Answer:
255,024
Step-by-step explanation:
24 x 23 x 22 x 21
24 options for the first member
23 options for the second member
22 options for the third member
21 options for the last member
Help on this math question please
Answer:
3x² + x + 1
-3x² + x + 1
-54
Step-by-step explanation:
there is nothing complicated to it. you just use the requested pertain on the whole expressions of the functions, and the result is then the new function.
so,
r(x) = 3x²
s(x) = x + 1
what do you think s + r is ?
it is simply
(s+r)(x) = 3x² + x + 1
done. that is really all there is to this.
now the next (but consider the sequence due to the sign)
(s-r)(x) = x + 1 - 3x² = -3x² + x + 1
and the third
(s×r)(x) = 3x²(x+1) = 3x³ + 3x²
so, for x=-3
(s×r)(-3) = 3×(-3)³ + 3×(-3)²
remember, an even power of a negative number gives a positive result, an uneven power of a negative number gives a negative result.
(s×r)(x) = 3×-27 + 3×9 = -81 + 27 = -54
what’s the missing side of the polygons
Answer:
the missing side is 21!!!!!!!!
A random sample of medical files is used to estimate the proportion p of all people who have blood type B. (a) If you have no pre-liminary estimate for p, how many medical files should you include in a random sample in order to be 90% sure that the point estimate will be within a distance of 0.03 from p?(b) Answer part (a) if you use the pre-liminary estimate that about 13 out of 90 people have blood type B.
Answer:
a) 752 medical files should be included.
b) 372 medical files should be included.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is of:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
Question a:
This is n for which M = 0.03. We have no estimate, so we use [tex]\pi = 0.5[/tex]. So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.03 = 1.645\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.03\sqrt{n} = 1.645*0.5[/tex]
[tex]\sqrt{n} = \frac{1.645*0.5}{0.03}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.645*0.5}{0.03})^2[/tex]
[tex]n = 751.67[/tex]
Rounding up:
752 medical files should be included.
Question b:
Now we have that:
[tex]\pi = \frac{13}{90} = 0.1444[/tex]
So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.03 = 1.645\sqrt{\frac{0.1444*0.8556}{n}}[/tex]
[tex]0.03\sqrt{n} = 1.645\sqrt{0.1444*0.8556}[/tex]
[tex]\sqrt{n} = \frac{1.645\sqrt{0.1444*0.8556}}{0.03}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.645\sqrt{0.1444*0.8556}}{0.03})^2[/tex]
[tex]n = 371.5[/tex]
Rounding up:
372 medical files should be included.
If 800g of a radioactive substance are present initially and 8 years later only 450g remain, how much of the substance will be present after 16 years? (Round answer to a whole number)
A=Pe^(rt)
P = 800g
t = 8 years
A = 450g
r = This is what we will try and find to start with
450=800e^(r*8)
After running the math through a calculator, we end with r = -0.07192
Now we just re-input this information into our equation: A=800e^(-0.07192*16)
A=800e^(1.15072)
Now we will re-write the equation using the negative exponent rule:
A = 800 1/e^1.15072
Combine right side:
A = 800/e^1.15072
Then do the math:
A = 253.12709836......
That will give us A = 253 (rounded to the whole number)
I hope this helps! :)
The substance that should be presented after 16 years is 253.
Given that,
If 800g of a radioactive substance are present initially and 8 years later only 450g remain.Based on the above information, the calculation is as follows:
We know that
[tex]A=Pe^{rt}[/tex]
Here
P = 800g
t = 8 years
A = 450g
[tex]450=800e^{r\times 8}\\\\A=800e^{-0.07192\times 16}\\\\A=800e^{1.15072}\\\\A = 800 \ 1 \div e^{1.15072}\\\\A = 800\div e^{1.15072}[/tex]
A = 253
Therefore we can conclude that the substance that should be presented after 16 years is 253.
Learn more: brainly.com/question/16115373
A rope is 56 in length and must be cut into two pieces. If one piece must be six times as long as the other, find the length of each piece. Round your answers to the nearest inch, if necessary.
