This is one single number. The number is slightly larger than 163 thousand.
====================================================
Explanation:
Consider four slots labeled A,B,C,D
We have....
46 choices for slot A45 choices for slot B44 choices for slot C43 choices for slot DThere's a countdown going on (46,45,44,43) when filling up the slots. This countdown is because we cannot reselect any specific person for multiple slots at the same time.
If order mattered, then we'd have 46*45*44*43 = 3,916,440 permutations possible.
However, order doesn't matter. For any group of 4 people, there are 4! = 4*3*2*1 = 24 ways to arrange them. So we must divide the previous result over 24 to get (3,916,440)/24 = 163,185
This means there are 163,185 different combinations and this is the number of possible samples of size 4 from a population of 46 people. The order of any sample doesn't matter.
5
12
of the pupils in Year 9 say their favourite colour is red.
There are 240 pupils in Year 9.
How many students said red is their favourite colour?
Answer:
100
Step-by-step explanation:
I assume you mean [tex]\frac{5}{12}[/tex] of the students in Year 9.
Basically, first you need to work out 1/12 of the students, which is just 240 divided by 12, equals 20.
So, we know 1/12 of 240 is 20, therefore, in order to work out 5/12, we must do 20 x 5, which is 100.
SCC U of 1 pt 3 of 1 1.2.11 Assigned Media A rectangle has a width of 49 centimeters and a perimeter of 216 centimeters. V The length is cm.
Answer:
The length is of 59 cm.
Step-by-step explanation:
Perimeter of a rectangle:
The perimeter of a rectangle with width w and length l is given by:
[tex]P = 2(w + l)[/tex]
Width of 49 centimeters and a perimeter of 216 centimeters:
This means that [tex]w = 49, P = 216[/tex]
The length is cm.
We have to solve the equation for l. So
[tex]P = 2(w + l)[/tex]
[tex]216 = 2(49 + l)[/tex]
[tex]216 = 98 + 2l[/tex]
[tex]2l = 118[/tex]
[tex]l = \frac{118}{2}[/tex]
[tex]l = 59[/tex]
The length is of 59 cm.
If f(x) = 4^x-8 and g(x) = 5x+6, find (f + g)(x)
A. (F+g)(x) = -4^x - 5x + 2
B.(F+g)(x) = 4^x + 5x - 2
C.(F+g)(x) = 4^x - 3x + 6
D.(F+g)(x) = 9x - 2
Hey there!
We are given two functions - one is Exponential while the another one is Linear.
[tex] \large{ \begin{cases} f(x) = {4}^{x} - 8 \\ g(x) = 5x + 6 \end{cases}}[/tex]
1. Operation of Function
(f+g)(x) is a factored form of f(x)+g(x). We can common factor out x. Therefore:[tex] \large{(f + g)(x) = f(x) + g(x)}[/tex]
2. Substitution
Next, we substitute f(x) = 4^x+8 and g(x) = 5x+6.[tex] \large{(f + g)(x) = ( {4}^{x} - 8) + (5x + 6)}[/tex]
3. Evaluate/Simplify
Cancel out the brackets and combine like terms.[tex] \large{(f + g)(x) = {4}^{x} - 8 + 5x + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 8 + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 2}[/tex]
4. Final Answer
(f+g)(x) = 4^x+5x-2every student from different schools planted as many plants of their number if they planted 4225 plants how many students were there
Answer:
65 students.
Step-by-step explanation:
Given that :
Every student planted as many plant as their number ;
Then let the number of student = x
Then the number of plant planted by each student will also = x
The total number of plants planted by all the students = 4225
The Number of students can be obtained thus ;
Total number of plants = Number of plants * number of plants per student
4225 = x * x
4225 = x²
√4225 = x
65 = x
Hence, there are 65 students
Solve the given system by the substitution method.
