9514 1404 393
Answer:
B) False
Step-by-step explanation:
Triangles are similar when their angles are the same measures. Because the angles sum to 180°, we only need to show that 2 angles of one triangle are equal to 2 angles of the other triangle.
All three of the angles of the first triangle are given: 20°, 40°, 120°.
One of the angles of the second triangle matches: 40°; but the other angle (80°) doesn't match either of 20° or 120°.
The angles aren't the same, so the triangles are not similar.
__
If we want to go to the trouble, we can figure the third angle of the second triangle. It is 180° -40° -80° = 60°.
Then the angles in the two triangles, listed smallest to largest, are ...
20°, 40°, 120°
40°, 60°, 80°
It is clear the angles of these triangles are not the same.
Simplify to the extent possible:
(logx16)(log2 x)
Answer:
Step-by-step explanation:
Use the change-of-base rule.
Which expression is equivalent to 27 + 45?
Answer:
8 x 9
Have a nice day!
Which explains whether or not the graph represents a direct variation?
Answer:
The slope is 3 and equation of the line is y=3x. I think the answer is the 1st option
Step-by-step explanation:
Given:
y=3x
Direct variation equations have the form:
y=kx,
where
k is the constant of proportionality
so k=3
How
many solutions are there to the equation below?
4(x - 5) = 3x + 7
A. One solution
B. No solution
O C. Infinitely many solutions
SUB
Answer:
A one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
Distribute
4x - 20 = 3x+7
Subtract 3x from each side
4x-3x-20 = 3x+7-3x
x -20 = 7
Add 20 to each side
x -20+20 = 7+20
x = 27
There is one solution
Answer:
Step-by-step explanation:
Let's simplify that before we make the decision, shall we? We'll get rid of the parenthesis by distribution and then combine like terms.
4x - 20 = 3x + 7 and combining like terms and getting everything on one side of the equals sign:
1x - 27 = 0. Since that x has a power of 1 on it (linear), that means we have only 1 solution. If that was an x², we would have 2 solutions; if that was an x³, we would have 3 solutions, etc.
To make concrete, the ratio of cement to sand is 1 : 3. If cement and sand are sold in bags of equal mass, how many bags of cement are required to make concrete using 15 bags of sand?
Answer:
5 bags of cement are required.
Step-by-step explanation:
Since to make concrete, the ratio of cement to sand is 1: 3, if cement and sand are sold in bags of equal mass, to determine how many bags of cement are required to make concrete using 15 bags of sand the following calculation must be done:
Cement = 1
Sand = 3
3 = 15
1 = X
15/3 = X
5 = X
Therefore, 5 bags of cement are required.
7/9 - 2/3 and 2/3 - 1/6
Answer:
The answer is 1/9 and 1/2
Which equation could represent a linear combination of the systems?
9514 1404 393
Answer:
(b) 0 = -78
Step-by-step explanation:
Subtracting 6 times the first equation from the second will give ...
(4x +15y) -6(2/3x +5/2y) = (12) -6(15)
0 = -78
Answer:
the answer is b
Step-by-step explanation:
Oil leaked from a tank at a rate of r(t) liters per hour. The rate decreased as time passed, and values of the rate at two hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.
t (h) 0 2 4 6 8 10
r(t) (L/h) 8.8 7.6 6.8 6.2 5.7 5.3
V=_____ upper estimate
V= ______lower estimate
The exact amount of oil that leaks out for 0 ≤ t ≤ 10 is given by the integral,
[tex]\displaystyle\int_0^{10}r(t)\,\mathrm dt[/tex]
Then the upper and lower estimates of this integral correspond to the upper and lower Riemann/Darboux sums. Since r(t) is said to be decreasing, this means that the upper estimate corresponds to the left-endpoint Riemann sum, while the lower estimate would correspond to the right-endpoint sum.
