4)-10)+(2(5)-10)+(2(6)-10)\\\\=2[3+4+5+6] - 10\times4\\\\=2[18] - 40\\\\= -4[/tex]

4) The series given below:

[tex]1, \frac{1}{2} ,\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}[/tex]

It is a geometric progression:

[tex]\rm n^t^h[/tex] for the geometric progression is given by:

[tex]\rm a_n = ar^{n-1}[/tex]

[tex]\rm a_n = 1(\frac{1}{2})^{n-1}\\\\\rm a_n = (\frac{1}{2})^{n-1}\\[/tex]

In sigma notation we can write:

[tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7

5) The given series:

−3+(−1)+1+3+5, it is arithmetic series.

[tex]\rm n^t^h[/tex] for the arithmetic progression is given by:

[tex]\rm a_n = a+(n-1)d[/tex]

[tex]\rm a_n = -3+(n-1)(2)\\\\\rm a_n = 2n-5[/tex]

In sigma notation we can write:

[tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5

Thus, for (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

Learn more about the series here:

https://brainly.com/question/10813422

Benjamin decides to treat himself to breakfast at his favorite restaurant. He orders chocolate milk that costs $3.25. Then, he wants to buy as many pancakes as he can, but he wants his bill to be at most $30 before tax. The restaurant only sells pancakes in stacks of 44 pancakes for $5.50 . Let S represent the number of stacks of pancakes that Benjamin buys. 1) Which inequality describes this scenario?2) What is the largest number of pancakes that Benjamin can afford?

Answers

Answer:

3.25 + 5.50S ≤ 30

Step-by-step explanation:

Given:

Chocolate milk cost $3.25.

Maximum bill that Benjamin wants = $30

Cost of a stack pancake(44) = $5.50

Let number of stacks of pancakes bought = S

Benjamin will spend all the money available on 1 chocolate milk and S number of stacks of pancakes.

Cost of 1 pancake = $5.50

Cost of S number of stacks of pancakes = S*5.50

=5.50S

Total money spent =$3.25+5.50S

The total money spent should either be lesser than or equal to $30

The inequality is

3.25 + 5.50S ≤ 30

Largest number of pancakes Benjamin can afford

3.25 + 5.50S ≤ 30

5.50S ≤ 30-3.25

5.50S ≤ 26.75

Divide both sides by 5.50

S ≤ 4.86

1 stack=44 pancakes

4.86 stacks= 4.86 *44

=213.84 pancakes

Answer:

3.25+5.50S≤30

and 16 pancakes

Step-by-step explanation:

Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.

Answers

[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]

The sum exists if [tex]|r|<1[/tex]

[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists

[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]

[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]

Let A = {June, Janet, Jill, Justin, Jeffrey, Jelly}, B = {Janet, Jelly, Justin}, and C = {Irina, Irena, Arena, Arina, Jelly}. Find the given set. A ∪ C a. {June, Janet, Jill, Justin, Jeffrey, Jelly, Irina, Irena, Arena, Arina} b. {June, Justin, Irina, Irena, Arena, Arina, Jelly} c. {June, Janet, Jill, Justin, June, Jelly} {Jelly} d. ∅

Answers

Answer:

{June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Step-by-step explanation:

A ∪ C

This means union so we join the sets together

A = {June, Janet, Jill, Justin, Jeffrey, Jelly} + C = {Irina, Irena, Arena, Arina, Jelly}

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, Jelly}

We get rid of repeats

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that

Answers

Answer:

Hello the options to your question is missing below are the options

 A) if sample means were obtained for a long series of samples, approximately 95 percent of all sample means would be between 10 and 16 miles

B.the unknown population mean is definitely between 10 and 16 miles

C.if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians

D.the unknown population mean is between 10 and 16 miles with probability .95

Answer : if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians  ( c )

Step-by-step explanation:

95%  confidence

interval = 10 to 16 miles

To have 95% confidence signifies that if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians

confidence interval covers a range of samples/values in the interval and the higher the % of the confidence interval the more precise the interval is,

graph 3x-y-2=0 using the x- and y-intercepts

Answers

Step-by-step explanation:

I used an app called DESMOS It Is usually super helpful!!!

