Answer:
Q = M * (Cf + C * 100 + Cv)
Cf and Cf are heats of fusion and vaporization and C is the heat required to heat mass M of water 1 deg
Q = .001 kg ( 3.36 * E5 + 100 deg * 4200 + 2.26 * E6) J
Q = .001 kg ( 3.36 J / kg + 4.2 J / kg + 22.6 J /kg) * 10E5
Q = .001 kg * 30.2 * 10E5 J / kg = 3020 J
The colors that make up white light are called what?
Answer:
The ROYGBIV
Explanation:
R - red
O - orange
Y - yellow
G - green
B - blue
I - indigo
V - violet
The bus travelled at velocity 15 ms-l for 5 minutes before it came to a stop. By using suitable linear equation, calculate the distance the bus has travelled.
Answer:
ans: 2250 meters
Explanation:
initial velocity (U)= 15 m/s
final velocity (V) = 0m/s , since need to come in rest
total time taken (T) = 5 min= 300 seconds
total distance covered (S)= UT + 1/2 aT^2 ,
a= acceleration
S= 15 × 300 + 0.5 ×(0 - 15) × 300
since a = (V - U)/ T
S = 4500 - 2250
S= 2250 m
If a small child swallowed a safety pin, why
would an X-ray photograph clearly show the
location of the pin?
Answer:
yes
Explanation:
it is in the body system
Answer:
it would show clearly because it is a metal piece in the body.
Lighting is the movement of?
Explanation:
Movement:refers to the changing in the lights whether it be a change in intensity, color or direction of origin.
please help very easy 5th grade work giving brainliest
Answer:
the answer is option B because opposit sides of the magnets attract each other
The following 1H NMR absorptions were obtained on a spectrometer operating at 200 MHz and are given in Hz downfield from TMS. Convert the absorptions to δ units. a) 416 Hz = δ b) 1.97×103 Hz = δ c) 1.50×103 Hz = δ
Answer:
For (a): The chemical shift is [tex]2.08\delta[/tex]
For (b): The chemical shift is [tex]9.85\delta[/tex]
For (c): The chemical shift is [tex]7.5\delta[/tex]
Explanation:
To calculate the chemical shift, we use the equation:
[tex]\text{Chemical shift in ppm}=\frac{\text{Peak position (in Hz)}}{\text{Spectrometer frequency (in MHz)}}[/tex]
Given value of spectrometer frequency = 200 MHz
For (a):Given peak position = 416 Hz
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{416Hz}{200MHz}\\\\\text{Chemical shift in ppm}=2.08\delta[/tex]
For (b):Given peak position = [tex]1.97\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.97\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=9.85\delta[/tex]
For (c):Given peak position = [tex]1.50\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.50\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=7.5\delta[/tex]
make ansentance rkdloebebjekeoejbe
Answer:
the man has returned from his trip
Answer:
just did by typing this lol
In higher mass stars, repeating cycles of fusion will create heavier elements in layers
until which element is created at the center of the core?
hydrogen
iron
uranium
helium
A dog accelerates at 1.50 m/s2 to reach a velocity of 13.5 m/s while covering a distance of 49.3 m. What was his initial velocity?
Let v be the dog's initial velocity. Then
(13.5 m/s)^2 - v ^2 = 2 (1.50 m/s^2) (49.3 m)
==> v ^2 = (13.5 m/s)^2 - 2 (1.50 m/s^2) (49.3 m)
==> v = √((13.5 m/s)^2 - 2 (1.50 m/s^2) (49.3 m))
==> v ≈ 5.86 m/s
In a certain region of space near earth's surface, a uniform horizontal magnetic field of magnitude B exists above a level defined to be y = 0. Below y = 0 , the field abruptly becomes zero (seethe figure). A vertical square wire loop has resistivity rho mass density rhom, diameter d, and side length l. It is initially at rest with its lower horizontal side at y = 0 and is then allowed to fall under gravity, with its plane perpendicular to the direction of the magnetic field.
