Answer:
Explanation:
1 Mole of Aluminum with mass 26.98g contains 6.02*10^23 atoms.
In 2.88g of Aluminum, there are 2.88/26.98*6.02*10^23 = 6.426*10^22 atoms.
Answer:
Explanation:
no of Al atoms = 2.88/26.98*6.02*10^23
= 6.426*10^22
= 6.43*10^22
In an oxidation-reduction reaction, the substance oxidized always ________. a. takes on oxygen atoms b. gives up hydrogen atoms c. gains electrons d. loses electrons e. becomes a charged species
Answer:
Explanation:
Let us define oxidation and reduction.
Oxidation and reduction deal with the transferring of electrons between reactants. The reactant that loses electrons is oxidized, while the reactant that gains electrons is reduced.
In an oxidation-reduction reaction, the substance oxidized always loses electrons and the correct option is option D.
An oxidation-reduction (redox) reaction is a type of chemical reaction that involves the transfer of electrons between species. It consists of two half-reactions: an oxidation half-reaction, where a species loses electrons and increases its oxidation state, and a reduction half-reaction, where a species gains electrons and decreases its oxidation state.
In an oxidation half-reaction, the species that is oxidized is called the reducing agent or the electron donor, as it donates electrons. In a reduction half-reaction, the species that is reduced is called the oxidizing agent or the electron acceptor, as it accepts electrons.
Thus, the ideal selection is option D.
Learn more about Oxidation-reduction reactions, here:
https://brainly.com/question/19528268
#SPJ6
What is the quantity of
heat required to raise the
temperature of 500 g of
iron by 2°C?
The specific heat capacity
of iron is 500 J/(kg °C)
Answer:
The quantity of heat required to raise the temperature of 500 g of iron by 2°C is 500 J.
Explanation:
Calorimetry is responsible for measuring the amount of heat generated or lost in certain physical or chemical processes.
The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state (solid, liquid or gaseous).
Its mathematical expression is the fundamental equation of calorimetry. This is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
Q= ?c= 500 [tex]\frac{J}{kg*C}[/tex]m= 500 g= 0.500 kgΔT= 2 CReplacing:
Q= 500 [tex]\frac{J}{kg*C}[/tex] *0.500 kg*2 C
Solving:
Q= 500 J
The quantity of heat required to raise the temperature of 500 g of iron by 2°C is 500 J.
Electron sharing can be depicted by a Lewis dot structure, in which element symbols are surrounded by dots that represent the valence electrons (electrons in the ___________ shell). A ______________ bond is the sharing of a pair of valence electrons by _____________ atoms. Hydrogen has _____________ valence electron(s) in the first shell, but the capacity of the shell is ______________ electron(s). When a hydrogen atom comes close enough to a carbon atom for their orbitals to overlap, they can share their electrons. The hydrogen atom is now associated with _______________ electron(s) and a ______________ bond is formed. As a result, one of the structures does not make sense because hydrogen has only ____________ valence electron(s) to share, so it cannot form bonds with two atoms.
Answer:
Outermost
Covalent
Two
One
Two
Two
Covalent
One
Explanation:
A covalent bond is formed when an atom shares two electrons with another atom. These shared electrons could be contributed by each of the bonding atoms or by only one of the bonding atoms.
Hydrogen has the electronic configuration of 1s1. This implies that it has only one electron in its valence shell although the 1s shell can accommodate two electrons. When the atomic orbitals of carbon and hydrogen overlap, they share two electrons and hydrogen is now associated with two electrons in a covalent bond.
Since hydrogen possesses only one valence electron, it can not be bonded to two atoms.
Chlorine gas can be prepared in the laboratory by the reaction of hydrochloric acid with manganese(IV) oxide.
4HCl(aq)+MnO2(s)⟶MnCl2(aq)+2H2O(l)+Cl2(g)
A sample of 43.1g MnO2 is added to a solution containing 42.9g HCl.
a. What is the limiting agent?
b. What is the theoretical yield of Cl2?
c. If the yield of the reaction is 72.9%, what is the actual yield of chlorine?