Answer:

Explanation:

Look at picture

How do you write 5.44 in words?

Answers

Answer:

five and forty-four hundredths

Step-by-step explanation:

Answer:

five point four four

Step-by-step explanation:

Find X so that m is parallel to n. Identify the postulate or theorem you used. Please help with these 3 problems, I don’t understand it at all

Answers

the corresponding angles should be equal

so, [tex] 5x+15=90 \implies 5x=75\implies x=15^{\circ}[/tex]

Help with number 50 please. Thanks.

Answers

Answer:

[tex] d = 7 + 3\sqrt{3} [/tex] and

[tex] d = 7 - 3\sqrt{3} [/tex]

Step-by-step explanation:

To solve the equation, [tex] d^2 - 14d - 22 = 0 [/tex], using the quadratic formula,

Recall: quadratic formula = [tex] \frac{-b ± \sqrt{b^2 - 4ac}}{2a} [/tex]

Where,

a = 1

b = -14

c = 22

Plug in your values into the formula and solve:

[tex] \frac{-(-14) ± \sqrt{(-14)^2 - 4(1)(22)}}{2(1)} [/tex]

[tex] \frac{14 ± \sqrt{196 - 88}}{2} [/tex]

[tex] \frac{14 ± \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 + \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 + 6\sqrt{3}}{2} [/tex]

[tex] d = (\frac{2(7 + 3\sqrt{3})}{2} [/tex]

[tex] d = 7 + 3\sqrt{3} [/tex]

And

[tex] d = \frac{14 - \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 - 6\sqrt{3}}{2} [/tex]

[tex] d = (\frac{2(7 - 3\sqrt{3})}{2} [/tex]

[tex] d = 7 - 3\sqrt{3} [/tex]

which of the following are possible values of r?
[tex] {r}^{2 } = \frac{3}{16} [/tex]

Answers

Answer:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

Step-by-step explanation:

when you solve for r in the given equation, you need to apply the square root property, which gives positive and negative answers (both should therefore be considered):

[tex]r^2=\frac{3}{16} \\r=+/-\sqrt{\frac{3}{16}} \\r=+/-\frac{\sqrt{3} }{4}[/tex]

then you need to include these two possible solutions:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

Need a little help thanks :D

Answers

Answer:

  71°

Step-by-step explanation:

Consider triangle BDH. x is the external angle that is remote to internal angles B and D, so is equal to their sum:

  x° = 41° +30°

  x° = 71°

The blood platelet counts of a group of women have a​ bell-shaped distribution with a mean of 256.3 and a standard deviation of 66.8. ​(All units are 1000 ​cells/μ​L.) Using the empirical​ rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 3 standard deviations of the​ mean, or between 55.9 and 456.7​? b. What is the approximate percentage of women with platelet counts between 122.7 and 389.9​?

Answers

Answer:

a) In the interval  (  55,9  ;   456,7 ) we will find 99,7 % of all values

b) In the interval  (  122,7  ;  389,9 ) we find 95,4 % of all values

Step-by-step explanation:

For a Normal distribution N (μ ; σ ) the Empirical rule establishes that the intervals:

( μ  ±  σ  )          contains 68,3 % of all values

( μ  ±  2σ  )        contains 95,4 % of all values

( μ  ±  3σ  )        contains 99,7 % of all values

If   N ( 256,3 ; 66,8 )

σ  =  66,8        ⇒   3*σ  = 3 * 66,8  = 200,4

Then:     256,3 - 200,4  =  55,9

And        256,3 + 200,4 = 456,7

a) In the interval  (  55,9  ;   456,7 ) we will find 99,7 % of all values

b) 2*σ  = 2 * 66,8  = 133,6

Then  256,3 - 133,6  = 122,7

And    256,3 + 133,6 = 389,90

Then in the interval  (  122,7  ;  389,9 ) we find 95,4 % of all values

Solve for y: 1/3y+4=16

Answers

Hey there! I'm happy to help!

We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.

1/3y+4=16

We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.

1/3y=12

We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.

y=36

Now you know how to solve basic equations! Have a wonderful day! :D

1/3y=16-4
1/3y=12
y=12/1/3
y= 36.3


There are 937 entries for a talent show.
What is the value of the 3?

