Answer:
Your answer is C. X = 29/8c
Step-by-step explanation:
2/3(cx + 1/2) - 1/4 = 5/2
2cx/3+1/3-1/4=5/2
2cx3+1/12=5/2
2cx/3=5/2-1/12
2cx/3=29/12
(3)2cx/3=29/12(3)
2cx= 31/4
(2c)2cx=29/4(2c)
X=29/8c
Your answer is C. X = 29/8c
what is the domain of f(x)
Answer:
Values of x
Step-by-step explanation:
The domain of a function is the set of all possible inputs for the function while the co-domain is the set of all possible outputs of the function.
In other words, domain is the set of x-values that you can put into any given equation while co-domain is the sex of f(x)-values that you get from substituting the values of x.
Hope it's clear
it is estimated that 50% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails and the probability for a flase positive is 5%. What is the probability that an email is detected as spam
Answer:
0.52 = 52% probability that an email is detected as spam.
Step-by-step explanation:
Probability that an email is detected as spam:
99% of 50%(are spam).
5% of 100 - 50 = 50%(false positives, that is, e-mails that are not spam but are detected as spams).
What is the probability that an email is detected as spam?
[tex]p = 0.99*0.5 + 0.05*0.5 = 0.52[/tex]
0.52 = 52% probability that an email is detected as spam.
(x + 3)(x + 7) ≡ x2 + ax + 21
why no one helping me please help please please please please please
Answer:
a) A
b) C and E
c) C, D and F
d) two
e) Equal
Can you please help me solve this step by step?
Answer:
2/3
Step-by-step explanation:
[tex]2 \frac{1}{4} : \frac{1}{2}[/tex] = [tex]\frac{9}{4} : \frac{1}{2}[/tex]
[tex]\frac{\frac{9}{4} }{\frac{1}{2} }[/tex] = [tex]\frac{3}{x}[/tex]
3 * 1/2 = 9/4x
3/2 = 9/4 x
x = 3/2 ÷ 9/4 = 3/2 * 4/9 = 12/18 = 6/9 = 2/3
HELP ME PLSSSSSSSS I tryed to solvessss
Answer:
x≥-4
Step-by-step explanation:
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 24 customers per hour or 0.4 customers per minute.
a. What is the mean or expected number of customers that will arrive in a five-minute period?
b. Assume that the Poisson probability distribution can be used to describe the arrival process. Use the arrival rate in part (a) and compute the probabilities that exactly 0, 1, 2, and 3 customers will arrive during a five-minute period.
c. Delays are expected if more than three customers arrive during any five-minute period. What is the probability that delays will occur?
2. In the Willow Brook National Bank waiting line system (see Problem 1), assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6 customers per minute. Use the exponential probability distribution to answer the following questions:
a. What is the probability that the service time is one minute or less?
b. What is the probability that the service time is two minutes or less?
c. What is the probability that the service time is more than two minutes?
Answer:
1.
a. 2
b. 0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.
c. 0.1428 = 14.28% probability that delays will occur.
2.
a. 0.4512 = 45.12% probability that the service time is one minute or less.
b. 0.6988 = 69.88% probability that the service time is two minutes or less.
c. 0.3012 = 30.12% probability that the service time is more than two minutes.
Step-by-step explanation:
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Question 1:
a. What is the mean or expected number of customers that will arrive in a five-minute period?
0.4 customers per minute, so for 5 minutes:
[tex]\mu = 0.4*5 = 2[/tex]
So 2 is the answer.
Question b:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-2}*2^{0}}{(0)!} = 0.1353[/tex]
[tex]P(X = 1) = \frac{e^{-2}*2^{1}}{(1)!} = 0.2707[/tex]
[tex]P(X = 2) = \frac{e^{-2}*2^{2}}{(2)!} = 0.2707[/tex]
[tex]P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1805[/tex]
0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.
Question c:
This is:
[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]
In which:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
The values we have in item b, so:
[tex]P(X \leq 3) = 0.1353 + 0.2707 + 0.2707 + 0.1805 = 0.8572[/tex]
[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8572 = 0.1428[/tex]
0.1428 = 14.28% probability that delays will occur.
Question 2:
[tex]\mu = 0.6[/tex]
a. What is the probability that the service time is one minute or less?
[tex]P(X \leq 1) = 1 - e^{-0.6} = 0.4512[/tex]
0.4512 = 45.12% probability that the service time is one minute or less.
b. What is the probability that the service time is two minutes or less?
[tex]P(X \leq 2) = 1 - e^{-0.6(2)} = 1 - e^{-1.2} = 0.6988[/tex]
0.6988 = 69.88% probability that the service time is two minutes or less.
c. What is the probability that the service time is more than two minutes?