a) While the loop is still partially immersed in the magnetic field (as it fallsinto the zero-field region), determine the magnetic "drag" forcethat acts on it at the moment when its speed is v.
b) Assume that the loop achieves a terminal velocity vt before its upper horizontal side exits the field. Determine a formulafor vt
c) If the loop is made of copper and B = 0.80 T find vt
Answer:
a) F = [tex]\frac{\pi d^2B^2lv}{16p}[/tex]
b) attached below
c) 0.037 m/s
Explanation:
a) Determine the magnetic "drag" force acting at the moment
speed = v
first step: determine current in the loop
I = [tex]\frac{\pi d^2}{16pl} B lv[/tex] ----- ( 1 )
given that the current will induce force on the three sides of the loop found in the magnetic field
forces on vertical sides = + opposite
we will cancel out
hence equation 1 becomes
F = [tex]\frac{\pi d^2B^2lv}{16p}[/tex] ( according to Lenz law we can say that the direction of force is upwards and this force will slow down the decrease in flux )
b) Determine the formula for Vt
attached below
c) Find Vt
given :
B = 0.80 T
density of copper = 8.9 * 10^3 kg/m^3
resistivity of copper = 1.68 * 10^-8 Ωm
∴ Vt = 16 ( 8.9 * 10^3 kg/m^3 ) ( 1.68 * 10^-8 Ωm ) ( 9.8 m/s^2 ) / ( 0.08 T)^2
= 0.037 m/s
How can magnetic levitation be improved?
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
The question is incomplete. The complete question is :
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
Solution :
Given that :
The predicted range is 0.3503 m
Time of the fall is :
[tex]$t=\sqrt{\frac{2H}{g}}$[/tex]
[tex]v_1t= 0.35[/tex] ...........(i)
[tex]v_0t= 1.09[/tex] ...........(ii)
Dividing the equation (ii) by (i)
[tex]$\frac{v_0t}{v_1t}=\frac{1.09}{035} = 3.11$[/tex]
∴ [tex]v_0=3.11 \ v_1[/tex]
Now loss of energy = change in the kinetic energy
[tex]$W=\frac{1}{2} m [v_0^2-v_1^2]$[/tex]
[tex]$W=\frac{1}{2} \times (16.3 \times 10^{-3}) \times [v_0^2-\left(\frac{v_0}{3.11}\right)^2]$[/tex]
[tex]$W=7.307\times 10^{-3} \ v_0^2$[/tex]
If f is average friction force, then
(f)(L) = W
(f) (1) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
(f) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
The Average force of friction is ( F ) = 7.307 * 10⁻³ v₀²
Given data:
Predicted range ( v₁t ) = 0.3503 m
Actual range ( v₀t ) = 1.09 m
mass = 16.3 g
First step : Determine the value of V₀
[tex]t = \sqrt{\frac{2H}{g} }[/tex] , v₁t = 0.3503 , ( v₀t ) = 1.09 m
To obtain the value of V₀
Divide ( v₀t ) by ( v₁t ) = 1.09 / 0.3503 = 3.11 v₁
∴ V₀ = 3.11 v₁
Next step : Determine the average force of friction ( f )
given that loss of energy results in a change in kinetic energy
W = [tex]\frac{1}{2} m ( vo^{2} - v1^{2} )[/tex]
= 1/2 * 16.3 * 10⁻³ * [ v₀² - [tex](\frac{v_{0} }{3.11} )^{2}[/tex] ]
∴ W = 7.307 * 10⁻³ v₀²
Average force of friction = W / Actual length
= 7.307 * 10⁻³ v₀² / 1
∴ Average force of friction ( F ) = 7.307 * 10⁻³ v₀²
Hence we can conclude that the average force of friction is 7.307 * 10⁻³ v₀²
Learn more about average force of friction : https://brainly.com/question/16207943
Your question has some missing data below are the missing data related to your question
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
Calculate the Combined resistance of the Circuit voltage across each resistor Current Passing through each resistor of 6,8,12ohms
Answer:
Sorry I don't know the answer
A Michelson interferometer operating at a 400 nm wavelength has a 3.70-cm-long glass cell in one arm. To begin, the air is pumped out of the cell and mirror M2 is adjusted to produce a bright spot at the center of the interference pattern. Then a valve is opened and air is slowly admitted into the cell. The index of refraction of air at 1.00 atm pressure is 1.00028.
