Answer:
23) No
24) No
25) Yes
Step-by-step explanation:
Question 23)
We want to determine if a zero exists between 1 and 2 for the function:
[tex]f(x)=x^2-4x-5[/tex]
Find the zeros of the function. We can factor:
[tex]\displaystyle 0 = (x-5)(x+1)[/tex]
Zero Product Property:
[tex]x-5=0\text{ or } x+1=0[/tex]
Solve for each case. Hence:
[tex]\displaystyle x = 5\text{ or } x=-1[/tex]
Therefore, our zeros are at x = 5 and x = -1.
In conclusion, a zero does not exist between 1 and 2.
Question 24)
We have the function:
[tex]f(x)=2x^2-7x+3[/tex]
And we want to determine if a zero exists between 1 and 2.
Factor. We want to find two numbers that multiply to (2)(3) = 6 and that add to -7.
-6 and -1 suffice. Hence:
[tex]\displaystyle \begin{aligned} 0 & = 2x^2-7x + 3 \\ & = 2x^2 -6x -x + 3 \\ &= 2x(x-3) - (x-3) \\ &= (2x-1)(x-3) \end{aligned}[/tex]
By the Zero Product Property:
[tex]2x-1=0\text{ or } x-3=0[/tex]
Solve for each case:
[tex]\displaystyle x=\frac{1}{2} \text{ or } x=3[/tex]
Therefore, our zeros are at x = 1/2 and x = 3.
In conclusion, a zero does not exist between 1 and 2.
Question 25)
We have the function:
[tex]f(x)=3x^2-2x-5[/tex]
And we want to determine if a zero exists between -2 and 3.
Factor. Again, we want to find two numbers that multiply to 3(-5) = -15 and that add to -2.
-5 and 3 works perfectly. Hence:
[tex]\displaystyle \begin{aligned} 0&= 3x^2 -2x -5 \\ &= 3x^2 +3x - 5x -5 \\ &= 3x(x+1)-5(x+1) \\ &= (3x-5)(x+1)\end{aligned}[/tex]
By the Zero Product Property:
[tex]\displaystyle 3x-5=0\text{ or } x+1=0[/tex]
Solve for each case:
[tex]\displaystyle x = \frac{5}{3}\text{ or } x=-1[/tex]
In conclusion, there indeed exists a zero between -2 and 3.
How do I figure this question out
Answer:
Orthocenter would be in the middle of the shape.
Step-by-step explanation:
B.
Based on this example, make a
generalization about the acute angles
formed when two parallel lines are
cut by a transversal.
Answer:
Step-by-step explanation:
There are 4 of them (acute angles that is)Those 4 are less than 90 degrees.They have supplementary angles which are greater than 90 degrees.There are 4 of them also.The total number of angles should be 8 if there are 2 parallel lines and 1 transversal.22
20
14
22
29
20
Mean
Mode
Medium
Range
Answer:
mean=21.17
mode=20,22
median=3.5
range=15
Step-by-step explanation: MEAN=sum of all observations/ no. of observations
mean=22+20+14+22+29+20/6
mean=127/6
mean=21.17
MODE= most frequent observations
mode=22,20
MEDIAN=1/2(n/2+n+2/2)
=1/2(6/2+6+2/2)
=1/2(3+4)
=1/2(7)
=7/2
=3.5
RANGE=X max -X min
=29-14
=15
calculate the resistance if V = 220V and I = 3.6amp
Step-by-step explanation:
V= IR --> R = V/I = (220 V)/(3.6 A) = 61.1 ohms
Answer:
61.11 ohms
Step-by-step explanation:
R=V/I
R=220/3.6
R=61.11 ohms
Calculate the product below and give your answer in scientific notation.
(3.3 x 10-4) (8.0 x 109) = ?
Show Calculator
Answer:
25288
Step-by-step explanation:
shown in the picture
how did the tempicher change if at first it increased by 5% and then increased by 20 percent
Answer:
Increasing a number by 5% and then by 20% is the same as increasing the original number by 26%.
Step-by-step explanation:
Take a number, x.
Now increase it by 5%.
1.05x
Now increase it by 20%.