[tex]P(X > 2) = e^{-1.2} = 0.3012[/tex]
0.3012 = 30.12% probability that the service time is more than two minutes.
What is the answer??
Answer:
Step-by-step explanation:
Let AC = x
AB - AC = 4 cm
AB = 4 +x ----------------(I)
Pythagorean theorem
AB² + AC² =BC²
(4 + x)² + x² = 9²
Use the identity (a + b)² = a² + 2ab + b² where a = 4 & b = x
4² +2*4*x +x² + x²= 81
16 + 8x + 2x² = 81
2x² + 8x + 16 - 81 = 0
2x² + 8x - 65= 0
a = 2 ; b = 8 ; c = -65
D = b² - 4ac
= 8² - 4*2*(-65)
= 64 + 520
D = 584
√D = √584 = 24.16
[tex]x=\frac{-b+\sqrt{D}}{2a} \ or \ x =\frac{-b-\sqrt{D}}{2a}\\\\x= \frac{-8+24.16}{2*2} \ or \ x = \frac{-8-24.6}{2*2}[/tex] {Ignore this as it is negative.}
x = 16.16/4
x = 4.04
AC = 4.04 Cm
AB = 4 + 4.04 = 8.04 cm
Area of triangle ABC = [tex]\frac{1}{2}* base * height[/tex]
[tex]=\frac{1}{2}*4.04 *8.04\\\\= 2.02 * 8.04[/tex]
= 16.24 sq.cm
Test the claim that the mean GPA of night students is larger than the mean GPA of day students at the 0.10 significance level. The null and alternative hypothesis would be: H 0 : p N ≥ p D H 1 : p N < p D H 0 : p N ≤ p D H 1 : p N > p D H 0 : p N = p D H 1 : p N ≠ p D H 0 : μ N ≤ μ D H 1 : μ N > μ D H 0 : μ N ≥ μ D H 1 : μ N < μ D H 0 : μ N = μ D H 1 : μ N ≠ μ D The test is: two-tailed right-tailed left-tailed The sample consisted of 30 night students, with a sample mean GPA of 3.34 and a standard deviation of 0.02, and 30 day students, with a sample mean GPA of 3.32 and a standard deviation of 0.08. The test statistic is: (to 2 decimals) Use the conservative degree of freedoms. The p-value is: (to 2 decimals) Based on this we: Reject the null hypothesis Fail to reject the null hypothesis
Answer:
H0 : μN ≤ μD
H1 : μN > μD
Right tailed
Test statistic = 1.33
Pvalue = 0.097
Fail to reject the Null
Step-by-step explanation:
H0 : μN ≤ μD
H1 : μN > μD
The test is right tailed ; culled from the direction of the greater than sign ">"
Night students :
n1 =30 x1= 3.34 s1 = 0.02
Day students:
n2 = 30 x2 = 3.32 s2 = 0.08
The test statistic :
(x1 - x2) / √(s1²/n1) + (s2²/n2)
T= (3.34 - 3.32) / √(0.02²/30) + (0.08²/30)
T = 0.02 / 0.0150554
Test statistic = 1.328
Using the conservative approach ;
df = Smaller of n1 - 1 or n2 - 1
df = 30 - 1 = 29
Pvalue(1.328, 29) = 0.097
At α = 0.10
Pvalue < α ; Hence, we reject H0 ; and conclude that there is significant evidence that GPA of night student is greater than GPA of day student
Lara says that she can use this picture to show that two pairs of congruent angles and
one pair of corresponding congruent sides is enough information to prove that two
triangles are congruent. Is Lara correct?
Answer:
Bottom left
Step-by-step explanation:
Mark brainliest please
Yes, Lara is correct.
Congruent triangleTwo triangles are said to be congruent if all three corresponding sides are equal and all three corresponding angles are equal in measureTriangles are congruent when they have exactly the same three sides and exactly the same three angles.How to solve this problem?The steps are as follow:
Since there is a series of rigid motions that will match the triangles up exactly.Also, Lara is correct only if the corresponding congruent side is in between the two anglesThis would be "ASA" triangle congruceny which means Angle Side Angle congrucenySo Lara is correct
Learn more about Congruent triangle here:
https://brainly.com/question/1675117
#SPJ2
5. Lisa has a cubed-shaped box with a
volume of 512 cm. If Lisa fills the box
with 1-cubic centimeter blocks, how
many blocks make up each layer?
Answer:
64
Step-by-step explanation:
[tex]\sqrt[3]{512} = 8\\8x8 = 64[/tex]
ABCD-EFGH what does y=?