How many bright-dark-bright fringe shifts are observed as the cell fills with air?
Answer:
[tex]m=42\ fringes[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lambda=400nm[/tex]
Length of cell arm [tex]h=3.70cm[/tex]
Refraction of air at at 1.00 atm pressure [tex]n=1.00028.[/tex]
Generally the equation for Number of shifts is mathematically given by
[tex]m=N-N_o[/tex]
Since
[tex]N_0=\frac{2t}{\lambda_0}[/tex]
Therefore
[tex]m=\frac{2t}{\lambda_0/n}-\frac{2t}{\lambda_0}[/tex]
[tex]m=\frac{2t}{\lambda_0} n-1[/tex]
[tex]m=\frac{2(3.7*10^{-2})}{400*10^{-9}}*(1.00028-1)[/tex]
[tex]m=51.8[/tex]
[tex]m=42\ fringes[/tex]
the velocity of a ship in the unit of m/s moving initially along west is given by V(t) = 5-2t. It’s acceleration at t=1 s is given by:
1. 0 m/s^2
2. 2m/s^2 along west
3. 2m/s^2 along east
4. None
Whis one is correct?
Answer:
4. None
Explanation:
Applying,
a(t) = dV(t)/dt
Where a(t) = Acceleration of the ship at a given time.
From the question,
Given: V(t) = 5-2t
Therefore,
a(t) = dV(t)/dt = 5 m/s²
Hence it's acceleration is 5 m/s²
From the question,
The right option is 4. None
Cual es l diferencia entre ruido y sonido
Answer:
E.l soni.do es un.a sensac.ión, en el órg.ano del oído, prod.ucida por el movimie/nto ondu>latorio de un m/edio elástico (normal/mente el aire), debi.do a ra.pidísimos ca/mbios de pre.sión, generado/s por el movimiento vibrat.orio d.e un cuerpo sonoro. ... /El ruido se consid/era a to/do sonid.o / o no de.seado.
Explanation:
FROM THE _____ WHOLE WATER CYCLE STARTS ALL OVER AGAIN
From the water whole water cycle starts again.
Most possibly water should be the answer.A magnetic field of 0.276 T exists in the region enclosed by a solenoid that has 517 turns and a diameter of 10.5 cm. Within what period of time must the field be reduced to zero if the average magnitude of the induced emf within the coil during this time interval is to be 12.6 kV
Answer:
The period the field must be reduced to zero is 9.81 x 10⁻⁵ s
Explanation:
Given;
initial value of the magnetic field, B₁ = 0.276 T
number of turns of the solenoid, N = 517 turns
diameter of the solenoid, d = 10.5 cm = 0.105 m
induced emf, = 12.6 kV = 12,600 V
when the field becomes zero, then the final magnetic field value, B₂ = 0
The induced emf is given by Faraday's law;
[tex]emf = -\frac{NA\Delta B}{t} \\\\emf = -\frac{NA (B_2 -B_1)}{t} \\\\t = -\frac{NA (B_2 -B_1)}{emf}\\\\t = \frac{NA (B_1 -B_2)}{emf}\\\\where;\\\\t \ is \ the \ time \ when \ B = 0 \ \ (i.e\ B_2 = 0)\\\\A \ is \ the \ area \ of \ the \ coil\\\\A = \frac{\pi d^2}{4} = \frac{\pi (0.105)^2}{4} = 0.00866 \ m^2\\\\t= \frac{(517) \times (0.00866)\times (0.276 -0)}{12,600}\\\\t = 9.81 \times 10^{-5} \ s[/tex]
Therefore, the period the field must be reduced to zero is 9.81 x 10⁻⁵ s
Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.57 A out of the junction. The current of wire 2 is 0.65 A out of the junction.