So you have
• upper estimate:
(8.8 L/h) (2 h - 0 h) + (7.6 L/h) (4 h - 2h) + (6.8 L/h) (6 h - 4h) + (6.2 L/h) (8 h - 6h) + (5.7 L/h) (10 h - 8 h)
= (2 h) (8.8 + 7.6 + 6.8 + 6.2 + 5.7) L/h)
= 70.2 L
• lower estimate:
(7.6 L/h) (2 h - 0 h) + (6.8 L/h) (4 h - 2h) + (6.2 L/h) (6 h - 4h) + (5.7 L/h) (8 h - 6h) + (5.3 L/h) (10 h - 8 h)
= (2 h) (7.6 + 6.8 + 6.2 + 5.7 + 5.3) L/h)
= 63.2 L
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week. a. Give a 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week. b. In the general population, 30% have 5 or more servings of soft drinks a week. Is there evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population
Answer:
a) The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
b) 30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week.
This means that [tex]n = 77, \pi = \frac{30}{77} = 0.3896[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 - 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.2982[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 + 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.481[/tex]
The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
Question b:
30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
Need Help this is due in 30 minutes!
Answer:
E
Step-by-step explanation:
Since all the numbers are hundredths decimals, let multiply by the power of 2 of the base 10. So let multiply the equation by
[tex]10 {}^{2} [/tex]
So our new equation is
[tex]3 3{x}^{2} + 71x - 14 = 0[/tex]
Solve by AC method
[tex]ac = - 462[/tex]
[tex]b = 71[/tex]
We must think of two numbers that
Multiply to -462 and Add to 71. Set up equation
The numbers are 77 and -6.
So our new equation is
[tex] {33x}^{2} + 77x - 6x - 14 = 0[/tex]
Solve by factoring by grouping
[tex](33 {x}^{2} + 77x) - (6x - 14)[/tex]
Factor out 11 for the first equation
[tex]11x(3x + 7) - 2(3x + 7)[/tex]
So our factors are
[tex](11x - 2)(3x + 7)[/tex]
Set each equal to zero
[tex]11x - 2 = 0[/tex]
[tex]11x = 2[/tex]
[tex]x = \frac{2}{11} [/tex]
[tex]3x + 7 = [/tex]
[tex]3x = - 7[/tex]
[tex]x = \frac{ - 7}{3} [/tex]
What is the surface area of the composite figure?
9514 1404 393
Answer:
382 cm²
Step-by-step explanation:
The side facing is a trapezoid with bases 8 and 14 cm, and height 7 cm. Its area is ...
A = 1/2(b1 +b2)h
A = (1/2)(8 +14)(7) = 77 . . . . cm²
The perimeter of the face is ...
7 cm + 8 cm + 9 cm + 14 cm = 38 cm
The total surface area is the sum of the lateral area and the base area.
SA = LA + BA
SA = (38 cm)(6 cm) + 2×(77 cm²) = 228 cm² + 154 cm²
SA = 382 cm²
The surface area of the composite figure is 382 square centimeters.
_____
Additional comment
The lateral area is the width of a rectangular face (6 cm) times the total of all of the lengths of those faces. That total is the perimeter of the trapezoidal base (38 cm).
There are two trapezoidal bases that contribute area. The first calculation figured the area of one of them.
What is the value of cot ø= 2/3 what is the value of csc ø
Answer:
Step-by-step explanation:
cotθ = cosθ/sinθ = 2/3
sinθ = 3/√(2²+3²) = 3/√13
cscθ = 1/sinθ = √13/3
Find the slope, if it exists, of the line containing the points (10,-3) and (10,-8).
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
m=
Answer:
The slope is undefined.
Step-by-step explanation:
The line must pass through the points (10,-3) and (10,-8), meaning that it must be vertical. The slope of a line is undefined if the line is vertical.