1.2 * 1.05x = 1.26x
1.26x = 126% of x = 100% of x + 26% of x
100% of x is the same as x, so it is the same as the original x.
The increase is 26% of the original number.
Increasing a number by 5% and then by 20% is the same as increasing the original number by 26%.
1. What is the theoretical probability that the family has two dogs or two cats?
2.
Describe how to use two coins to simulate which two pets the family has.
3. Flip both coins 50 times and record your data in a table
like the one below.
Frequency
Result
Heads, Heads
Heads, Tails
Tails. Heads
Tails. Tails
Total
50
4
Based on your data, what is the experimental probability that the family has two dogs or
two cats?
5
If the family has three pets, what is the theoretical probability that they have three dogs or
three cats?
How could you change the simulation to generate data for three pets
6
let dogs be heads. Let cats be tails. A coin has two sides, in which you are flipping two of them. Note that there can be the possible outcomes
h-h, h-t, t-h, t-t.
How this affects the possibility of two dogs & two cats. Note that there are 1/2 a chance of getting those two (with the others being one of each), which means that out of 4 chances, 2 are allowed.
2/4 = 1/2
50% is your answer
Heads represents cats and tails represents dogs. There is two coins because we are checking the probability of two pets. You have to do the experiment to get your set of data, once you get your set of data, you will be able to divide it into the probability for cats or dogs. To change the simulation to generate data for 3 pets, simply add a new coin and category for the new pet.
Hope this helps you out!
find the slope of the line passing through the points (-4, -7) and (4, 3)
Answer:
5/4
Step-by-step explanation:
Use the slope formula which is y2-y1/x2-x1.
1. Plug the given values into the equation: 3-(-7)/4-(-4)=5/4
Simplify: (w^3)^8 * (w^5)^5
Answer:
(w^3)^8 * (w^5)^5 = w^49
Step-by-step explanation:
(w^24) * (w^25)
using exponent rule
w^24 • w^25 = w^24+25
w^49
Answer:
Step-by-step explanation:
(W^24)*(W^25)
W^24+25
=W^49
two sides of a triangle measure 5 in and 12 in what could be the length of the third side
Answer:
b
Step-by-step explanation:
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 124 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.31
Answer:
0.2405 = 24.05% probability that the sample proportion of households spending more than $125 a week is less than 0.31.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Assume the population proportion is 0.34 and a simple random sample of 124 households is selected from the population.
This means that [tex]p = 0.34, n = 124[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.34[/tex]
[tex]s = \sqrt{\frac{0.34*0.66}{124}} = 0.0425[/tex]
What is the probability that the sample proportion of households spending more than $125 a week is less than 0.31?
This is the p-value of Z when X = 0.31, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{0.31 - 0.34}{0.0425}[/tex]
[tex]Z = -0.705[/tex]
[tex]Z = -0.705[/tex] has a p-value of 0.2405.
0.2405 = 24.05% probability that the sample proportion of households spending more than $125 a week is less than 0.31.
Two complex numbers have a sum of 14 and a product of 74. Write either of the two numbers.
Answer:
Hello,
Step-by-step explanation:
The 2 numbers are roots of the equation:
U²-14U+74=0
Discriminant=14²-4*74=-100
U=7-5i or U=7+5i
9514 1404 393
Answer:
7 +5i or 7 -5i
Step-by-step explanation:
If the two numbers are represented by x and y, then ...
x+y = 14
xy = 74
Substituting for y, we have ...
x(14 -x) = 74
x^2 -14x +49 = -74 +49 . . . . . multiply by -1, complete the square
(x -7)^2 = -25 . . . . . . . . . . . write as a square
x -7 = ±√(-25) = ±5i . . . . take the square root
x = 7 ± 5i . . . . . . . . . . . add 7
One of the numbers is 7 +5i.
AABC-AXYZ. What's the scale factor from
AABC to AXYZ?
9514 1404 393
Answer:
(d) 1/4
Step-by-step explanation:
The scale factor is the ratio of lengths of corresponding sides:
XZ/AC = 3/12 = 1/4
_____
Additional comment
I find the wording of the question a bit ambiguous. To transform ΔABC to ΔXYZ, every linear dimension of ΔABC is multiplied by 1/4. This is the sense of "ΔABC to ΔXYZ" that is used in the above answer.