Answer:
A. HCl is the limiting reactant.
B. Theoretical yield of Cl₂ is 20.9 g.
C. Actual yield of Cl₂ = 15.2 g.
Explanation:
The balanced equation for the reaction is given below:
4HCl + MnO₂ –> MnCl₂ + 2H₂O + Cl₂
Next, we shall determine the masses of HCl and MnO₂ that reacted and the mass of Cl₂ produced from the balanced equation. This can be obtained as follow:
Molar mass of HCl = 1 + 35.5
= 36.5 g/mol
Mass of HCl from the balanced equation = 4 × 36.5 = 146 g
Molar mass of MnO₂ = 55 + (2×16)
= 55 + 32
= 87 g/mol
Mass of MnO₂ from the balanced equation = 1 × 87 = 87 g
Molar mass of Cl₂ = 2 × 35.5
= 71 g/mol
Mass of Cl₂ from the balanced equation = 1 × 71 = 71 g
SUMMARY:
From the balanced equation above,
146 g of HCl reacted with 87 g of MnO₂ to produce 71 g of Cl₂.
A. Determination of the limiting reactant.
From the balanced equation above,
146 g of HCl reacted with 87 g of MnO₂.
Therefore, 42.9 g of HCl will react with = (42.9 × 87)/146 = 25.6 g of MnO₂.
From the calculation made above, we can see clearly that only 25.6 g out of 43.1 g of MnO₂ given was needed to react completely with 42.9 g of HCl.
Therefore, HCl is the limiting reactant.
B. Determination of theoretical yield of Cl₂.
Here, the limiting reactant will be used.
From the balanced equation above,
146 g of HCl reacted to produce 71 g of Cl₂.
Therefore, 42.9 g of HCl will react to produce = (42.9 × 71)/146 = 20.9 g of Cl₂.
Thus, the theoretical yield of Cl₂ is 20.9 g.
C. Determination of the actual yield of Cl₂.
Theoretical yield of Cl₂ = 20.9 g
Percentage yield of Cl₂ = 72.9%
Actual yield of Cl₂ =?
Percentage yield = Actual yield / Theoretical yield × 100
72.9% = Actual yield / 20.9
Cross multiply
Actual yield = 72.9% × 20.9
Actual yield = 72.9/100 × 20.9
Actual yield = 0.729 × 20.9
Actual yield of Cl₂ = 15.2 g
What is the concentration of s solution that contains 55 mL of alcohol per 145 mL solution?
Answer:
37.9% v/v
Explanation:
Since both the alcohol and solution are presumed to be liquid, this concentration can be expressed as a volume concentration (or % v/v):
volume concentration = volume of solute / volume of solution
[tex]\% v/v = 55/145= 0.379[/tex]
A 14.570 g sample of CaCl2 was added to 12.285 g of K2CO3 and mixed in water. A 3.494 g yield of CaCO3 was obtained.
What is the limiting reagent?
-CaCO3
-K2CO3
-CaCl2
Calculate the percent yield of CaCO3.
yield of CaCO3= %
Answer:
Limiting reagent is the potassium carbonate.
Percent yield of calcium carbonate is: 39.3 %
Explanation:
The reaction is:
CaCl₂ + K₂CO₃ → CaCO₃ + 2KCl
Formula for percent yield is:
(Produced yield / Thoeretical yield) . 100
Firstly we determine the moles of each reactant, in order to say what is the limiting reagent: ratio is 1:1.
1 mol of chloride need 1 mol of carbonate.
14.570 g . 1 mol /110.98 g = 0.131 moles of CaCl₂
12.285 g . 1 mol / 138.2g = 0.0889 moles of carbonate.
Limiting reagent is carbonate. For 0.131 moles of CaCl₂ we need the same amount of carbonate and we have less moles.
Ratio is also 1:1, with calcium carbonate.