Answers

Answer:

the value of the 3 is 30

Step-by-step explanation:

the second digit to the left of a decimal is always tens column

What is the difference between a line graph and a scatter plot?

Answers

Step-by-step explanation:

scatter plot s are similar to line graphs in that they start with mapping quantitive data points. The difference is that with a scatter plot, the decision is made the the individual points should not be connected directly together with a line but, instead express a trend

what is the end point of a ray​

Answers

Answer:

point A is the rays endpoint

Step-by-step explanation:

Answer:

The "endpoint" of a ray is the origin point of the ray, or the point at which the ray starts.

Step-by-step explanation:

A ray starts at a given point, the endpoint, and then goes in a certain direction forever ad infinitum.  The origin point of a ray is called "the endpoint".

Cheers.

A rectangular parcel of land has an area of 6,000 ft2. A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel. What are the dimensions of the land, correct to the nearest foot? ft (smaller value) by ft (larger value)

Answers

Answer:

50ft by 120ft

Step-by-step explanation:

Area of a rectangle = L × W

6000ft² = L × W

L = 6000/W

When a diagonal line divides a rectangle into 2 right angled triangles, the diagonal line = Hypotenuse of either of the triangle and it is the longest side.

The formula for a right angle triangle =

a² + b² = c²( c = hypotenuse)

We are told in the question that:

A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel

Let us assume the side that the hypotenuse is longer than = Width

Hence, the Diagonal = (W + 10)²

Therefore

L² + W² = (W + 10)²

Since L = 6000/W

W² + (6000/W)² = (W + 10)²

W² + (6000/W)² = (W + 10) (W + 10)

W² + (6000/W)² = W² + 10W + 10W + 100

W² + (6000/W)² = W² + 20W + 100

W² - W² + (6000/W)² = 20W+ 100

6000²/W² = 20W + 100

6000² = W²( 20W + 100)

6000² = 20W³ + 100W²

20W³ + 100W² - 6000² = 0

20W³ + 100W² - 36000000 = 0

20(W³ + 5W² - 1800000) = 0

Factorising the quadratic equation,

20(W − 120)(W² + 125W + 15000) = 0

W - 120 = 0

W = 120

Therefore,

W(Width) = 120feet

Since the Width = 120 feet

We can find the length

6000ft² = L × W

L = 6000/W

L = 6000/120

L = 50 feet

The dimensions of the land, correct to the nearest foot is 50ft by 120ft

Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 5, x1 = 2n xn f(xn) f '(xn) f(xn)/f '(xn) xn − f(xn)/f '(xn)1 2

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]\mathsf{f(x) = x^2 -5 } \\ \\ \mathsf{x_1 = 2}[/tex]

The derivative of the first function of (x) is:

[tex]\mathsf{f'(x) =2x }[/tex]

According to Newton's Raphson method for function formula:

[tex]{\mathrm{x_{n+1} = x_n - \dfrac{f(x_n)}{f'(x_n)}}[/tex]

where;

[tex]\mathbf{x_1 =2}[/tex]

The first iteration is as follows:

[tex]\mathtt{f(x_1) = (2)^2 - 5} \\ \\ \mathbf{f(x_1) = -1}[/tex]

[tex]\mathtt{f'(x_1) = 2(2)} \\ \\ \mathbf{ = 4}[/tex]

[tex]\mathtt{\dfrac{f(x_1)}{f'(x_1)}} = \dfrac{-1}{4}}[/tex]

[tex]\mathbf{\dfrac{f(x_1)}{f'(x_1)} =-0.25}[/tex]

[tex]\mathtt{x_1 - \dfrac{f(x_1)}{f'(x_1)}} = \mathtt{2 - (-0.25)}}[/tex]

[tex]\mathbf{x_1 - \dfrac{f(x_1)}{f'(x_1)} = 2.25}[/tex]

Therefore;

[tex]\mathbf{x_2 = 2.25}[/tex]

For the second iteration;

[tex]\mathtt f(x_2) = (2.25)^2 -5}[/tex]

[tex]\mathtt f(x_2) = 5.0625-5}[/tex]

[tex]\mathbf{ f(x_2) =0.0625}[/tex]

[tex]\mathtt{f'(x_2)= 2(2.25)}[/tex]