On the other hand, one of the ways ratios are written is using the word "to," as in "12 to 3". Using this idea, we might interpret the question to be asking for ...
ΔABC to ΔXYZ = AC to XZ = 12 to 3 = 12/3 = 4
A box contains 16 large marbles and 18 small marbles. Each marble is either green or white. 9 of the large marbles are green, and 3 of the small marbles are white. If a marble is randomly selected from the box, what is the probability that it is small or green
Answer:
[tex]P(S&G) =0.7941[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=16+18=>34[/tex]
N0 of Large [tex]L=16[/tex]
N0 of Small [tex]S=18[/tex]
N0 large Green [tex]L_g=9[/tex]
N0 of small White [tex]S_w=3[/tex]
Therefore
Number of green marbles [tex]N0(G)=9+(18-3)[/tex]
Number of green marbles [tex]N0(G)=24[/tex]
Generally the Number of both small and green Marble is
[tex]N0 of (S&G)= 18 - 3 = 15[/tex]
Generally the probability that it is small or green P(S&G) is mathematically given by
[tex]P(S&G) = \frac{(18 + 24 - 15)}{(18 + 16)}[/tex]
[tex]P(S&G) =0.7941[/tex]
Write 2^60 the expression as a exponent with the base of 4
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
[tex]2^{60} =2^{2 \times 30} =(2^{2} )^{30}=4^{30}[/tex]
Lost-time accidents occur in a company at a mean rate of 0.8 per day. What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2
Answer:
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Step-by-step explanation:
We have the mean during the interval, which means that the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Lost-time accidents occur in a company at a mean rate of 0.8 per day.
This means that [tex]\mu = 0.8n[/tex], in which n is the number of days.
10 days:
This means that [tex]n = 10, \mu = 0.8(10) = 8[/tex]
What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2?
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-8}*8^{0}}{(0)!} = 0.00034[/tex]
[tex]P(X = 1) = \frac{e^{-8}*8^{1}}{(1)!} = 0.00268[/tex]
[tex]P(X = 2) = \frac{e^{-8}*8^{2}}{(2)!} = 0.01073[/tex]
So
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00034 + 0.00268 + 0.01073 = 0.01375[/tex]
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
PLS
Write the equation of the piecewise function that is represented by its graph.
IS IT A, B, C, OR D
9514 1404 393
Answer:
a) domain bounds are -1 ≤ x ≤ 1, x > 1
Step-by-step explanation:
In considering the definition of any piecewise function, the domain descriptions in the function definition must match the pieces shown in the graph.
Here, the right segment has no upper bound, so x > 1 is an appropriate description of its domain.
The left segment has the points at x=-1 and x=1 included, so the appropriate domain description for that is -1 ≤ x ≤ 1.
The one answer choice that combines these domain descriptions is ...
[tex]\displaystyle f(x)=\begin{cases}x^2,&\text{if }-\!1\le x\le1\\\sqrt{x},&\text{if }x>1\end{cases}[/tex]
I need help ASAP please no links
Answer: D' = (1, -1)
Step-by-step explanation:
When dilating by a 1/2 you take a point and divide the x and y of the point in half. So D before is (2,-2) and then divide that by a 1/2, which gives us our answer (1, -1).
A consistent system of equations is a system with __________.
Select one:
a. the same line
b. parallel lines
c. intersecting lines and lines that have the same slope
d. intersecting lines and lines that have the same equation
the answer is d. my shlime
The population, P(t), in millions, of a country, in year t, is given by the formula P(t) = 24 + 0.4t. What are the values of the population for t = 10, 20,
and 30?
Answer:
B. 28, 32, 36 millions
Step-by-step explanation:
Given:
P(t) = 24 + 0.4t
Where,
P(t) = population in millions
t = number of years
✔️Value of the population when t = 10:
Plug in t = 10 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(10)
P(t) = 24 + 4
P(t) = 28 million
✔️Value of the population when t = 20:
Plug in t = 20 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(20)
P(t) = 24 + 8
P(t) = 32 million
✔️Value of the population when t = 30:
Plug in t = 30 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(30)
P(t) = 24 + 12
P(t) = 36 million
if the lines 3x+2ky=0 and 2x+5y+1=0 are parallel, then what is the value of k?
