Answer:
$8.19
Step-by-step explanation:
1. Add the cost of the items together
5.3 + 1.29 + 0.53 + 0.68 = 7.8
2. Solve for 5% of the cost of the items
5% = 0.05
7.8 · 0.05 = 0.39
3. Add the sales tax to the price of the items
7.8 + 0.39 = 8.19
Explanation:
Add up the prices
5.30 + 1.29 + 0.53 + 0.68 = 7.80
This is the total amount before tax is added. To find the amount after tax, we multiply by 1.05 to get
1.05*7.80 = 8.19
Or a longer way is to find 5% of 7.80 getting 0.05*7.80 = 0.39 in the amount of tax owed, which is added on top of the previous total we got earlier. So we have 7.80 + 0.39 = 8.19
The use of the multiplier 1.05 is handy when you need to apply multiple percentage increases (it also works if you have multiple discounts as well).
Suppose babies born in a large hospital have a mean weight of 3316 grams, and a standard deviation of 324 grams. If 83 babies are sampled at random from the hospital, what is the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams?
Answer: 0.129
Step-by-step explanation:
Let [tex]\overline{X}[/tex] denotes a random variable that represents the mean weight of babies born.
Population mean : [tex]\mu= \text{3316 grams,}[/tex]
Standard deviation: [tex]\text{324 grams}[/tex]
Sample size = 83
Now, the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams will be :
[tex]P(|\mu-\overline{X}|>54)=1-P(\dfrac{-54}{\dfrac{324}{\sqrt{83}}}<\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{-54}{\dfrac{324}{\sqrt{83}}})\\\\=1-[P(-1.518<Z<1.518)\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-[P(Z<1.518)-P(z<-1.518)]\\\\=1-[P(Z<1.518)-(1-P(z<1.518))]\\\\=1-[2P(Z<1.518)-1]=2-2P(Z<1.518)\\\\=2-2(0.9355)\ [\text{By z-table}]\\\\=0.129[/tex]
hence, the required probability = 0.129
Which equation is equivalent to 3[x + 3(4x – 5)] = 15x – 24?15x – 15 = 15x – 2415x – 5 = 15x – 2439x – 45 = 15x – 2439x – 15 = 15x – 24?
Answer:
3[x + 3(4x – 5)] = (39x-15)
Step-by-step explanation:
The given expression is : 3[x + 3(4x – 5)]
We need to find the equivalent expression for this given expression. We need to simplify it. Firstly, open the brackets. So,
[tex]3[x + 3(4x -5)]=3[x+12x-15][/tex]
Again open the brackets,
[tex]3[x+12x-15]=3x+36x-45[/tex]
Now adding numbers having variables together. So,
[tex]3[x + 3(4x - 5)]=39x-15[/tex]
So, the equivalent expression of 3[x + 3(4x – 5)] is (39x-15).
☆ =
MODULE
The length of a rectangle is eight centimeter less than
twice the width. The area of the rectangle is 24
centimeters squared. Determine the dimensions of the
rectangle in centimeters.
Answer: The length is 4 centimeters and the width is 6 centimeters.
Step-by-step explanation:
If the length of the rectangle is eight centimeters less than twice the width then we could represent it by the equation L= 2w - 8 . And we know that to find the area of a rectangle we multiply the length by the width and they've already given the area so we will represent the width by w since it is unknown.
Now we know the length is 2w- 8 and the width is w so we would multiply them and set them equal to 24.
w(2w-8) = 24
2[tex]w^{2}[/tex] - 8w = 24 subtract 24 from both sides to set the whole equation equal zero and solve. solve using any method. I will solve by factoring.
2[tex]w^{2}[/tex] - 8w -24 = 0 divide each term by 2.
[tex]w^{2}[/tex] - 4w - 12 = 0 Five two numbers that multiply to get -12 and to -4
[tex]w^{2}[/tex] +2w - 6w - 12 = 0 Group the left hand side and factor.
w(w+2) -6( w + 2) = 0 factor out w+2
(w+2)(w-6) = 0 Set them both equal zero.
w + 2 =0 or w - 6 = 0
-2 -2 + 6 +6
w= -2 or w=6
Since we are dealing with distance -2 can't represent a distance so the wide has to 6.