[tex]\mathbf{f'(x_2)= 4.5}[/tex]

[tex]\mathtt{ \dfrac{f(x_2)}{f'(x_2)}} = \dfrac{0.0625}{4.5}}[/tex]

[tex]\mathbf{ \dfrac{f(x_2)}{f'(x_2)} = 0.01389}[/tex]

[tex]\mathtt{x_2 - \dfrac{f(x_2)}{f'(x_2)}} = \mathtt{2.25 -0.01389}}[/tex]

[tex]\mathbf{x_2 - \dfrac{f(x_2)}{f'(x_2)} = 2.2361}}[/tex]

Therefore, [tex]\mathbf{x_3 = 2.2361}[/tex]

Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 3y = -9

Answers

Answer:

[tex]y = -x - 3[/tex]

Step-by-step explanation:

We are trying to get the equation [tex]3x + 3y = -9[/tex] into the form [tex]y = mx+b[/tex], aka slope-intercept form.

To do this we are trying to isolate y.

[tex]3x + 3y = -9[/tex]

Subtract 3x from both sides:

[tex]3y = -9 - 3x[/tex]

Rearrange the terms:

[tex]3y = -3x - 9[/tex]

Divide both sides by 3:

[tex]y = -x - 3[/tex]

Hope this helped!

Show the distributive property can be used to evaluate 7x8 4/5

Answers

Answer:

308/5

Step-by-step explanation:

It can be Written as

= 7 ×(8 + 4/5 )

= 7 × 8 + 7 ×   4/5

= 56 +  28/5

= 280+28

________

       5  

=  308/5

The ratio of the number of Anne's pencils to the number of jason's pencils is 4:3 Anne has 100 pencils how many pencils does jason have

Answers

Answer:

75

Step-by-step explanation:

4:3

4x25=100

3x25=75

Please answer this correctly without making mistakes I need to finish this today as soon as possible

Answers

Answer:

14 miles

Step-by-step explanation:

Since we know that the distance of the paths from Cedarburg to Allenville is 22 and 13/16 miles, and we know the distance from Cedarburg to Lakeside is 8 and 13/16 miles.

We know that the total distance is made up of the distance from C to L and L to A.

So 22 and 13/16 = 8 and 13/16 + L to A

We can subtract 22 and 13/16 by 8 and 13/16 to get 14 miles.

Hope this helps.

When x€Q, what is the solution of 3x-2/2=x-1/2 ?​

Answers

Answer:

x = [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

[tex]\frac{3x-2}{2}[/tex] = [tex]\frac{x-1}{2}[/tex]

Cross-multiply:

2(3x-2) = 2(x-1)

Simplify:

6x - 4 = 2x - 2

Subtract 2x from both sides:

4x - 4 = -2

Add 4 to both sides:

4x = 2

Divide both sides by 4:

x = [tex]\frac{1}{2}[/tex]

The amount of money spent on textbooks per year for students is approximately normal.
A. To estimate the population mean, 19 students are randomly selected the sample mean was $390 and the standard deviation was $120. Find a 95% confidence for the population meam.
B. If the confidence level in part a changed from 95% 1 to 1999%, would the margin of error for the confidence interval:
1. decrease.
2. stay the same.
3. increase not.
C. If the sample size in part a changed from 19% 10 to 22, would the margin of errot for the confidence interval:
1. decrease.
2. stay the same.
3. increase
D. To estimate the proportion of students who purchase their textbookslused, 500 students were sampled. 210 of these students purchased used textbooks. Find a 99% confidence interval for the proportion of students who purchase used text books.

Answers

Answer:

(A) A 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval would increase.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval would decrease.

(D) A 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

Step-by-step explanation:

We are given that 19 students are randomly selected the sample mean was $390 and the standard deviation was $120.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = $390

            s = sample standard deviation = $120

            n = sample of students = 19

            [tex]\mu[/tex] = population mean

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.101 < [tex]t_1_8[/tex] < 2.101) = 0.95  {As the critical value of t at 18 degrees of

                                               freedom are -2.101 & 2.101 with P = 2.5%}  

P(-2.101 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.101) = 0.95

P( [tex]-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                        = [ [tex]\$390-2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] , [tex]\$390+2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] ]

                        = [$332.16, $447.84]

(A)  Therefore, a 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would increase because of an increase in the z value.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex]  would decrease because as denominator increases; the whole fraction decreases.