3x + y = 14
7x - 4y = 20
Answer:
(4, 2 )
Step-by-step explanation:
Given the 2 equations
3x + y = 14 → (1)
7x - 4y = 20 → (2)
Rearrange (1) making y the subject by subtracting 3x from both sides
y = 14 - 3x → (3)
Substitute y = 14 - 3x into (2)
7x - 4(14 - 3x) = 20 ← distribute parenthesis and simplify left side
7x - 56 + 12x = 20
19x - 56 = 20 ( add 56 to both sides )
19x = 76 ( divide both sides by 19 )
x = 4
Substitute x = 4 into (3) for corresponding value of y
y = 14 - 3(4) = 14 - 12 = 2
solution is (4, 2 )
Answer:
[tex]3x + y = 14 \\ y = 14 - 3x \\ substitute \: y \: into \: equation \: 2\\ 7x - 4(14 - 3x) = 20 \\ 7x - 56 + 12x = 20 \\ 19x = 76 \\ x = \frac{76}{19} =4 \\ y = 14 - 3( 4 ) = 2 \\ [/tex]
Find the perimeter of a rectangular tile with length 1/5ft and width 3/14ft
Answer:
[tex]\frac{29}{35}[/tex] ft (29/35 ft)
Step-by-step explanation:
1. LCDPerimeter: [tex]2w+2l[/tex]
[tex]2(\frac{1}{5})+2(\frac{3}{14})=\frac{2}{5} +\frac{6}{14}[/tex]
Since [tex]\frac{6}{14} = \frac{3}{7}[/tex], the LCD would be 35
2. SolvingNew equation: [tex]\frac{14}{35} +\frac{15}{35} =\frac{29}{35}[/tex]
[tex]\frac{29}{35}[/tex]
Hope this helped! Please mark brainliest :)
List all factors of the number 52. SHOW ALL WORK!!!
Answer:
Factors of number 52
Factors of 52: 1, 2, 4, 13, 26 and 52.
Negative Factors of 52: -1, -2, -4, -13, -26 and -52.
Prime Factors of 52: 2, 13.
Prime Factorization of 52: 2 × 2 × 13 = 22 × 13.
Sum of Factors of 52: 98.
SOMEONE HELP PLEASE! I don’t know how to solve this problem nor where to start? Can some please help me out and explain how you got the answer please. Thank you for your time.
21. The mean salary of twelve men is $58,000, and the
mean salary of eight women is $42,000. Find the
mean salary of all twenty people.
Evaluate for x=2 and y=3: x^2y^-3/x^-1y
Answer:
8/81
Step-by-step explanation:
It's most efficient to simplify the quotient algebraically before inserting the values of the variables x and y.
The given expression reduces to x³ / y^4.
Substituting 2 for x and 3 for y, we get:
(2)³ 8
--------- = ---------- (Agrees with first given possible answer)
(3)^4 81
Using the following distribution, calculate the following measures of central tendency:
State Proportion of Residents Without Health Insurance Louisiana 0.19 New Jersey 0.13 New York 0.16 Pennsylvania 0.11 Rhode Island 0.09 South Carolina 0.13 Texas 0.25 Washington 0.14 Wisconsin 0.10
N = 9
Identify the variable:
Identify the median:
Identify the mean:
How would you describe the shape of the distribution:
Answer:
(a) Residents
(b) [tex]Median = 0.13[/tex]
(c) [tex]\bar x = 0.14[/tex]
(d) Right skewed
Step-by-step explanation:
Given
The data of residents without health insurance
Solving (a): The variable
The variable is the residents
Solving (b): The median
First, we sort the data
[tex]Sorted: 0.09, 0.10, 0.11, 0.13, 0.13, 0.14, 0.16, 0.19, 0.25[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{9 + 1}{2}[/tex]
[tex]Median = \frac{10}{2}[/tex]
[tex]Median = 5th[/tex]
The 5th element of the dataset is: 0.13
So:
[tex]Median = 0.13[/tex]
Solving (c): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{0.09+ 0.10+ 0.11+ 0.13+ 0.13+ 0.14+ 0.16+ 0.19+ 0.25}{9}[/tex]
[tex]\bar x = \frac{1.3}{9}[/tex]
[tex]\bar x = 0.14[/tex]
Solving (d): The shape of the distribution
In (b) and (c), we have:
[tex]Median = 0.13[/tex]
[tex]\bar x = 0.14[/tex]
By comparison, the mean is greater than the median.
Hence, the shape is: right skewed.
Time Remaining 59 minutes 49 seconds00:59:49 PrintItem 1 Time Remaining 59 minutes 49 seconds00:59:49 At the end of Year 2, retained earnings for the Baker Company was $2,950. Revenue earned by the company in Year 2 was $3,200, expenses paid during the period were $1,700, and dividends paid during the period were $1,100. Based on this information alone, what was the amount of retained earnings at the beginning of Year 2?