1 mol of potassium carbonate produces 1 mol of calcium carbonate
then, 0.0889 moles will produce the same amount of CaCO₃
We convert moles to mass: 0.0889 mol . 100.08g /mol = 8.89 g
That's the theoretical yield; to find the percent yield:
(3.494 g / 8.89g) . 100 = 39.3%
assume in a different experiment, you prepare a mixture containing 10.0 M FeSCN2+, 1.0 M H+, 0.1 MFe3+ and 0.1 M HSCN. Is the initial mixture at equilibrium? If not, in what direction must the reactionproceed to reach equilibrium? (Hint: You will need to use the value of Kc you determined in the lab
Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
Based on the equilibrium:
Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺
kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
For alkyl halides used in SN1 and SN2 mechanisms, rank the leaving groups in order of reaction rate. You are currently in a ranking module. Turn off browse mode or quick nav, Tab to move, Space or Enter to pick up, Tab to move items between bins, Arrow Keys to change the order of items, Space or Enter to drop.
Answer:
Iodide> Bromide > chloride > flouride
Explanation:
During a nucleophilic substitution reaction, a nucleophilie replaces another in a molecule.
This process may occur via an ionic mechanism (SN1) or via a concerted mechanism (SN2).
In either case, the ease of departure of the leaving group is determined by the nature of the C-X bond. The stronger the C-X bond, the worse the leaving group will be in nucleophilic substitution. The order of strength of C-X bond is F>Cl>Br>I.
Hence, iodine displays the weakest C-X bond strength and it is thus, a very good leaving group in nucleophillic substitution while fluorine displays a very high C-X bond strength hence it is a bad leaving group in nucleophilic substitution.
Therefore, the ease of the use of halide ions as leaving groups follows the trend; Iodide> Bromide > chloride > flouride
Calculate [H3O+] and [OH−] for each of the following solutions at 25 ∘C given the pH.
pH= 2.89
Answer: The value of [tex][H_{3}O^{+}][/tex] is 0.0012 M and [tex][OH^{-}][/tex] is [tex]1.02 \times 10^{-14}[/tex].
Explanation:
pH is the negative logarithm of concentration of hydrogen ion.
It is given that pH is 2.89. So, the value of concentration of hydrogen ions is calculated as follows.
[tex]pH = - log [H^{+}]\\2.89 = - log [H^{+}]\\conc. H^{+} = 0.0012 M[/tex]
The relation between pH and pOH value is as follows.
pH + pOH = 14
0.0012 + pOH = 14
pOH = 14 - 0.0012 = 13.99
Now, pOH is the negative logarithm of concentration of hydroxide ions.
Hence, [tex][OH^{-}][/tex] is calculated as follows.
[tex]pOH = - log [OH^{-}]\\13.99 = - log [OH^{-}]\\conc. OH^{-} = 1.02 \times 10^{-14} M[/tex]
Thus, we can conclude that the value of [tex][H_{3}O^{+}][/tex] is 0.0012 M and [tex][OH^{-}][/tex] is [tex]1.02 \times 10^{-14}[/tex].
pasagot po please!!
science po ito pasagot po matino need ko po!!
Explanation:
Efficiency = (output/input)×100%
70% = output/(800 W)
which means
output = 0.70×(800 W) = 560 W
carbon dioxide gas evolve during the fermentation of sugar which was collected at 22.5°C and 0.945 ATM after perfect strangers in the volume was found to be 25.0 ML how many grams of carbon dioxide were collected
Answer:
0.043 grams
Explanation:
We can find the mass of carbon dioxide as follows:
[tex] m = n*M [/tex]
Where:
n: is the number of moles
M: is the molar mass = 44.01 g/mol
First, we need to calculate the number of moles. We can use the Ideal gas equation:
[tex] PV = nRT [/tex]
Where:
P: is the pressure = 0.945 atm
V: is the volume = 25.0 mL
R: is the gas constant = 0.082 L*atm/(K*mol)
T: is the tempearture = 22.5 °C
[tex]n = \frac{PV}{RT} = \frac{0.945 atm*25 mL*\frac{1 L}{1000 mL}}{0.082 L*atm/K*mol*(22.5 + 273) K} = 9.75 \cdot 10^{-4} moles[/tex]
Hence, the mass is:
[tex]m = 9.75 \cdot 10^{-4} moles*44.01 g/mol = 0.043 g[/tex]
Therefore, 0.043 grams were collected.
I hope it helps you!
How many grams of KNO3 can dissolve in 100g of water at 20°C?
Answer:
30 grams of KNO3 can be dissolved.
Explanation:
Hello there!