Answer:
48, 6
Step-by-step explanation:
The ratio of the pieces is 6 to 1
Add them together to get the total
6+1 = 7
Divide the total length by 7
56/7 = 8
Multiply the ratios by 8
6*8 = 48
1*8 = 6
The peices are 48 and 6
15. Find the x- and y-intercepts for the lineal equation - 3x + 4y = 24
Please explain steps! ❤️
Answer:
x (-8,0)
y (0,6)
Step-by-step explanation:
at the x-intercept, y = 0
at the y-intercept x=0
sub those values into your equation!
for the x-intercept,
-3x = 24
x = -8
for the y-intercept,
4y = 24
y = 6
1. Consider a lottery with three possible outcomes:-$125 will be received with probability 0.2-$100 will be received with probability 0.3-$50 will be received with probability 0.5a. What is the expected value of the lottery
Answer:
The expected value of the lottery is $80
Step-by-step explanation:
To get the expected value, we have to multiply each outcome by its probability
Then we proceed to add up all of these to get the expected value of the lottery
we have this as ;;
125(0.2) + 100(0.3) + 50(0.5)
= 25 + 30 + 25 = $80
Game consoles: A poll surveyed 341 video gamers, and 95 of them said that they prefer playing games on a console, rather than a computer or hand-held device. An executive at a game console manufacturing company claims that the proportion of gamers who prefer consoles differs from . Does the poll provide convincing evidence that the claim is true
Answer:
proportion of gamers who prefer console does not differ from 29%
Step-by-step explanation:
Given :
n = 341 ; x = 95 ; Phat = x / n = 95/341 = 0.279
H0 : p = 0.29
H1 : p ≠ 0.29
The test statistic :
T = (phat - p) ÷ √[(p(1 - p)) / n]
T = (0.279 - 0.29) ÷ √[(0.29(1 - 0.29)) / 341]
T = (-0.011) ÷ √[(0.29 * 0.71) / 341]
T = -0.011 ÷ 0.0245725
T = - 0.4476532
Using the Pvalue calculator from test statistic score :
df = 341 - 1 = 340
Pvalue(-0.447, 340) ; two tailed = 0.654
At α = 0.01
Pvalue > α ; We fail to reject the null and conclude that there is no significant evidence that proportion of gamers who prefer console differs from 29%
what are the zeros of this function?
Answer:
the Ans is c
Step-by-step explanation:
actually I don't know how to explain
In June, an investor purchased 300 shares of Oracle (an information technology company) stock at $53 per share. In August, she purchased an additional 400 shares at $42 per share. In November, she purchased an additional 400 shares at $45. What is the weighted mean price per share? (Round your answer to 2 decimal places.)
Answer: The mean price per share is $22.91
The required weighted mean price per share is $46.09.
Given that,
In June, an investor purchased 300 shares of Oracle (an information technology company) stock at $53 per share. In August, she purchased an additional 400 shares at $42 per share. In November, she purchased an additional 400 shares at $45.
To determine the weighted mean price per share.
The average of the values is the ratio of the total sum of values to the number of values.
What is mean?The mean of the values is the ratio of the total sum of values to the number of values.
Here,
Required weight mean = 300 * 53 + 400*42 + 400 * 42 / [300 + 400 + 400]
Required weight mean = 50700/ [1100]
Required weight mean = $46.09 per share.
Thus, the required weighted mean price per share is $46.09.
Learn more about mean here:
https://brainly.com/question/15397049
#SPJ2
find x in this similar triangles
Answer:
6. x = 4
8. x = 13
Step-by-step explanation:
Using similar triangles theorem,
6. (5+4)/5 = (4x + 2)/(4x + 2 - 8)
9/5 = (4x + 2)/(4x - 6)
Cross multiply
9(4x - 6) = 5(4x + 2)
36x - 54 = 20x + 10
Collect like terms
36x - 20x = 54 + 10
16x = 64
16x/16 = 64/16
x = 4
8. (4x + 13)/20 = 52/16
(4x + 13)/20 = 13/4
Cross multiply
4(4x + 13) = 13(20)
16x + 52 = 260
16x = 260 - 52
16x = 208
x = 208/16
x = 13
The following data represents the age of 30 lottery winners.