Answer:
$2550
Step-by-step explanation:
Calculation to determine the amount of retained earnings at the beginning of Year 2
Using this formula
Beginning Retained Earnings + Revenue − Expenses − Dividends = Ending Retained Earnings
Let plug in the formula
Beginning Retained Earnings + $3,200 − $1,700 − $1,100 = $2950
Beginning Retained Earnings= $2,950-$400
Beginning Retained Earnings = $2,550
Therefore the amount of retained earnings at the beginning of Year 2 is $2550
Find the difference.
(3x3−2x2+4x−8)−(5x3+12x2−3x−4)=
Answer:
-2x³ - 14x² + 7x - 4
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
(3x³ - 2x² + 4x - 8) - (5x³ + 12x² - 3x - 4)
Step 2: Simplify
[Distributive Property] Distribute negative: 3x³ - 2x² + 4x - 8 - 5x³ - 12x² + 3x + 4Combine like terms (x³): -2x³ - 2x² + 4x - 8 - 12x² + 3x + 4Combine like terms (x²): -2x³ - 14x² + 4x - 8 + 3x + 4Combine like terms (x): -2x³ - 14x² + 7x - 8 + 4Combine like terms: -2x³ - 14x² + 7x - 4The five-number summary of a data set is: 0, 4, 6, 14, 17
An observation is considered an outlier if it is below:
An observation is considered an outlier if it is above:
Answer:
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
Step-by-step explanation:
0, 4, 6, 14, 17
inner quartile range of 0 - 17 is 1/2 of 17 subtracted from the higher number = 17 - 1/2 of 8.5 = 8.5 - 4.25 = 4.25 - 4.25 x 3
= 4.25 to 12.75 for inner quartile
inner quartile range is 12.75-4.25 = 8.5
We then 1.5 x 8.5 to show the outlier
= 12.75 meaning there is no outlier if is below.
Lower quartile fences = 4.25 - 1.5 = 2.75
or -1.5 x 8.5 (the range) = -12.75
Upper quartile fence = 12.75 + 1.5 = 14.25 x 8.5 = 121.125 this would be an outlier if it is 12.75 higher than 121.125 or 12.75 lower than 5.50.
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
An observation is considered an outlier if it exceeds a distance of 1.5 times the interquartile range (IQR) below the lower quartile or above the upper quartile. The values of the lower quartile - 1.5 x IQR and upper quartile + 1.5 x IQR are known as the inner fences.
An observation is an outlier if it falls more than above the upper quartile or more than below the lower quartile. The minimum value is so there are no outliers in the low end of the distribution. The maximum value is so there are no outliers in the high end of the distribution.
Solve for y.
5y – 10 = 10
y = [?]
What is y?
Answer:
y = [ 4 ]
Step-by-step explanation:
5y - 10 = 10
+10 +10
5y = 20
/5 /5
y = 4
hope this helps ! ^^
Answer:
[tex]5y-10=10[/tex]
[tex]Add ~10[/tex]
[tex]5y=10+10[/tex]
[tex]5y=20[/tex]
[tex]divide ~by ~5[/tex]
[tex]y=4[/tex]
[tex]ANSWER: y=4[/tex]
-----------------------------
HOPE IT HELPS
HAVE A GREAT DAY!!
The radius of a right circular cone is increasing at a rate of 1.4 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 140 in. and the height is 186 in.
Answer:
The volume is increasing at a rate of 27093 cubic inches per second.
Step-by-step explanation:
Volume of a cone:
THe volume of a cone, with radius r and height h, is given by:
[tex]V = \frac{1}{3} \pi r^2h[/tex]
In this question:
We have to differentiate implictly is function of t, so the three variables, V, r and h, are differenciated. So
[tex]\frac{dV}{dt} = \frac{\pi r^2}{3}\frac{dh}{dt} + \frac{2\pi rh}{3}\frac{dr}{dt}[/tex]
The radius of a right circular cone is increasing at a rate of 1.4 in/s while its height is decreasing at a rate of 2.4 in/s.
This means that [tex]\frac{dr}{dt} = 1.4, \frac{dh}{dt} = -2.4[/tex]
Radius is 140 in. and the height is 186 in.
This means that [tex]r = 140, h = 186[/tex]
At what rate is the volume of the cone changing?
[tex]\frac{dV}{dt} = \frac{\pi r^2}{3}\frac{dh}{dt} + \frac{2\pi rh}{3}\frac{dr}{dt}[/tex]
[tex]\frac{dV}{dt} = \frac{\pi (140)^2}{3}(-2.4) + \frac{2\pi 140*186}{3}1.4[/tex]
[tex]\frac{dV}{dt} = -0.8\pi(140)^2 + 62*2\pi*1.4*140[/tex]
[tex]\frac{dV}{dt} = 27093[/tex]
Positive, so increasing.