(D) We are given that to estimate the proportion of students who purchase their textbooks used, 500 students were sampled. 210 of these students purchased used textbooks.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion students who purchase their used textbooks = [tex]\frac{210}{500}[/tex] = 0.42    

            n = sample of students = 500

            p = population proportion

Here for constructing a 99% confidence interval we have used a One-sample z-test statistics for proportions

So, 99% confidence interval for the population proportion, p is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5%

                                               level of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

= [ [tex]0.42 -2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] , [tex]0.42 +2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] ]

= [0.363, 0.477]

Therefore, a 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

x
Find the value
of x. Show
3
10
your work.

Answers

Step-by-step explanation:

Hello, there!!!

Let ABC be a Right angled triangle,

where, AB = 3

BC= 10

and AC= x

now,

As the triangle is a Right angled triangle, taking angle C asrefrence angle. we get,

h= AC = x

p= AB = 3

b= BC= 10

now, by Pythagoras relation we get,

[tex]h = \sqrt{ {p}^{2} + {b}^{2} } [/tex]

[tex]or ,\: h = \sqrt{ {3}^{2} + {10}^{2} } [/tex]

by simplifying it we get,

h = 10.44030

Therefore, the answer is x= 10.

Hope it helps...

Please help me understand this question!

Answers

Answer:

C

Step-by-step explanation:

The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.

We start here:

we are given: $120 - 0.2($120)

= 120 - (0.2)(120)   (factoring out 120)

= 120 (1 - 0.2)

= 120 (0.8)

= 0.8 (120)     (answer c)

the answer is C!! 0.8 (120$)
Other Questions
A tour group is going sea diving. Sea level is O feet. The oceanfloor is -18 feet. One diver is already at -11 feet. The tour guideis keeping watch on the deck at 5 feet above sea level directlyabove the diver. What is the distance from the tour guide to thediver? Draw and label a number line to justify your answer. jawaban dari 5x 7 = 13 adalah....... dijawab ya.... An analyst takes a random sample of 25 firms in the telecommunications industry and constructs a confidence interval for the mean return for the prior year. Holding all else constant, if he increased the sample size to 30 firms, how are the standard error of the mean and the width of the confidence interval affected Restriction digest A:ATTGAATTCCGGTTAGCTTTAGAATTCCGCCATATGCGCAATTGGAATTCCHow many bases are in the second fragment? Investment in human capital is very similar to investing in physical capital. True or false? Explain your answer. Given money demand, by how much would the Moola central bank need to change the money supply to close the output gap? TRUE OR FALSE The Enlightenment in the American Revolution rejected traditional religious, political and social values. The ratio of sales to invested assets, which is also a factor in the DuPont formula for determining the rate of return on investment, is called Rearrange the tiles so that it shows the proper steps of solving this quadratic equation using square property Instruments had retained earnings of at December 31, . Net income for totaled , and dividends declared for were . How much retained earnings should report at December 31, ? show that the point p(-6,2), Q(1,7) and R(6,3) are the vertices of scalene triangle The work function of a certain metal is = 3.55 eV. Determine the minimum frequency of light f0 for which photoelectrons are emitted from the metal. (Planck's constant is: h = 4.135710-15 eVs.) These box plots show daily low temperatures for a sample of days in two different towns. Yo tengo once aos y no tengo hermanos. Mitiene cuarenta aos. l es grande y cmico.padremadrehermanohija Divide a 6 and 3/4 inch line into three parts so that each part is 1/4 inch shorter than the one before it. How the knowledge of classification be applied to assess the characteristics of different organisms when visit to zoo, herbaria or gardens.(Students may do research on internet to answer this question )plz correct answerbe quick either you will eat or you will be picked up what happens to the chromosomes if nondisjunction occurs during meiosis one versus meiosis two Find a linear inequality with the following solution set. Each grid line represents one unit.Pllzzzzzzz help!!!!!!!!!! Transposons need to __________________ in order to limit their negative impact on the genome of the host cell. A.control their nucleotide length B.regulate their copy number C.control their target-site choice D.avoid transposing into their own genome