In this case, since the solubility is defined as the maximum amount of solute that can be dissolved in a certain amount of solvent, usually 100 grams of water as function of the temperature, we will need to recall the graph for the solubility of KNO3 as shown on the attached file.
Thus, by identifying the curve for KNO3, we realize that at a temperature of 20 °C, the solubility is about 30 grams; which means 30 grams can be dissolved in 100 grams of water at 20 °C.
Regards!
A 8.29g sample of calcium sulfide was decomposed into its constituent elements, producing 4.61g of calcium and 3.68g of sulfur. Which of the statements are consistent with the law of constant composition (definite proportions)?
a. Every sample of calcium sulfide will have 44.4% mass of calcium.
b. Every sample of calcium sulfide will have 2.86 g of calcium.
c. The mass ratio of Ca to S in every sample of calcium sulfide is 1.25.
d. The ratio of calcium to sulfur will vary based on how the sample was prepared.
e. The mass percentage of calcium plus the mass percentage of sulfur in every sample of calcium sulfide equals 100%.
Answer:
d,e
Explanation:
A solution of KMnO4 has an absorbance of 0.539 when measured in the colorimeter. Determine the concentration of the KMnO4 given the following data for a calibration plot.
Concentration of KMNO4 (M) Absorbance
0.0150 0.081
0.0300 0.159
0.0450 0.260
0.0600 0.334
Answer:
Concentration of unknown solution is 0.0416 M
Explanation:
As we know
Absorbance is equal to the product of molar absorptivity of KMnO4 m, path length and concentration
From the given set of graphical data, it is clear that the absorbance vs concentration is a straight line.
From the graph, we can obtain-
Y = 5.73 X – 0.0065
Absorbance = 0.232
0.232 = 5.73 X – 0.0065
X = 0.0416
Concentration of unknown solution is 0.0416 M
why is platinum metal preferred to other metals for the flame test
Answer:
Platinum is especially good for this because it is unreactive, and does not produce a color in the flame which will mask the presence of other metals.
Hope this answer is right!
Answer:
Hey mate, here is your answer
1. Platinum doesn't impart any color to the flame.
2. It is not oxidised under the high temperature of the flame from a bunsen burner.
3. It is almost chemically inert. Even at high temperatures, it remains unattacked by free radicals / acid radicals.
Therefore, platinum wire is crucial for a flame test. Also, a platinum wire should be thoroughly cleaned before using it for a new flame test.
A platinum wire is cleaned by dipping it into concentrated HNO3 and then placing it in the non luminous part of the bunsen flame. Otherwise, the perviously tested radicals will impart color to the flame, which may cause confusion.
Explanation:
Hope it helps you
Plz help!!!! NO LINKS
Answer:
481.16 cm³
Explanation:
From the question given above, the following data were obtained:
Height (h) = 11.72 cm
Diameter (d) = 7.23 cm
Pi (π) = 3.14159
Volume of cylinder (V) =?
Next, we shall determine the radius. This can be obtained as follow:
Diameter (d) = 7.23 cm
Radius (r) =?
r = d/2
r = 7.23 / 2
r = 3.615 cm
Finally, we shall determine the volume of the cylinder. This can be obtained as shown below:
Height (h) = 11.72 cm
Pi (π) = 3.14159
Radius (r) = 3.615 cm
Volume of cylinder (V) =?
V = πr²h
V = 3.14159 × 3.615² × 11.72
V = 3.14159 × 13.068225 × 11.72
V = 481.16 cm³
Therefore, the volume of the cylinder is 481.16 cm³.
what does PH scale measure
Explanation:
pH is a measure of how acidic/basic water is. The range goes from 0 - 14, with 7 being neutral. pHs of less than 7 indicate acidity, whereas a pH of greater than 7 indicates a base.
The product of an organic reaction is analyzed by column chromatography using silica as the stationary phase and toluene as the mobile phase.
a. True
b. False
Answer:
The product of an organic reaction is analyzed by column chromatography using silica as the stationary phase and toluene as the mobile phase.
Explanation:
The given statement is true.
In chromatography silica gel is used as the predominant stationary phase.
Since silica gel is a good adsorbent.
It is a polar adsorbent.