Answer:
y = 3
Step-by-step explanation:
Given that the shapes are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{AB}{EF}[/tex] = [tex]\frac{CD}{GH}[/tex] , substitute values
[tex]\frac{3}{2}[/tex] = [tex]\frac{4.5}{y}[/tex] ( cross- multiply )
3y = 9 ( divide both sides by 3 )
y = 3
Women's heights are normally distributed with a mean given by p = 63.6 in. and a standard deviation given by o = 2.5 in. (a) If 1' woiman is randomly selected, find the probability that her height is less than 67.4 in. Enter a number correct to 4 decimal places: (b): 1f 64 women are randomly selected, find the probability that they will have a mean height less than 67.4 in. Enter a number correct to 4 decimal places:
Step-by-step explanation:
I am sorry question samajh Nahin a Raha question dijiye
Algebraically show that each of the given combinations are equivalent to the given functions.
h(x) + j(x) is equivalent to k(x) given:
h(x) = 2x – 3;j(x) = - 4x + 6; k(x) = – 2x + 3
h(x) + j(2) =
Is h(x) + j(x) equivalent to k(x)? yes
Answer:
YES, they are equal
Step-by-step explanation:
Given the expressions
h(x) = 2x – 3;j(x) = - 4x + 6; k(x) = – 2x + 3
h(x) + j(x) = 2x – 3 + (-4x + 6)
h(x) + j(x) = 2x - 3 -4x + 6
h(x) + j(x) = 2x - 4x -3 + 6
h(x) + j(x) = -2x + 3 = k(x)
This shows that h(x) + j(x) = k(x)
Heeelp please!!! Picture included
Answer:
2nd choice
Step-by-step explanation:
Can someone help me with this problem?
The distribution of the annual incomes of a group of middle management employees approximated a normal distribution with a mean of $38,000 and a standard deviation of $1,000. About 68 percent of the incomes lie between what two incomes
Answer:
68% is a special
value for these problems
empirical rule suggests ± 1 standard deviation
z = (x - μ)/σ
1 = (x - 38000)/1000
Between $37,000 and $39,000
Step-by-step explanation:
SECTION B
Answer ALL questions. Write your answers in the spaces provided.
1 Data set A has a median value of 3.1
Here is data set B.
14
-9
28
-38
-13
-2
(a) Write a statement to compare the median values of the two sets of data.
(2)
Answer: The median value of data set B is -5.5, which is less than the median value of 3.1 in dataset A.
Step-by-step explanation:
Order the dataset from least to greatest:
-38 → -13 → -9 → -2 → 14 → 28
Then find the values that lies in the middle:
-38 → -13 → -9 → -2 → 14 → 28
Since there are 2 values, find the average of those 2 values:
[tex]\frac{-9+(-2)}{2} =\frac{-11}{2} =-5.5[/tex]
The median value = -5.5.
The median value of data set B is -5.5, which is less than the median value of 3.1 in dataset A.
In the diagram below, POR is a diameter, <QPR is a°,<PRS is (4a+12)°. find the value of a
Answer:
22=4
Step-by-step explanation:
0977-=ytb
A bottle maker believes that 23% of his bottles are defective. If the bottle maker is accurate, what is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%
Answer:
0.9802 = 98.02% probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A bottle maker believes that 23% of his bottles are defective.
This means that [tex]p = 0.23[/tex]
Sample of 602 bottles
This means that [tex]n = 602[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.23[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.23*0.77}{602}} = 0.0172[/tex]
What is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%?
p-value of Z when X = 0.23 + 0.04 = 0.27 subtracted by the p-value of Z when X = 0.23 - 0.04 = 0.19.
X = 0.27
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.27 - 0.23}{0.0172}[/tex]
[tex]Z = 2.33[/tex]
[tex]Z = 2.33[/tex] has a p-value of 0.9901
X = 0.19
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.19 - 0.23}{0.0172}[/tex]
[tex]Z = -2.33[/tex]
[tex]Z = -2.33[/tex] has a p-value of 0.0099
0.9901 - 0.0099 = 0.9802
0.9802 = 98.02% probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%
Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?
9514 1404 393
Answer:
3/4
Step-by-step explanation:
It might be easier to start by expressing the ratios with AD as the denominator.
AD/AC = 2/1 ⇒ AC/AD = 1/2
AD/AB = 3/1 ⇒ AB/AD = 1/3
From the latter, we have ...
(AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD
Then the desired ratio is ...
AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)
AC/BD = 3/4
Find the points of intersection of the graphs involving the following pair of functions.
f(x)=2x^2 + 3x - 3 and g(x) = -x^2
Answer:
The point of intersection is [tex]( \frac{-1\pm\sqrt{5}}{2}, 0)[/tex]
Step-by-step explanation:
f(x) = 2x^2 + 3x - 3 and g(x) = - x^2
By equating them
2x^2 + 3x - 3 = -x^2
3x^2 + 3 x - 3 = 0
x^2 + x - 1 = 0
[tex]x^2 +x - 1 = 0 \\\\x = \frac{-1\pm\sqrt{5}}{2}[/tex]
a. A CD is discounted by 10%, and then from the already discounted price, a further 15% discount is given. If the price now is $12.93, find the original price.
b. What is the total discount percent as compared to the original price?