22 30 30 35 36 37 37
37 39 39 41 51 51 54
54 55 57 57 58 58 61
64 68 69 72 74 75 78 79 80
Complete the frequency distribution for the data.
Age Frequency
20-29
30-39
40-49
50-59
60-69
70-79
80-89
Rate of change or rate of change
A farmer has 80 feet of wire mesh to surround a rectangular pen.
A) Express the area A of the pen as a function of x, also draw the figure of A indicating the admissible values of x for this problem.
B) What are the dimensions of the maximum area pen?
Answer:
Step-by-step explanation:
A). Let the dimensions of the rectangular pen are,
Length = l
Width = x
Since, farmer has the wire measuring 80 feet to surround the the pen.
Perimeter of the pen = 80 feet
2(l + x) = 80
l + x = 40
l = 40 - x ------(1)
Area of the rectangular pen = Length × width
= lx
By substituting the value of l from equation (1),
Area (A) of the pen will be modeled by the expression,
A = (40 - x)
A = 40x - x²
B). For maximum area of the pen,
Derivative of the area = 0
[tex]\frac{d}{dx}(A)=0[/tex]
[tex]\frac{d}{dx}(A)=\frac{d}{dx}(40x-x^2)[/tex]
= 40 - 2x
And (40 - 2x) = 0
x = 20
Therefore, width of the pen = 20 feet
And length of the pen = 40 - 20
= 20 feet
Dimensions of the pen should be 20 feet by 20 feet.
Which expression is equivalent to 3(x - y) + y? 3x - 4y 3x - 3y 3x - 2y 3(x - 2y)
9514 1404 393
Answer:
(c) 3x - 2y
Step-by-step explanation:
Use the distributive property to eliminate parentheses, then collect terms.
3(x -y) +y = 3x -3y +y = 3x +(-3+1)y = 3x -2y
Now we have to find,
The expression which is equivalent to,
→ 3(x - y) + y
Let's get the solution,
→ 3(x - y) + y
→ 3x - 3y + y
→ 3x - 2y
Hence, required expression is 3x - 2y.
What number can go in the box to make the number sentence true?
6 + 0 = 10
0.
4.
6.
10.
cho f(x)= sign x và g(x) = x(1-x^2). tìm f(g(x))
Answer:
[tex]f(g(x))= sign(x(1-x^{2})) = sign(x-x^{3})[/tex]
Step-by-step explanation:
Help please guys thanks
Answer:
5
Step-by-step explanation:
(625 ^2)^(1/8)
Rewriting 625 as 5^4
(5^4 ^2)^(1/8)
We know that a^b^c = a^(b*c)
5^(4*2)^1/8
5^8 ^1/8
5^(8*1/8)
5^1
5
Answer:
[tex]5[/tex]
Step-by-step explanation:
[tex] { {(625}^{2} )}^{ \frac{1}{8} } \\ { ({25}^{2 \times 2} )}^{ \frac{1}{8} } \\ {25}^{4 \times \frac{1}{8} } \\ {5}^{2 \times 4 \times \frac{1}{8} } \\ {5}^{ \frac{8}{8} } \\ {5}^{1} \\ = 5[/tex]
Suppose you make napkin rings by drilling holes with different diameters through two wooden balls (which also have different diameters). You discover that both napkin rings have the same height 5h. Use cylindrical shells to compute the volume V of a napkin ring of height 5 h created by drilling a hole with radius r through the center of a sphere of radius R and express the answer in terms of h .
Answer:
V = 1/6 π ( 5h)^3
Step-by-step explanation:
Height of napkin rings = 5h
Compute the volume V of a napkin ring
let a = 5
radius = r
express answer in terms of h
attached below is the detailed solution
PLEASE HELPPPPPPPPPPP
Answer:
P(S or T) = 3/4
Step-by-step explanation:
Evaluate z^2−3 z+4 , when z=−4
Answer:
8
Step-by-step explanation:
=z²-3z+4 when z is 4
=4²-3(4)+4
=16-12+4
=8
The mode of 3 numbers is 6 and the
range is 4. Write down a possible set of
numbers.