In order to remove polar components, silica gel is used as the stationary phase.
Answer is a.true.
Lab 2: paper chromatography of organic dyes
Picture of questions below.
Answer:
The three primary colors used when mixing dyes or paints are red, yellow, and blue. Other colors are often a mixture of these three colors. Try running a chromatography test again with non-primary-color markers, like purple, brown, and orange.
Explanation:
Mixtures that are suitable for separation by chromatography include inks, dyes and colouring agents in food. ... As the solvent soaks up the paper, it carries the mixtures with it. Different components of the mixture will move at different rates. This separates the mixture out.
A student named a particular compound 2-ethyl-3-methyl-2-butene. Assuming that the student's choice actually corresponded to the correct distribution of the double bond and the substituents, what is the correct IUPAC name for this compound
Answer:
2-ethyl-3-methylbut-2-ene
Explanation:
The whole idea of IUPAC nomenclature is to devise a universally accepted system of writing the name of a compound from its structure.
According to IUPAC nomenclature, the root of the compound is the longest carbon chain. The substituents are named in alphabetical order and in such a way as to give each one the lowest number. The position of the functional group is indicated accordingly.
For the compound in question, its correct IUPAC name is 2-ethyl-3-methylbut-2-ene.
1. How many atoms of chlorine are present in 1.70x1023 molecules Cl2?
Explanation:
the answer is in the image above
The formula for europium oxide is Eu203. On the basis of this information, the formula for the chlorate of europium would be expected to be
Answer:
Eu(ClO3)3
Explanation:
The chlorate ion is written as follows, ClO⁻ ₃. We can see from this that the ion is univalent.
From the formula, Eu203, it is easy to see that the europium ion is trivalent.
Hence, when a compound is formed between the europium ion and chlorate ion, the compound will be written as Eu(ClO3)3.
This is so because, when ionic compounds are formed, there is an exchange of valence between the ions in the compound. This gives the final formula of the ionic substance.
atomic number of element is 15 write a formula of an oxide
Answer:
Atomic Number. 15=phosphorus
Valency=3
So, Oxide=P203
phương pháp VI PHÂN ĐỒ THỊ để xác định bậc phản ứng
Answer:
mwlooy kagabi jal
64 JAHA VI PHÂN KAY
Molybdenum (Mo) crystallizes with a body-centered cubic lattice and has an atomic radius of 136.1 pm.
a. Calculate the density of molybdenum in g/cm^3. Show all work. Include units with all numbers and show how units cancel.
b. Calculate the density of molybdenum in g/cm^3
Which is a property of barium (Ba)?
O A. It rarely reacts with other elements.
O B. It is brittle as a solid.
O c. It is very reactive.
O D. It does not conduct electricity.
Plzzzzz helppppp!!!
Answer:
a it rarely reach with other elements
2 AICI3 + 3 Ca - 3 CaCl2 + 2 Al
You react aluminum chloride with calcium metal. You want to produce 40.00 grams of aluminum. How many grams of calcium do you need?
Question 10 What is the UPAC name for this compound? CH3-----CHO
Answer:
Ethanal or acetaldehyde
Explanation:
Ethanal, also called acetaldehyde is the second member of the alkanal or aldehyde group of hydrocarbons, which have a functional group of -CHO. The -CHO functional group characterizes every member to this group and makes them behave chemically similar.
However, the second member of this aldehyde group with a formula of CH3----CHO, has a methyl group (CH3) attached to the functional group, hence, it is called ETHANAL OR ACETALDEHYDE.
which is a characteristic of oxygen
Answer:
Characteristics of oxygen are as follows:
In normal conditions oxygen is a colourless, odourless and insipid gas.It condensates in a light blue liquid.Oxygen is part of a small group of gasses literally paramagnetic and it's the most paramagnetic of all.Liquid oxygen is also slightly paramagnetic.The carbon-carbon bonds in benzene are:
O a) Easily broken in chemical reactions
b) A hybrid between double bonds and single bonds
c)
Identical to the carbon-carbon bonds in cyclohexene
d) Identical to the carbon-carbon bonds in cyclohexane
please hurry
Answer:
a
Explanation:
Easily broken in chemical reactions