Answer:
a. $16.90
b. 23.5%
Step-by-step explanation:
a. After the two discounts, the original price is multiplied by ...
(1 -10%)(1 -15%) = 0.90×0.85 = 0.765
Then the original price is found from ...
$12.93 = 0.765 × original price
original price = $12.93 / 0.765 ≈ $16.90
__
b. The effective discount from the original price is ...
1 -0.765 = 0.235 = 23.5%
How long will it take her to travel 72 miles? use the unit ratio to solve the following problem.
Answer:
It will take Noshwa 3 hours and 36 minutes to travel 72 miles.
Step-by-step explanation:
Since Noshwa is completing the bike portion of a triathlon, assuming that she travels 40 miles in 2.5 hours, to determine how long will it take her to travel 72 miles, the following calculation must be performed:
40 = 2.5
72 = X
72 x 2.5 / 50 = X
180/50 = X
3.6 = X
1 = 60
0.6 = X
0.6 x 60 = X
36 = X
Therefore, it will take Noshwa 3 hours and 36 minutes to travel 72 miles.
is this a direct variation
y=2x + 3
pls give an explanation if you don’t have one still pls give an answer
Answer:
No.
Step-by-step explanation:
y/x has to be the same number no matter what except at point (0 0) which it must also include for it to be a direct variation.
*y=2x+3 is not a direct variation because you can not write it as y/x=k where k is some constant number. If we were y=2x, then yes since y/x=2.
*You could also take two points and see if they are proportional. That is, you can see if y2/x2 gives the same value as y1/x1 where (x1,y1) and (x2,y2) are points on the line y=2x+3. This must work for every pair of points on the linear relation except at x=0 (where you would or should have y=0 if it is directly proportional).
Let's try it out. If x=1, then y=2(1)+3=5.
5/1=5
If x=2, then y=2(2)+3=7
7/2=3.5
As you can see 5 doesn't equal 3.5.
*For it to be a direct variation, it also must contain the point (0,0) and be a diagonal line when graphed. It can also be written in form y=kx where k is a constant number. This fails two of the the things I mentioned. It doesn't contain point (0,0) because y=2(0)+3=3 not 0. It cannot be written in form y=kx because of the plus 3.
If it were y=2x, then the answer would be yes.
Will give brainliest answer
Answer: 2/5x to the second.
may I have the brainiest? pls
Does anyone know this question?
Step-by-step explanation:
this is a relatively easy function. Just plug in the value for x
PLEEEASEEEE HEEELPPP!!!
Answer: About 72%
Step-by-step explanation:
It's a conditional probability.
(Number of graduates on financial aid)/(Number of graduates)
[tex]\frac{1879}{2610} =0.7199[/tex]
0.7199 = 71.99% ≈ 72%
solve the quadratic equation x²+x-2
Step-by-step explanation:
ii hope this will help you
please mark me as brinalist friend
Answer:
x = 1
x = -2
Step-by-step explanation:
Hello!
We can solve the quadratic by factoring the equation.
Standard Form of a Quadratic: [tex]ax^2 + bx + c = 0[/tex]
Given our equation: [tex]x^2 + x - 2 = 0[/tex]
a = 1b = 1c = -2Find two numbers that multiply up to "ac" but add up to "b". The two numbers are 2 and -1. Expand x into 2x and -1x.
Factor by Grouping[tex]x^2 + x - 2 = 0[/tex][tex]x^2 + 2x - x - 2 = 0[/tex][tex]x(x + 2) -1(x + 2) = 0[/tex][tex](x - 1)(x + 2) = 0[/tex]Set each factor to 0 and solve for x:
[tex]x - 1 = 0\\x = 1[/tex][tex]x + 2 = 0\\x = -2[/tex]The solutions for x are 1 and -2.
Use the formula for the volume of a cube given by
V = s3
where s is the length of one of the sides. This formula yields the volume in cubic units.
Suppose a certain sugar cube has a side that measures 5/9 inches per side. What is the volume of this sugar cube (in in3)? Round the result to three decimal places.
Answer:
The volume of the cube is 0.171 cubic inches.
Step-by-step explanation:
The volume of a cube given by :
[tex]V=s^3[/tex]
Where
s is the length of one of the sides.
We need to find the volume of the sugar cube if its side is 5/9 inches per side.
So,
[tex]V=(\dfrac{5}{9})^3\\\\V=0.171\ inches^3[/tex]
So, the volume of the cube is 0.171 cubic inches.