Answer:
solution,
mode of 3 numbers is 6
range is 4
possible set of numbers are
{3,4,6,{} }
Fraces bonitas para decirle a tu nv?
minimo 6
Answer:
it's. is now the MA plz I miss you
si pudiera escoger entre vivir eternamente y vivir dos veces
yo escogeria vivir dos veces porque vivir una vida eterna sin ti a mi lado seria el mayor sufrimiento, ahora vivir dos veces me dejaria tranquilo porque despues del final de mi vida podria volver a encontrarme contigo y vivir todos los momentos bellos una vez mas y eso seria un sueño volviendose realidad
Which of the following is a solution to 2sin2x+sinx-1=0?
Answer:
270 degrees
Step-by-step explanation:
If you plug in 270 in place of the x's, the function is true!
This is correct for Plate/Edmentum users!! Hope I could help :)
Which of these is an example of a continuous random variable?
A. Number of flights leaving an airport
B. Pieces of mail in your mailbox
C. Attendance at a sporting event
D. Time to run a race
Answer:
continues means that can be written in decimal like weight,height, distance(5.44km)
I think its D. is time decimal? Gods plan.
Tara created a 1 inch cube out of paper.
1 in
If she doubles the volume of her cube, which statement could be true?
A Tara added two inches to the height, length and width of the cube.
B Tara added two inches to the height of the cube.
C Tara doubled the measurements of the cube's height, length and width.
D Tara doubled the measurement of the cube's height.
Answer:
answer D
Step-by-step explanation:
V=L*W*H=1 ==> L=1,W=1,H=1
A:
L-> L+2=1+2=3
W -> W+2 = 1+2=3
H -> H+2=1+2=3
V=3*3*3=27 not the doubled of the volume's cube
A is false
B:
H -> H+2=1+2=3
V=1*1*3=3 not the doubled of the volume's cube
B is false
C:
H -> 2*H=2*1=2
L -> 2*L=2*1=2
W -> 2*W = 2*1=2
V=2*2*2=8 not the doubled of the volume's cube
C is false
D:
H-> H*2=1*2=2
L=1
W=1
V=1*1*2=2 is the doubled of the volume's cube
D is true
Building A is 170 feet shorter than building B. The total height of the two building is 1490 feet. Find the height of each building.
Answer:
Building A is 660 feet and Building B is 830 feet
Step-by-step explanation:
Let x represent the height of building B.
Since building A is 170 feet shorter than building B, it can be represented by x - 170.
Create an equation and solve for x:
(x) + (x - 170) = 1490
2x - 170 = 1490
2x = 1660
x = 830
So, the height of building B is 830 feet.
Subtract 170 from this to find the height of building A:
830 - 170
= 660
Building A is 660 feet and Building B is 830 feet
if the two linear functions are represented two different forms the _____ is used to compare the steepness of the two functions>
Answer:
Slope
Step-by-step explanation:
Given
The above statement
Required
What compares the steep of linear functions
Literally, steepness means slope.
So, when the slope of the two linear functions are calculated, we can make comparison between the calculated slopes to determine which of the functions is steeper or less steep.
Also:
Higher slope means steeper line
e.g.
4 is steeper than 1
Which of the following displays cannot be used to compare data from two different sets?
Answer:
Scatter plot charts are good for relationships and distributions, but pie charts should be used only for simple compositions — never for comparisons or distributions.
Answer theas question
(1) Both equations in (a) and (b) are separable.
(a)
[tex]\dfrac xy y' = \dfrac{2y^2+1}{x+1} \implies \dfrac{\mathrm dy}{y(2y^2+1)} = \dfrac{\mathrm dx}{x(x+1)}[/tex]
Expand both sides into partial fractions.