Any help would be very appreciated
Answer:
21
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 60 = x / 7 sqrt(3)
7 sqrt(3) tan 60 = x
7 sqrt(3) sqrt(3) = x
7*3 = x
21 = x
Question 7(Multiple Choice Worth 1 points)
(07.02 MC)
Jason has two bags with 6 tiles each. The files in each bag are shown below
1
2
3
4
5
6
Without looking, Jason draws a file from the first bag and then a file from the second bag What is the probability of Jason drawing the file numbered 5 from the first bag and an odd file from the second bag?
0
영
o
Answer:a.3/6
Step-by-step explanation:
Because there’s a total of 12 files in each bag which is 6 in each
please help
Find the missing side of this right
triangle.
X
7
12
X
= [?]
Answer:
13.9 (if x is the Hypotenuse)
Step-by-step explanation:
which one is the Hypotenuse (the side opposite of the 90 degree angle) ?
because that determines the calculation.
if x is the Hypotenuse then Pythagoras looks like this
x² = 7² + 12² = 49 + 144 = 193
x = sqrt(193) = 13.9
if 12 is the Hypotenuse, then it looks like this
12² = 7² + x²
144 = 49 + x²
95 = x²
x = sqrt(95) = 9.75
Which equation is true?
f of negative 10 = 1
f of 2 = negative 10
f of 0 = 6
f of 1 = negative 10
Answer:
f(0) = 6
Step-by-step explanation:
Complete question:
The function f (x) is given by the set of ordered pairs 1,0 (-10,2), (0,6) (3,17) (-2,-1) which equation is true
f(-10)=1
f(2)=-10
f(0)=6
f(1)=-10
Given the coordinate (x, y). This shows that the input function is x and the output function is y, i.e. f(x) = y
From the pair of coordinates given, hence;
f(1) = 0
f(-10) = 2
f(0) = 6
f(3) = 17
f(-2) = -1
From the following options, this shows that f(0) = 6 is correct
Answer:
f(0) = 6
Step-by-step explanation:
EDGE
write √3 x √6 in the form b√2 where b is an integer
Answer:
[tex]3 \sqrt{2} [/tex]
Step-by-step explanation:
[tex] \sqrt{(9 \times 2)} [/tex]
Take the square root of 9 out of the square root and leave the 2 in.
Answer:
3[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Using the rules of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex] , then
[tex]\sqrt{3}[/tex] × [tex]\sqrt{6}[/tex]
= [tex]\sqrt{3(6)}[/tex]
= [tex]\sqrt{18}[/tex]
= [tex]\sqrt{9(2)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{2}[/tex]
= 3[tex]\sqrt{2}[/tex]
See above. okokokoookkokokokokkkkokokkokokkok
Answer:
B
Step-by-step explanation:
B is the correct answer
The average monthly salary of a worker is ₹8200. If there are 45 workers in a factory, then total expenditureincurred on expenditure is:
Answer: [tex]Rs.3,69,000[/tex]
Step-by-step explanation:
Given
average monthly salary of a worker is [tex]Rs.8200[/tex]
If there are 45 workers in a factory
Total expenditure is calculated by taking the product of Average monthly salary and no of workers in the factory
[tex]\Rightarrow 8200\times 45\\\Rightarrow Rs.3,69,000[/tex]
9. Which is a true statement about the denominator in a fraction?
(Select one answer)
It is always a negative number
It cannot be 0
It has to be an even number
It is always smaller than the numerator
Answer:
It cannot be 0
Step-by-step explanation:
it can also be positive number :2/4
it can be odd number too:3/9
it is bigger than numerator bcoz we have to divide it for numerator
So, 0 number cannot be put as denominator in fraction is true statement
A ladder leans against the side of the a house. The ladder is 19 feet long and forms an angle of elevation of 75 degree when leaned against the house. How far away from the house is the ladder? Round your answer to the nearest tenth.
=============================================================
Explanation:
Focus entirely on the triangle on the right side. The other parts of the drawing are not necessary. In my opinion, they are distracting filler.
Refer to the diagram below.