The volume is increasing at a rate of 27093 cubic inches per second.
Find an expression for the general term of each of the series below. Use n as your index, and pick your general term so that the sum giving the series starts with n=0.
A. x^3cosx^2=x^3-(x^7)/2!+(x^11)/4!-(x^15)/6!+...
general term =
B. x^3sinx^2=x^5-(x^9)/3!+(x^13)/5!-(x^17)/7!+...
general term =
Answer:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
Step-by-step explanation:
A
Let's start with the first function:
[tex]x^{3}cos(x^{2})=x^{3}-\frac{x^{7}}{2!}+\frac{x^{11}}{4!}-\frac{x^{15}}{6!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 3, 7, 11, 15...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 3. So the power is given by 4n+3.
so let's put the two things together:
[tex](-1)^{n}x^{4n+3}[/tex]
Finally the denominator, there is also a sequence there: 0!, 2!, 4!, 6!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2, so in this case the sequence can be written as: (2n)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
So now we can build the whole series:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
B
Now, let's continue with the next function:
[tex]x^{3}sin(x^{2})=x^{5}-\frac{x^{9}}{3!}+\frac{x^{13}}{5!}-\frac{x^{17}}{7!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 5, 9, 13, 17...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 5. So the power is given by 4n+5.
so let's put the two things together:
[tex](-1)^{n}x^{4n+5}[/tex]
Finally the denominator, there is also a sequence there: 1!, 3!, 5!, 7!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2 starting from a 1, so in this case the sequence can be written as: (2n+1)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
So now we can build the whole series:
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
When converting 5 1/4% to decimal, Mark wrote 5.25. Explain why his answer is wrong and write the correct answer.
Answer:
Below
Step-by-step explanation:
It is 5 1/4 PERCENT not just 5 1/4.
5 1/4 % = 5.25%
= 5.25/100
= 0.0525.
We are testing a new drug with potentially dangerous side effects to see if it is significantly better than the drug currently in use. If it is found to be more effective, it will be prescribed to millions of people.
1.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? Now we are testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.
2.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? For a given situation, what should you do if you think that committing a type l error is much worse than committing a type Il error?
A. Increase the significance level.
B. Decrease the significance level.
C. Nothing, just be careful to take a good sample.
Answer:
1) a) accepting the new drug is better based on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) Accepting and using the current drug in use when it is not as effective as the new drug
c) Type 1 error
2) a) rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) Increase the significance level ( A )
Step-by-step explanation:
1)
a) To make a type 1 error in this situation is accepting the new drug is better and prescribing it to the millions of people based only on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) A type II error in context is :Accepting and using the current drug in use when it is not as effective as the new drug
c) Type I error
2)
a) Type 1 error is rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) If committing a type 1 error is much worse
Increase the significance level
More math sorry. But I honestly don’t know any of these
Answer: A
Step-by-step explanation:
The main parent functions are x, and x raised to the power of something (examples: [tex]x^2, x^3, x^4[/tex], etc)
In this triangle, D is the midpoint of AB and E is the midpoint of BCIf AC = 36 what is the length of DE?
Answer:
A. 18
Step-by-step explanation:
Recall: the Mid-segment Theorem states that the length of the mid-segment theorem of a triangle is half the length of its third side.
DE = ½(AC) (Triangle Mid-segment Theorem)
AC = 36 (given)
Plug in the value
DE = ½(36)
DE = 18
The slope of diagonal AB is ___ , and it’s equation is ___.
Answer:
The slope of diagonal AB is 0 and its equation is [tex]y=-2[/tex].
Step-by-step explanation:
Horizontal lines have zero slope. Since diagonal AB represents a horizontal line (same y-value regardless of x-value), the slope of diagonal AB is 0.
Horizontal lines can be expressed as [tex]y=n[/tex] where [tex]n[/tex] is some real number. In this case, diagonal AB sits on a line with only y-values of -2, and therefore the equation of the line the diagonal is on is [tex]\boxed{y=-2}[/tex].
Divide: (2n3+4n−9)÷(n+2).
Answer:
2n+2
_____
9 2n
When 50% of a number is added to the number, the results is 165
Answer:
this would look like
0.5x+x=165
1.5x=165
x=110
Hope This Helps!!!