Required:
a. How many electrons per second move past a point in wire 3?
b. In which direction do the electrons move -- into or out of the junction?
Answer:
a. 1.56 × 10¹⁸ electrons per second
b. The electrons in wire 3 flow into the junction.
Explanation:
Here is the complete question
Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.65 A out of the junction. (a) How many electrons per second move past a point in wire 3? (b) In which direction do the electrons move in wire 3 -- into or out of the junction?
Solution
(a) How many electrons per second move past a point in wire 3?
Using Kirchhoff's current law, at the junction, i₁ + i₂ + i₃ = 0 where i₁ = current in wire 1 = 0.40 A, i₂ = current in wire 2 = 0.65 A and i₃ = = current in wire 3,
So, i₃ = -(i₁ + i₂)
taking current flowing into the junction as positive and those leaving as negative, i₁ = + 0.40 A and i₂ = -0.65 A
So, i₃ = -(i₁ + i₂)
i₃ = -(0.40 A + (-0.65 A))
i₃ = -(0.40 A - 0.65 A)
i₃ = -(-0.25 A)
i₃ = 0.25 A
Since i₃ = 0.25 C/s and we have e = 1.602 × 10⁻¹⁹ C per electron, then the number of electrons flowing in wire 3 per second is i₃/e = 0.25 C/s ÷ 1.602 × 10⁻¹⁹ C per electron = 0.1561 × 10¹⁹ electrons per second = 1.561 × 10¹⁸ electrons per second ≅ 1.56 × 10¹⁸ electrons per second
(b) In which direction do the electrons move -- into or out of the junction?
Given that i₃ = + 0.25 A and that positive flows into the junction, thus, the electrons in wire 3 flow into the junction.
From the top of the leaning tower of Pisa, a steel ball is thrown vertically downwards with a speed of 3.00 m/s. if the height of the tower is 200 m, how long will it take for the ball to hit the ground? Ignore air resistance.
Answer:
66,7 seconds
Explanation:
the formula for height/distance is : S=v.t
Effects of global warming is
A-decrease in temperature
B-melting of polar ice caps
C-breathing problems
Answer:
B- the melting of polar ice caps
Explanation:
As the world's temperature increases, polar ice caps will no longer be able to remain solid.
A 5 kg box drops a distance of 10 m to the ground. If 70% of the initial potential energy goes into increasing the internal energy of the box, determine the magnitude of the increase.
Answer:
Explanation:
From the given information:
The initial PE [tex](PE)_i[/tex] = m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = [tex]P.E_f -P.E_i[/tex]
ΔP.E = 0 - [tex](PE)_i[/tex]
ΔP.E = [tex]-P.E_i[/tex]
If we take a look at conservation of total energy for determining the change in the internal energy of the box;
[tex]\Delta P.E + \Delta K.E + \Delta U = 0[/tex]
[tex]\Delta U = -\Delta P.E - \Delta K.E[/tex]
this can be re-written as:
[tex]\Delta U =- (-\Delta P.E_i) - \Delta K.E[/tex]
Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,
[tex]\Delta U =(70\%) \Delta P.E_i-0[/tex]
[tex]\Delta U =(0.70) (490.5)[/tex]
ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
g Is a nucleus that absorbs at 4.13 δ more shielded or less shielded than a nucleus that absorbs at 11.45 δ? _________ Does the nucleus that absorbs at 4.13 δ require a stronger applied field or a weaker applied field to come into resonance than the nucleus that absorbs at 11.45 δ?
Answer: A nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded and a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field
Explanation:
While interpreting the data in NMR, the positions of signals are studied.