Now it says that the length is 8 less that twice the width.
So 2(6) - 8 = 12 -8 = 4 So the length in this care is 4.
Check.
6 * 4 = 24
24 = 24
Fill in the blanks and explain the pattern.
XA, XB, XC, __,__,__
Answer:
XD,XE,XF
Step-by-step explanation:
XA,XB,XC,XD,XE,XF
IT IS BECAUSE OF THE ALPHABETICAL ORDER AFTER X
The owner of a deli gathered data about the number of flavored bagels and plain bagels sold during the first hour of business for several days. He organized the data in a scatter plot, with x representing the number of flavored bagels and y representing the number of plain bagels sold. Then he used a graphing tool to find the equation of the line of best fit: y = 1.731x + 6.697. Based on the line of best fit, approximately how many flavored bagels can the deli expect to sell during an hour when 50 plain bagels are sold?
Answer:
Approximately 25 flavored bagels.
Step-by-step explanation:
The scatter plot is a graph on cartesian plane where;
y-axis represents the number of plain bagels sold.
x-axis representing the number of flavored bagels sold.
The equation of the straight line on the graph is;
y = 1.731x + 6.697
The graph formed is as attached below.
The slope of the graph means that for every 1 flavored bagel sold, 1.731 plain bagels are sold within one hour.
When y = 50 ;
50 = 1.731x + 6.697
x = [tex]\frac{50 - 6.697}{1.731}[/tex] = 25.01617562 ≈ 25 flavored bagels.
Answer:
25
Step-by-step explanation:
Life rating in Greece. Greece has faced a severe economic crisis since the end of 2009. A Gallup poll surveyed 1,000 randomly sampled Greeks in 2011 and found that 25% of them said they would rate their lives poorly enough to be considered "suffering".
a. Describe the population parameter of interest. What is the value of the point estimate of this parameter?
b. Check if the conditions required for constructing a confidence interval based on these data are met.
c. Construct a 95% confidence interval for the proportion of Greeks who are "suffering".
d. Without doing any calculations, describe what would happen to the confidence interval if we decided to use a higher confidence level.
e. Without doing any calculations, describe what would happen to the confidence interval if we used a larger sample.
Answer:
a
The population parameter of interest is the true proportion of Greek who are suffering
While the point estimate of this parameter is proportion of those that would rate their lives poorly enough to be considered "suffering". which is 25%
b
The condition is met
c
The 95% confidence interval is [tex]0.223 < p < 0.277[/tex]
d
If the confidence level is increased which will in turn reduce the level of significance but increase the critical value([tex]Z_{\frac{\alpha }{2} }[/tex]) and this will increase the margin of error( deduced from the formula for margin of error i.e [tex]E \ \alpha \ Z_{\frac{\alpha }{2} }[/tex] ) which will make the confidence interval wider
e
Looking at the formula for margin of error if the we see that if the sample size is increased the margin of error will reduce making the confidence level narrower
Step-by-step explanation:
From the question we are told that
The sample size is n = 1000
The population proportion is [tex]\r p = 0.25[/tex]
Considering question a
The population parameter of interest is the true proportion of Greek who are suffering
While the point estimate of this parameter is proportion of those that would rate their lives poorly enough to be considered "suffering". which is 25%
Considering question b
The condition for constructing a confidence interval is
[tex]n * \r p > 5\ and \ n(1 - \r p ) >5[/tex]
So
[tex]1000 * 0.25 > 5 \ and \ 1000 * (1-0.25 ) > 5[/tex]
[tex]250 > 5 \ and \ 750> 5[/tex]
Hence the condition is met
Considering question c
Given that the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_\frac{ \alpha }{2} * \sqrt{ \frac{\r p (1 - \r p ) }{n} }[/tex]
substituting values
[tex]E = 1.96 * \sqrt{ \frac{ 0.25 (1 - 0.25 ) }{ 1000} }[/tex]
[tex]E = 0.027[/tex]
The 95% confidence interval is mathematically represented as
[tex]\r p - E < p < \r p + E[/tex]
substituting values
[tex]0.25 - 0.027 < p < 0.25 + 0.027[/tex]
substituting values
[tex]0.223 < p < 0.277[/tex]
considering d
If the confidence level is increased which will in turn reduce the level of significance but increase the critical value([tex]Z_{\frac{\alpha }{2} }[/tex]) and this will increase the margin of error( deduced from the formula for margin of error i.e [tex]E \ \alpha \ Z_{\frac{\alpha }{2} }[/tex] ) which will make the confidence interval wider
considering e
Looking at the formula for margin of error if the we see that if the sample size is increased the margin of error will reduce making the confidence level narrower
Gerbils were used to assess the effect of Natural Neutral, a drug designed to reduce emotionality in high-drive people. Each of 20 gerbils spent 10 solitary minutes in an open field. The investigator recorded the number of fecal boluses for each animal. Then each animal was given an injection of Natural Neutral and the open field task was repeated.