Write an equation that represents the line.
Answer:
Y = 2/3X + 4/3
Step-by-step explanation:
(1,2) (4,4)
M = 2/3
Y = 2/3X + b
4 = 8/3 + b
12 = 8 + 3b
4 = 3b
B = 4/3
Y = 2/3X + 4/3
Solutes in the bloodstream enter cells through a diffusion process called
osmosis, the diffusion of fluid through a semi-permeable membrane. Let C = C(t)
be the concentration of a certain solute inside a particular cell. The rate at which
the concentration inside the cell is changing is proportional to the difference in the
concentration of the solute in the bloodstream and the concentration within the cell.
Suppose the concentration of a solute in the bloodstream is maintained at a constant
level of L gm/cm?
(a) Write a differential equation involving
dc\dt
Answer:
en la calasa ni esta en la estacion
What is A∪ϕ and A∩ϕ for a set A?
Answer:
1 ans A second phi okay yed
Help differentiate this
Answer:
[tex]\displaystyle y' = 20x^3 + 6x^2 + 70x + 9[/tex]
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsExpand by FOILFunctionsFunction NotationCalculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = (x^3 + 7x - 1)(5x + 2)[/tex]
Step 2: Differentiate
Product Rule: [tex]\displaystyle y' = \frac{d}{dx}[(x^3 + 7x - 1)](5x + 2) + (x^3 + 7x - 1)\frac{d}{dx}[(5x + 2)][/tex]Basic Power Rule [Derivative Property - Addition/Subtraction]: [tex]\displaystyle y' = (3x^{3 - 1}+ 7x^{1 - 1} - 0)(5x + 2) + (x^3 + 7x - 1)(5x^{1 - 1} + 0)[/tex]Simplify: [tex]\displaystyle y' = (3x^2+ 7)(5x + 2) + 5(x^3 + 7x - 1)[/tex]Expand: [tex]\displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5(x^3 + 7x - 1)[/tex][Distributive Property] Distribute 5: [tex]\displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5x^3 + 35x - 5[/tex]Combine like terms: [tex]\displaystyle y' = 20x^3 + 6x^2 + 70x + 9[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] Find the associated radius of convergence R. f(x) = 6(1 − x)−2 Step 1 The Maclaurin series formula is f(0) + f '(0)x + f ''(0) 2! x2 + f '''(0) 3! x3 + f (4)(0) 4! x4 + .
Answer:
= ∑ 6*n*x^n-1
Radius of convergence = 1
Step-by-step explanation:
f(x) = 6(1-x)^-2
Maclaurin series can be expressed using the formula
f(x) = f(0) + f '(0)x + f ''(0)/ 2! (x)^2 + f '''(0)/3! (x)^3 + f (4)(0) 4! x4 + .
attached below is the detailed solution
Radius of convergence = 1
The Maclaurin series for f(x) = 6 / (1 - x )^2 = ∑ 6*n*x^n-1 ( boundary ; ∞ and n = 1 )
Solve the following system of equations
Answer:
Given Two equations :-
[tex]3x {}^{2} - 2 {y}^{2} = 57 .\: .\: .\: . \:(i) \\ - 2 {x}^{2} + 3 {y}^{2} = -23.\: .\: .\: . \:(ii)[/tex]
multiplying eq.(i) by 2 eq.(ii) by 3.[tex](3x {}^{2} - 2 {y}^{2} = 57 ) \times 2 .\: .\: .\: . \:(i) \\ ( - 2 {x}^{2} + 3{y}^{2} = - 23) \times 3.\: .\: .\: . \:(ii)[/tex]
[tex]6x {}^{2} - 4 {y}^{2} =114 .\: .\: .\: . \:(i) \\ - 6 {x}^{2} + 9 {y}^{2} = - 69.\: .\: .\: . \:(ii)[/tex]
[tex]0 + 5 {y}^{2} = 45 \\ 5y {}^{2} = 45 [/tex]
diving both sides by 5[tex] {y}^{2} = 9[/tex]
taking Square root[tex]y = + - 3[/tex]
placing this value of y² in eq. (i)3x²- 2×9 = 57
3x² - 18 = 57
adding 18 to both sides3x² = 57 + 18
3x²= 75
diving both sides by 3x² = 25
x = ± 5
So, the values of x are +5 and -5 and the values of y are +3 and -3