[tex]\left(\dfrac1y - \dfrac{2y}{2y^2+1}\right)\,\mathrm dy = \left(\dfrac1x - \dfrac1{x+1}\right)\,\mathrm dx[/tex]
Integrate both sides:
[tex]\ln|y| - \dfrac12 \ln\left(2y^2+1\right) = \ln|x| - \ln|x+1| + C[/tex]
[tex]\ln\left|\dfrac y{\sqrt{2y^2+1}}\right| = \ln\left|\dfrac x{x+1}\right| + C[/tex]
[tex]\dfrac y{\sqrt{2y^2+1}} = \dfrac{Cx}{x+1}[/tex]
[tex]\boxed{\dfrac{y^2}{2y^2+1} = \dfrac{Cx^2}{(x+1)^2}}[/tex]
(You could solve for y explicitly, but that's just more work.)
(b)
[tex]e^{x+y}y' = 3x \implies e^y\,\mathrm dy = 3xe^{-x}\,\mathrm dx[/tex]
Integrate both sides:
[tex]e^y = -3e^{-x}(x+1) + C[/tex]
[tex]\ln(e^y) = \ln\left(C - 3e^{-x}(x+1)\right)[/tex]
[tex]\boxed{y = \ln\left(C - 3e^{-x}(x+1)\right)}[/tex]
(2)
(a)
[tex]y' + \sec(x)y = \cos(x)[/tex]
Multiply both sides by an integrating factor, sec(x) + tan(x) :
[tex](\sec(x)+\tan(x))y' + \sec(x) (\sec(x) + \tan(x)) y = \cos(x) (\sec(x) + \tan(x))[/tex]
[tex](\sec(x)+\tan(x))y' + (\sec^2(x) + \sec(x)\tan(x)) y = 1 + \sin(x)[/tex]
[tex]\bigg((\sec(x)+\tan(x))y\bigg)' = 1 + \sin(x)[/tex]
Integrate both sides and solve for y :
[tex](\sec(x)+\tan(x))y = x - \cos(x) + C[/tex]
[tex]y=\dfrac{x-\cos(x) + C}{\sec(x) + \tan(x)}[/tex]
[tex]\boxed{y=\dfrac{(x+C)\cos(x) - \cos^2(x)}{1+\sin(x)}}[/tex]
(b)
[tex]y' + y = \dfrac{e^x-e^{-x}}2[/tex]
(Note that the right side is also written as sinh(x).)
Multiply both sides by e ˣ :
[tex]e^x y' + e^x y = \dfrac{e^{2x}-1}2[/tex]
[tex]\left(e^xy\right)' = \dfrac{e^{2x}-1}2[/tex]
Integrate both sides and solve for y :
[tex]e^xy = \dfrac{e^{2x}-2x}4 + C[/tex]
[tex]\boxed{y=\dfrac{e^x-2xe^{-x}}4 + Ce^{-x}}[/tex]
(c) I've covered this in an earlier question of yours.
(d)
[tex]y'=\dfrac y{x+y}[/tex]
Multiply through the right side by x/x :
[tex]y' = \dfrac{\dfrac yx}{1+\dfrac yx}[/tex]
Substitute y(x) = x v(x), so that y' = xv' + v, and the DE becomes separable:
[tex]xv' + v = \dfrac{v}{1+v}[/tex]
[tex]xv' = -\dfrac{v^2}{1+v}[/tex]
[tex]\dfrac{1+v}{v^2}\,\mathrm dv = -\dfrac{\mathrm dx}x[/tex]
[tex]-\dfrac1v + \ln|v| = -\ln|x| + C[/tex]
[tex]\ln\left|\dfrac yx\right| -\dfrac xy = C - \ln|x|[/tex]
[tex]\ln|y| - \ln|x| -\dfrac xy = C - \ln|x|[/tex]
[tex]\boxed{\ln|y| -\dfrac xy = C}[/tex]
what 30 + 30+60+(56)-82=?
94 is the correct answer for that question
Step-by-step explanation:
30+30+60+56-82=94