No Drug Drug
mean number of boluse 6 8
standard deviation of boluses 2 2
The design of this study is:______
a. paired samples;
b. independent samples;
c. testing the significance of a correlation;
d. none of the other alternatives are correct.
Answer: a. paired samples;
Step-by-step explanation:
Paired samples are samples in which each data point in one sample is uniquely paired to a data point in the other sample.
Here, we have a paired sample of fecal boluses for gerbils by characterizing then as "No Drug" and "Drug".
hence, the design of this study is paired samples.
So, option A is correct.
NOTE : Independent samples are opposite of paired samples.
Testing the significance of a correlation require to check relation between two variables.
HELP PRECALC NEED IN PROOF FORM
Hello, please consider the following.
We know the following, right ?
[tex](\forall a, b \in \mathbb{R}) \left( sin(a+b)=sin(a)sin(b)+cos(a)cos(b) \right)[/tex]
So, here, it gives.
[tex]Asin(\omega t+\phi)=Asin(\phi){\sf \bf sin(\omega t)}+Acos(\phi){\sf \bf cos(\omega t)}\\\\=c_2{\sf \bf sin(\omega t)}+c_1{\sf \bf cos(\omega t)}\\\\\text{ *** where }c_2=Asin(\phi) \text{ and } c_1=Acos(\phi) \text{ ***}[/tex]
Do not hesitate if you need further explanation.
f as a function of x is equal to the square root of quantity 4 x plus 6, g as a function of x is equal to the square root of quantity 4 x minus 6 Find (f + g)(x). x times the square root of 8 4x square root of 8 times x The square root of quantity 4 times x plus 6 plus the square root of quantity 4 times x minus 6
Answer:
Last one
Step-by-step explanation:
The function f is:
● f (x)= √(4x+6)
The function g is:
● g(x) = √(4x-6)
Add them together:
● f+g (x)= √(4x+6 )+ √(4x-6)
Answer:
[tex]\large \boxed{{\sqrt{4x+6} + \sqrt{4x-6} }}[/tex]
Step-by-step explanation:
[tex]f(x)=\sqrt{4x+6}[/tex]
[tex]g(x)=\sqrt{4x-6}[/tex]
[tex](f+g)(x)[/tex]
[tex]f(x)+g(x)[/tex]
Add both functions.
[tex](\sqrt{4x+6} )+ (\sqrt{4x-6} )[/tex]
For what value of x does (x + 3)^2-5=0
Answer:
x = -3±sqrt( 5)
Step-by-step explanation:
(x + 3)^2-5=0
Add 5 to each side
(x + 3)^2-5+5=0+5
(x + 3)^2 = 5
Take the square root of each side
sqrt((x + 3)^2 )=±sqrt( 5)
x+3 = ±sqrt( 5)
Subtract 3 from each side
x+3-3 = -3±sqrt( 5)
x = -3±sqrt( 5)
Name:
Unit 1: Geometry Basics
Date:
Per: Homework 3: Distance & Midpoint Formulas
** This is a 2-page document! **
Directions: Find the distance between each pair of points.