Answer:
k = 15/4
Step-by-step explanation:
Slope of a line = -a/b
slope of the first line = -3/2k
slope of the second line = -2/5
the slope of two parallel lines are congruent
-3/2k = -2/5
-15 = -4K
k = 15/4
A graph of 2 functions is shown below. graph of function f of x equals negative 11 by 3 multiplied by x plus 11 by 3 and graph of function g of x equals x cubed plus 2 multiplied by x squared minus x minus 2 Which of the following is a solution for f(x) = g(x)? (2 points) x = −2 x = 1 x = 0 x = −1
9514 1404 393
Answer:
(b) x = 1
Step-by-step explanation:
A graph shows the solution to f(x) = g(x) is x = 1.
__
We want to solve ...
g(x) -f(x) = 0
x^3 +2x^2 -x -2 -(-11/3x +11/3) = 0
x^2(x +2) -1(x +2) +11/3(x -1) = 0 . . . . . factor first terms by grouping
(x^2 -1)(x +2) +11/3(x -1) = 0 . . . . . . the difference of squares can be factored
(x -1)(x +1)(x +2) +(x -1)(11/3) = 0 . . . . we see (x-1) is a common factor
(x -1)(x^2 +3x +2 +11/3) = 0
The zero product rule tells us this will be true when x-1 = 0, or x = 1.
__
The discriminant of the quadratic factor is ...
b^2 -4ac = 3^2 -4(1)(17/3) = 9 -68/3 = -41/3
This is less than zero, so any other solutions are complex.
Reasoning by induction
Question 1 options:
1)
develops a general conclusion based on observations of cases.
2)
develops a general conclusion based on given information.
3)
starts with assumptions that are known to be valid to draw another new truths.
4)
uses patterns to create logical proofs.
Answer:
1because the occasion of cases
Please helppppppppp!!!!
Terminal point for 4π/3
(cos4π/3 ,sin4π/3)
{cos(π+π/3) ,sin(π+π/3)}= (-cosπ/3 ,-sinπ/3)
or ,(- 1/2, -√3/2)
OPTION C
4 people take 3 hours to paint a fence assume that all people paint at the same rate How long would it take one of these people to paint the same fence?
Answer:
12
Step-by-step explanation:
There is a 60% probability that a home in the United States has a large-screen TV. In a sample of six homes, what is the probability that there will be a large screen TV in:_________a). All 6 homes? b). None of the homes c). At least 5 of the homes? d). At most 2 of the homes? e). More than 3 of the homes? f). Less than 3 of the homes? g). How many homes would you expect to have a large-screen TV in a sample of six homes?
Answer:
faster and smarter Homes its b
Step-by-step explanation:
I did this one
I need all the help I can get. please assist.
4. The equation of a curve is y = (3 - 2x)^3 + 24x.
(a) Find an expression for dy/dx
5. The equation of a curve is y = 54x - (2x - 7)^3.
(a) Find dy/dx
Answer:
4(a).
Expression of dy/dx :
[tex]{ \tt{ \frac{dy}{dx} = - 2(3 - 2x) {}^{2} + 24}}[/tex]
5(a).
[tex]{ \tt{ \frac{dy}{dx} = 54 - 2(2x - 7) {}^{2} }}[/tex]
What is the greatest common factor of 16ab3 + 4a2b + 8ab ?
Answer:
2ab(3b^2+2a+4)
Step-by-step explanation:
6ab^3 + 4a^2b + 8ab
2*3*a*b*b^2 +2*2*a*a*b +2*2*2*a*b
Factor out the common terms
2ab( 3*b^2 +2*a +2*2)
2ab(3b^2+2a+4)
PLEASE HELPPPPPPP #1
Answer:
is the second answer 2x+1/x-1
Zoe has 4 pounds of strawberries to make pies. How many ounces of strawberries Is this?
64 oz.
60 oz.
68 oz.
72 oz.
Work Shown:
1 pound = 16 ounces
4*(1 pound) = 4*(16 ounces)
4 pounds = 64 ounces