We have an unknown adjacent side, let's call it x, that's along the horizontal part of the triangle.
The hypotenuse however is known and it is 19 ft
We use the cosine ratio to tie the two sides together
cos(angle) = adjacent/hypotenuse
cos(75) = x/19
19*cos(75) = x
x = 19*cos(75)
x = 4.9175618569479 which is approximate
x = 4.9
The base of the ladder is roughly 4.9 feet away from the base of the house.
Side note: make sure your calculator is in degree mode.
This is a list of the heights ( each nearest cm ) of 12 children
150 134 136 139 131 141
132 134 136 137 150 146
Select the type of the data.
Discrete
Continuous
Categorical
Qualitative
choose one
NO FAKE ANSWERS
FIRST MARKED BRAINLIST
qualitative
Step-by-step explanation:
b cos the question is in quality format
Answer:
cutee!
SUP???
Hiii friend :]
cuteee~!
prettyyy
A satellite orbits earth at a speed of 22100 feet per second (ft/s). Use the following facts to convert this speed to miles per hour (mph). 1 mile = 5280 ft 1 min = 60 sec 1 hour = 60 min
15,068 mi/hr
Step-by-step explanation:
[tex]22100\:\frac{\text{ft}}{\text{s}}×\frac{1\:\text{mi}}{5280\:\text{ft}}×\frac{60\:\text{s}}{1\:\text{min}}×\frac{60\:\text{min}}{1\:\text{hr}}[/tex]
[tex]=15,068\:\text{mi/hr}[/tex]
The speed of 22100 feet per second will be 15068.18 miles per hour.
What is unit conversion?Multiplication or division by a numerical factor, selection of the correct number of significant figures, and unit conversion are all steps in a multi-step procedure.
Unit conversion is the expression of the same property in a different unit of measurement. Time, for example, can be expressed in minutes rather than hours, and distance can be converted from miles to kilometres, feet, or any other length measurement.
Given that the speed of the satellite is 22100 feet per second. The speed in miles per hour will be calculated as,
22100 ft /s = ( 22100 x 3600 ) / 5280
22100 ft/s = 79560000 / 5280
22100 ft/s = 15068.18 miles per hour
To know more about unit conversion follow
https://brainly.com/question/28901160
#SPJ2
A G.P is such that the 3rd term minus a first term is 48. The 4th term minus 2nd term 144. Find: (i) Common ratio ii) The first term (ii) 6th term of the sequence
Answer:
Step-by-step explanation:
r is the common ratio.
Third term minus first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
Fourth term minus second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
:::::
r²-1 = 48/a₁
a₁ = 6
:::::
a₆ = a₁r⁵ = 1458
(i) The common ratio for the given condition is 3.
ii) The first term of the sequence is 6.
iii) The 6th term of the sequence is 1458.
What is a sequence?It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
Divergent sequences are those in which the terms never stabilize; instead, they constantly increase or decrease as n approaches infinity,
It is given that a is a geometric progression such that the 3rd term minus a first term is 48. The 4th term minus the 2nd term 144.
Each number following the first in a geometric sequence is multiplied by a particular number, known as the common ratio.
As the third term minus the first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
The fourth term minus the second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
r²-1 = 48/a₁
a₁ = 6
a₆ = a₁r⁵ = 1458
Thus the common ratio for the given condition is 3, the first term of the sequence is 6 and the 6th term of the sequence is 1458.
Learn more about the sequence here:
brainly.com/question/21961097
#SPJ2
In this problem, y = 1/(1 + c1e−x) is a one-parameter family of solutions of the first-order DE y' = y − y2. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition. y(0)=-1/3
If y (0) = -1/3, then
-1/3 = 1 / (1 + C e ⁻⁰)
Solve for C :
-1/3 = 1 / (1 + C )
-3 = 1 + C
C = -4
So the particular solution to the DE that satisfies the given initial condition is
[tex]\boxed{y=\dfrac1{1-4e^{-x}}}[/tex]
Does the point (0, 0) satisfy the equation y = x2?