1. 1-4.6) and (3.-7)
2. (-6,-5) and (2.0)
M=(-12,-1)
M=
4. (0.-8) and (3.2)
3. (-1, 4) and (1-1)
5.
.
Directions: Find the coordinates of the midpoint of the segment given its endpoints.
6. /15, 8) and B(-1,-4)
7. M(-5,9) and N[-2.7)
8. P(-3,-7) and Q13.-5)
9. F12.-6) and G(-8,5)
Gina Whion (All Things Algobro. LLC) 2014-2017
The midpoint is the point that divide a segment into two equal halves, while the distance between points is the number of units between both points.
The distance between
(1,-4.6) and (3,7) is 11.77(-6,-5) and (2,0) is 9.43(-1, 4) and (1-1) is 5.39(0.-8) and (3,2) is 10.44The coordinate of midpoint of:
(5, 8) and (-1,-4) is (2,2)(-5,9) and (-2,7) is (-.3.5,9)(-3,-7) and (13.-5) is (5,-6)(12,-6) and (-8,5) is (2,-0.5)The distance in a coordinate geometry is calculated using: [tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex].
The distance between points is calculated as follows:
(1,-4.6) and (3,7)
[tex]d = \sqrt{(1 - 3)^2 + (-4.6 - 7)^2}[/tex]
[tex]d = \sqrt{138.56}[/tex]
[tex]d = 11.77[/tex]
(-6,-5) and (2,0)
[tex]d = \sqrt{(-6 - 2)^2 + (-5 - 0)^2}[/tex]
[tex]d = \sqrt{89}[/tex]
[tex]d = 9.43[/tex]
(-1, 4) and (1-1)
[tex]d = \sqrt{(-1 - 1)^2 + (4 - -1)^2}[/tex]
[tex]d = \sqrt{29}[/tex]
[tex]d = 5.39[/tex]
(0.-8) and (3,2)
[tex]d = \sqrt{(0 - 3)^2 + (-8 -2)^2}[/tex]
[tex]d = \sqrt{109}[/tex]
[tex]d = 10.44[/tex]
The midpoint (M) is calculated using: [tex]M = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]
The coordinate of midpoint is calculated as follows:
(5, 8) and (-1,-4)
[tex]M = (\frac{5-1}{2},\frac{8-4}{2})[/tex]
[tex]M = (\frac{4}{2},\frac{4}{2})[/tex]
[tex]M = (2,2)[/tex]
(-5,9) and (-2,7)
[tex]M = (\frac{-5-2}{2},\frac{9+7}{2})[/tex]
[tex]M = (\frac{-7}{2},\frac{16}{2})[/tex]
[tex]M = (-3.5,9)[/tex]
(-3,-7) and (13.-5)
[tex]M = (\frac{-3+13}{2},\frac{-7-5}{2})[/tex]
[tex]M = (\frac{10}{2},\frac{-12}{2})[/tex]
[tex]M = (5,-6)[/tex]
(12,-6) and (-8,5)
[tex]M = (\frac{12-8}{2},\frac{-6+5}{2})[/tex]
[tex]M = (\frac{4}{2},\frac{-1}{2})[/tex]
[tex]M = (2,-0.5)[/tex]
Read more about distance and midpoints in coordinate geometry at:
https://brainly.com/question/3715220
Help me please thank y’all
Answer: x=60°
Step-by-step explanation:
The sum of the angles of a triangle is 180°. With this, we can find x°.
33+87+x=180 [combine like terms]
120+x=180 [subtact both sides by 120]
x=60°
Answer:
60 degrees
Step-by-step explanation:
All the angles in a triangle add up to 180 degrees.
We know two angles, 33 degrees and 87 degrees.
Now we have to find the last one.
So we make an equation to solve this.