The nucleus/ protons having a higher value of [tex]\delta[/tex] are said to be less shielded. They are said to be upfield.
The nucleus/protons having a lower value of [tex]\delta[/tex] are said to be more shielded. They are said to be downfield.
So, a nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded by the nucleus that absorbs at [tex]4.13\delta[/tex]
Also, the less shielded nucleus/protons will require a weak applied field to come into resonance than the more shielded nucleus/protons
So, a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field to come into resonance than the nucleus that absorbs at [tex]11.45\delta[/tex]
how do you use the coefficient to calculate the number of atoms in each molecule?
Answer:
To find out the number of atoms: MULTIPLY all the SUBSCRIPTS in the molecule by the COEFFICIENT. (This will give you the number of atoms of each element.)
Explanation:
An electric device, which heats water by immersing a resistance wire in the water, generates 20 cal of heat
per second when an electric potential difference of 6 V is placed across its leads. What is the resistance in Ω
of the heater wire? (Note: 1 cal = 4.186 J)
Select one:
a. 0.86
b. 0.17
c. 0.29
d. 0.43
Answer:
1 cal/s =4.184w
p=50 cal/s =2093w
v=12v
P = V*I
I =P/V
I = 17.43 A
P =1²*R
R = P/I²
R = 0.682. The given graph shows that the object is
(a) in non-uniform motion
(b) in uniform motion
(c) at rest
(d) in an oscillatory motion.
distance
time
Answer:
(c) at rest
Explanation:
Given
See attachment for the distance time graph
Required
What does the graph illustrate?
From the graph, we can see that the line of distance is a horizontal line.
This suggests that a time increases, the distance remains unchanged
When distance remains unchanged over time, then it means the object is at rest.
Hence, (c) is correct
pls help! George pushes a wheelbarrow for a distance of 12 meters at a constant speed for 35 seconds by applying a force of 20 newtons. What is the
power applied to push this wheelbarrow?
A. 1.2 watts
B. 3.4 watts
C. 6.9 watts
D. 13 watts
Answer:
C. 6.9 watts
Explanation:
Power = work/time
if work = force×distance...
Then... power= (force×distance)/time
Power = (20×12)/35
= 6.9 watts
A 45.00 kg person in a 43.00 kg cart is coasting with a speed of 19 m/s before it goes up a hill. there is no friction, what is the maximum vertical height the person in the cart can reach?
Answer:
the maximum vertical height the person in the cart can reach is 18.42 m
Explanation:
Given;
mass of the person in cart, m₁ = 45 kg
mass of the cart, m₂ = 43 kg
acceleration due to gravity, g = 9.8 m/s²
final speed of the cart before it goes up the hill, v = 19 m/s
Apply the principle of conservation of energy;
[tex]mgh_{max} = \frac{1}{2}mv^2_{max}\\\\ gh_{max} = \frac{1}{2}v^2_{max}\\\\h_{max} = \frac{v^2_{max}}{2g} \\\\h_{max} =\frac{(19)^2}{2\times 9.8} \\\\h_{max} = 18.42 \ m[/tex]
Therefore, the maximum vertical height the person in the cart can reach is 18.42 m
Consider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. What is the swimmers average speed and average velocity?
Answer:
The average speed is 1 m/s
The average velocity is 0
Explanation:
Given;
length of the pool, L = 50 m
time taken for the motion, t = 100 s
The total distance = 50 m + 50 m
The total distance = 100 m
The average speed = total distance / total time
= 100 / 100
= 1 m/s
The average velocity = change in displacement / change in time
change in displacement = 50 m - 50 m = 0
The average velocity = 0 / 100
The average velocity = 0
What effect does increased blood flow have on the body when performing exercises? A. delivers more sugar to organs B. delivers more energy to muscles C. delivers more oxygen to the body D. delivers more protein to muscles Please select the best answer from the choices provided. O A . OB ос OD Next Submit Save and Exit Mark this and return