Answer:
The point is a solution
Step-by-step explanation:
y = x^2
Substitute the point into the equation and see if it is true
0 = 0^2
0=0
True
(12 1/3 * 2) + (10 3/4 * 2)
Answer:
[tex](12\frac{1}{3} *2)+(10\frac{3}{4} *2)\\\\=(\frac{12(3)+1}{3} *2)+(\frac{10(4)+3}{4} *2)\\\\=\frac{37*2}{3} +\frac{43*2}{4} \\\\=\frac{74}{3} +\frac{86}{4} \\\\=\frac{74(4)+86(3)}{3*4} \\\\=\frac{296+258}{12} \\\\=\frac{554}{12}[/tex]
1. In 2020, the populations of City A and City B were equal. From 2015 to 2020, the population of City A increased by 20% and the population of City B decreased by 10%. If the population of City A was 120,000 in 2015, what is the population of City B in 2015?
2. A chef is preparing a sauce for a steak she offers as a key dish in her menu. To prepare the sauce she needs to prepare a mix with 40% butter, with the rest being egg yolk. In the kitchen right now, she only has a sauce that has 20% butter (rest is egg yolk) and a sauce that has 50% butter (rest is egg yolk) in stock. In what ratio should she mix the 20% sauce with the 50% sauce in order to obtain the 40% sauce that she needs to prepare her famous recipe?
3. A book was on sale for 30% off its original price. If the sale price of the book was $28, what was the original price of the book? (Assuming there is no sales tax)
4. At a retail store, they needed to do surveys of 32 stores which equals 40% of all their stores. How many stores does the retailer have in total?*
Answer:
180000 people
1 : 2
$40
80 stores
Step-by-step explanation:
1.)
Population in 2020 are equal : Let population =
City A increased by 20% From 120,000 in 2015
(1 + 0.2) * 120,000 = (1.2 * 120,000) = 144,000
Hence, city A = 144,000.
Since, city A and B have equal population ; city B also has a population of 144000 in 2020.
Let population in 2015 = x
(1 - 0.2) * x = 144000
0.8x = 144000
x = 144000/0.8
x = 180,000
2.)
Let proportion of 20% butter = x and proportion of 50% butter = 1 - x
0.2x + 0.5(1 - x) = 0.4
0.2x + 0.5 - 0.5x = 0.4
-0.3x + 0.5 = 0.4
-0.3x = 0.4 - 0.5
-0.3x = - 0.1
x = 0.1/0.3
x = 0.3333
(1-x) = 1 - 0.33333 = 0.6666%
0.3333% of 20% butter
0.6666% of 50% butter
Hence ;
0.3333 : 0.6666
1 : 2
3.)
Let original price of book = x
Discount on sale = 30%
Sale price = $28
Sale price = original price * (1 - discount)
$28 = (1 - 0.3) * x
$28 = 0.7x
x = $28/0.7
x = $40
4.)
Let total number of stores = x
Store surveys needed = 32
40% of total stores = 32 stores
0.4x = 32
x = 32 / 0.4
x = 80
A half-century ago, the mean height of women in a particular country in their 20s was inches. Assume that the heights of today's women in their 20s are approximately normally distributed with a standard deviation of inches. If the mean height today is the same as that of a half-century ago, what percentage of all samples of of today's women in their 20s have mean heights of at least inches?
Answer:
0.26684
Step-by-step explanation:
Given that :
Mean, μ = 62.5
Standard deviation, σ = 1.96
P(Z ≥ 63.72)
The Zscore = (x - μ) / σ
P(Z ≥ (x - μ) / σ)
P(Z ≥ (63.72 - 62.5) / 1. 96) = P(Z ≥ 0.6224)
P(Z ≥ 0.6224) = 1 - P(Z < 0.6224)
1 - P(Z < 0.6224) = 1 - 0.73316 = 0.26684