33 + 87 + x = 180
120 + x = 180
Subtracting 120 fr0m both sides get us,
120 - 120 + x = 180 -120
x = 60
60 degrees
We can check by adding all three angles by substituting 60 for x,
33 + 87 + 60 = 120 + 60 = 180 degrees
Evaluate S_5 for 600 + 300 + 150 + … and select the correct answer below. A. 1,162.5 B. 581.25 C. 37.5 D. 18,600
Answer:
A. 1,162.5
Step-by-step explanation:
Write the next two terms and add them up:
S5 = 600 +300 +150 +75 +37.5 = 1162.5 . . . . matches choice A
================================================
Explanation:
{600, 300, 150, ...} is a geometric sequence starting at a = 600 and has common ratio r = 1/2 = 0.5, this means we cut each term in half to get the next term. We could do this to generate five terms and then add them up. Or we could use the formula below with n = 5
Sn = a*(1-r^n)/(1-r)
S5 = 600*(1-0.5^5)/(1-0.5)
S5 = 1,162.5
-----------
Check:
first five terms = {600, 300, 150, 75, 37.5}
S5 = sum of the first five terms
S5 = 600+300+150+75+37.5
S5 = 1,162.5
Because n = 5 is relatively small, we can quickly confirm the answer. With larger values of n, a spreadsheet is the better option.
You have 9kg of oats and cup scales that gears of 50g and 200g. How − in three weighings− can you measure 2kg of the oats?
Answer: You will need 8 cup scales
Step-by-step explanation:
kg=1000 grams
2000/250=8
In 8 cups it is possible to measure the 2kg or 2000 grams but in three weighs it is not possible to measure the 2kg or 2000 grams.
What is a fraction?Fraction number consists of two parts, one is the top of the fraction number which is called the numerator and the second is the bottom of the fraction number which is called the denominator.
It is given that:
You have 9kg of oats and cup scales that gears of 50g and 200g.
Total oats need to measure = 9kg
As we know in 1 kg there are 1000 grams.
1 kg = 1000 grams
9kg = 9000 grams
2kg = 2000 grams
Cup scales that gears: 50g and 200g
The number of cups if consider one cup is of 250 grams( = 200 + 50)
Number of cups = 2000/250
Number of cups = 8
In three weighs it is not possible to measure the 2kg or 2000 grams.
Thus, in 8 cups it is possible to measure the 2kg or 2000 grams but in three weighs it is not possible to measure the 2kg or 2000 grams.
Learn more about the fraction here:
brainly.com/question/1301963
#SPJ2
You are ordering two pizzas. A pizza can be small, medium, large, or extra large, with any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8). How many possibilities are there for your two pizzas
Answer:
1048576
Step-by-step explanation:
Given the following :
Pizza order :
Size = small, medium, large, or extra large = 4 possible sizes
Toppings = any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8).
Combination of Toppings = 2^8
Four different sizes of pizza = 4
Number of possibilities in ordering for a single pizza :
(4 * 2^8) = 4 * 256 = 1024
Number of possibilities in ordering two pizzas :
(4 * 2^8)^2
(2^2 * 2^8)^2
From indices :
[2^(2+8)]^2
[2^(10)]^2
2^(10*2)
2^20
= 1048576
At a high school movie night, the refreshments stand sells popcorn and soft drinks. Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. 38 students bought both popcorn and a drink. What is the probability that a student buys a drink, given that he or she buys popcorn? Express your answer as a percent, rounded to the nearest tenth... best answer wins brainliest!!!
Answer:
47% and 62%
Step-by-step explanation:
1. Drink
The probability that a student buys a drink is 0.47
Step-by-step explanation:
The probability that a student buys a drink will be given by;
( the number of students who bought a drink)/(the total number of students)
We are told that;
Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. Therefore, the required probability is;
47/100= 0.47
0.47 = 47%
2. Popcorn
For popcorn probability, it's basically the same.
The probabilty that a student buys popcorn is 0.62
The probability that a student buys popcorn will be given by;
( the number of students who bought popcorn)/(the total number of students)
So therefore,
62/100 = 0.62
0.62 = 62%
A company finds that the rate at which the quantity of a product that consumers demand changes with respect to price is given by the marginal-demand function Upper D prime (x )equals negative StartFraction 5000 Over x squared EndFraction where x is the price per unit, in dollars. Find the demand function if it is known that 1006 units of the product are demanded by consumers when the price is $5 per unit.
Answer:
q = 5000/x + 6
Step-by-step explanation:
D´= dq/dx = - 5000/x²
dq = -( 5000/x²)*dx
Integrating on both sides of the equation we get:
q = -5000*∫ 1/x²) *dx
q = 5000/x + K in this equation x is the price per unit and q demanded quantity and K integration constant
If when 1006 units are demanded when the rice is 5 then
x = 5 and q = 1006
1006 = 5000/5 +K
1006 - 1000 = K
K = 6
Then the demand function is:
q = 5000/x + 6
The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4
If AD=2/3AB, the ratio of the length of BC to the length of DE is A. 1/6 B. 1/4 C. 3/2 D. 3/4
Answer:
The correct answer is c
Step-by-step explanation:
Answer:
C.) 3/2
Explanation:
PLATO
State the correct polar coordinate for the graph shown:
clearly, r=3 units
and 8 segments (sectors actually) in anti-clockwise direction , with each sector having 30° angle so angle is 240°
so option C
Answer:
Solution : ( 3, 240° )
Step-by-step explanation:
In polar coordinates the point is expression as the ordered pair ( r, θ ) where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis. When r > 0, we can tell it = 3 as the point lies on the third circle starting from the center. Now let's start listing coordinates for when r is positive ( r > 0 ). There are two cases to consider here.
( 3, θ ) here theta is 60 degrees more than 180, or 180 + 60 = 240 degrees. Right away you can tell that your solution is ( 3, 240° ), you don't have to consider the second case.
If the random variable X is normally distributed with mean of 50 and standard deviation of 7, find the 9th percentile.
Answer:
The 9th percentile is 40.52.
Step-by-step explanation:
We are given that the random variable X is normally distributed with a mean of 50 and a standard deviation of 7.
Let X = the random variable
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean = 50
[tex]\sigma[/tex] = standard deviation = 7
So, X ~ Normal([tex]\mu=50, \sigma^{2} = 7^{2}[/tex])
Now, the 9th percentile is calculated as;
P(X < x) = 0.09 {where x is the required value}
P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{x-50}{7}[/tex] ) = 0.09
P(Z < [tex]\frac{x-50}{7}[/tex] ) = 0.09
Now, in the z table the critical value of x that represents the below 9% of the area is given as -1.3543, i.e;
[tex]\frac{x-50}{7}=-1.3543[/tex]
[tex]x-50=-1.3543 \times 7[/tex]
[tex]x=50 -9.48[/tex]
x = 40.52
Hence, the 9th percentile is 40.52.
1) At AJ Welding Company they employ 253 people, 108 employees receive 2 weeks of paid 1) _______ vacation each year. Find the ratio of those who receive 2 weeks of paid vacation to those whose paid vacation is not 2 weeks.
Answer:
108 : 145
Step-by-step explanation:
253 - 108 = 145
Ratio of those who receive 2 weeks of paid vacation is 108
Ratio of those paid vacation is not 2 weeks is 145
108 : 145
write 768,676 in words
Answer:
seven hundred sixty-eight thousand six hundred seventy-six
hope this answer correct :)
What is the equation of the following line? Be sure to scroll down first to see all answer options.
A.
y = - x
B.
y = -2x
C.
y = 2x
D.
y = x
E.
y = -4x
F.
y = - x
Answer:
The answer is option FStep-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To calculate the equation of the line first find the slope
Slope of the line using points
(0 , 0) and (4 , -2) is
[tex]m = \frac{ - 2 - 0}{4 - 0} = \frac{ - 2}{4} = - \frac{1}{2} [/tex]
Now use the formula
y - y1 = m(x - x1) to find the equation of the line using any of the points
Using point (0,0)
That's
[tex]y - 0 = - \frac{ 1}{2} (x - 0)[/tex]
The final answer is
[tex]y = - \frac{1}{2} x[/tex]
Hope this helps you
Answer:
F
Step-by-step explanation:
What is the volume of a sphere, to the nearest cubic inch, if the radius is 16 inches? Use π = 3.14.
Answer:
vol = 17,148 cu. in.
Step-by-step explanation:
vol = 4 / 3 * pi * r³
vol = 4 / 3 *3.14 * 16³
vol = 17,148 cu. in.
Answer:
The answer is
17149 cubic inchesStep-by-step explanation:
Volume of a sphere is given by
[tex]V = \frac{4}{3} \pi {r}^{3} [/tex]
where r is the radius of the sphere
π = 3.14
From the question
r = 16 inches
Volume of the sphere is
[tex]V = \frac{4}{3} (3.14) {16}^{3} [/tex]
V = 17148.586
We have the final answer as
V = 17149 cubic inches to the nearest cubic inch
Hope this helps you
determine if the following side lengths create an acute,obtuse,or right triangle. a) 20, 21, 28 b) 3, 6, 4 c) 8, 12, 15
Answer:
a) 20, 21, 28 : acute
b) 3, 6, 4 : obtuse
c) 8, 12, 15 : obtuse
Step-by-step explanation:
You can see if a triangle is acute, obtuse, or right using the Pythagorean theorem as follows:
If [tex]a^2+b^2=c^2[/tex] , then the triangle is right.
If [tex]a^2+b^2>c^2[/tex] , then the triangle is acute.
If [tex]a^2+b^2<c^2[/tex] , then the triangle is obtuse.
Solve each to find if the given lengths form an acute, obtuse, or right triangle ( The biggest number is the hypotenuse length, since the hypotenuse is always the longest side in a triangle. This is represented by c):
a) 20, 21, 28
Insert numbers, using 28 as c:
[tex]20^2+21^2[/tex]_[tex]28^2[/tex]
Simplify exponents ([tex]x^2=x*x[/tex]):
[tex]400+441[/tex]_[tex]784[/tex]
Simplify addition:
[tex]841[/tex]_[tex]784[/tex]
Identify relationship:
[tex]841>784[/tex]
The sum of the squares of a and b is greater than the square of c. This triangle is acute.
b) 3, 6, 4
Insert numbers, using 6 as c:
[tex]3^2+4^2[/tex]_[tex]6^2[/tex]
Simplify exponents:
[tex]9+16[/tex]_[tex]36[/tex]
Simplify addition:
[tex]25[/tex]_[tex]36[/tex]
Identify relationship:
[tex]25<36[/tex]
The sum of the squares of a and b is less than the square of c. This triangle is obtuse.
c) 8, 12, 15
Insert numbers, using 15 as c:
[tex]8^2+12^2[/tex]_[tex]15^2[/tex]
Simplify exponents:
[tex]64+144[/tex]_[tex]225[/tex]
Simplify addition:
[tex]208[/tex]_[tex]225[/tex]
Identify relationship:
[tex]208<225[/tex]
The sum of the squares of a and b is less than the square of c. This triangle is obtuse.
:Done.
The correct values are,
a) 20, 21, 28 = Acute
b) 3, 6, 4 = Obtuse
c) 8, 12, 15 = Obtuse
What is mean by Triangle?A triangle is a three sided polygon, which has three vertices and three angles which has the sum 180 degrees.
Given that;
The sides are,
a) 20, 21, 28
b) 3, 6, 4
c) 8, 12, 15
Now,
We know that;
If three sides of a triangle are a, b and c.
Then, We get;
If a² + b² = c², then the triangle is right triangle.
If a² + b² > c², then the triangle is acute triangle.
If a² + b² < c², then the triangle is obtuse triangle.
Here, For option a;
⇒ 20, 21, 28
Clearly, a² + b² = 20² + 21²
= 400 + 441
= 841
And, c² = 28² = 784
Thus, a² + b² > c²
Hence, It shows the acute angle.
For option b;
⇒ 3, 6, 4
Clearly, a² + b² = 3² + 4²
= 9 + 16
= 25
And, c² = 6² = 36
Thus, a² + b² < c²
Hence, It shows the obtuse angle.
For option c;
⇒ 8, 12, 15
Clearly, a² + b² = 8² + 12²
= 64 + 144
= 208
And, c² = 15² = 225
Thus, a² + b² < c²
Hence, It shows the obtuse angle.
Learn more about the triangle visit:
https://brainly.com/question/17335144
#SPJ5
Is it ever possible that after an elastic collision (where a moving mass (1) strikes a stationary mass (2)) that the two objects will have exactly the same final speeds? If so, how must the two masses compare? (Hints, 1st : there are two possibilities as to how the speeds could be equal, 2nd : equations below should be helpful).V1f=V1o (m1-m2/m1+m2) V2f=V1o (2m1/m1+m2)
Answer:
Step-by-step explanation:
It is possible that after an elastic collision a moving mass (1) strikes a stationary mass (2) and the two objects will have exactly the same final speed.
During an elastic collision, the momentum and kinetic energy are both conserved. Since one of the object is a stationary object, its velocity will be zero hence the other moving object will collide with the stationary object and cause both of them to move with a common velocity. The expression for their common velocity can be derived using the law of conservation of energy.
Law of conservation of energy states that the sum of momentum of bodies before collision is equal to the sum of momentum of the bodies after collision.
Since momentum = mass*velocity
Before collision
Momentum of body of mass m1 and velocity u1 = m1u1
Momentum of body of mass m2 and velocity u2 = m2u2
Since the second body is stationary, u2 = 0m/s
Momentum of body of mass m2 and velocity u2 = m1(0) = 0kgm/s
Sum of their momentum before collision = m1u1+0 = m1u1 ... 1
After collision
Momentum of body of mass m1 and velocity vf = m1vf
Momentum of body of mass m2 and velocity vf = m2vf
vf is their common velocity.
Sum of their momentum before collision = m1vf+m2vf ... 2
Equating 1 and 2 according to the law;
m1u1 = m1vf+m2vf
m1u1 = (m1+m2)vf
vf = m1u1/m1+m2
vf s their common velocity after collision. This shows that there is possibility that they have the same velocity after collision.
What is the solution to the system of equations?
5x – 4y = 6
-5x + 4y = -10
O (4,4)
0 (-2,-5)
O infinitely many solutions
O no solution
Hey there! I'm happy to help!
We have a 5x is one equation and a -5x in another equation. We can combine the two equations to cancel out the x and then solve! This is called solving by elimination.
5x-4y=6
+
-5x+4y=-10
0= -4
Since we lost our x and y while solving, there cannot be any solution.
Therefore, the answer is no solution.
Have a wonderful day!
Which equation represents this statement: A number minus 6 is 168? 6 − n = 168 n ÷ 6 = 168 n − 6 = 168 6n = 168
Answer:n-6=168
Step-by-step explanation:
The statement starts with the variable first.
Answer:
n - 6 = 168.
Step-by-step explanation:
Let's say that the value of the number is n.
n minus 6 is 168, so n - 6 = 168.
n - 6 = 168
n = 174.
Hope this helps!
Mary states, "If the diagonals of a parallelogramare congruent, then the
parallelogram is a rectangle." Decide if her statement is wue or false.
A. True
B. False
Answer:
True
Step-by-step explanation:
A rectangle is a plane figure with congruent length of opposite sides. Considering a rectangle ABCD,
AD ≅ BC (opposite side property)
AB ≅ CD (opposite side property)
<ABC = <BCD = <CDA = <DAC = [tex]90^{0}[/tex] (right angle property)
Thus,
<ABC + <BCD + <CDA + <DAC = [tex]360^{0}[/tex]
AC ⊥ BD (diagonals are perpendicular to each other)
AC ≅ BD (congruent property of diagonals)
Therefore, the parallelogram is a rectangle.