Answer:
What do you need help with
Step-by-step explanation:
Do you need help with a specific question? Or with the whole assignment?
Find Point P is the incenter of DEF . point p of concurrency of the angle bisectors . find PT
PT is 8 because since P is the incenter it's equidistant from all sides.
Instructions: Find the measure of the missing angles in the kite
Answer:
m∠1 = 103
m∠2 = 103
Step-by-step explanation:
by definition, the opposite angles of a kite are congruent.
we know that a quadrilateral's angles add up to 360.
117 º+ 37º + 2xº = 360º
2xº = 206º
xº=103º
9. Calculate the angle of elevation of the line of sight of a person 27.5 m away from a tree, whose
eye is 1.8 m above the ground, and is looking at the top of a 19.4 tree. (draw a diagram and
answer to the nearest degree)
Answer:
32.61° is the answer
Step-by-step explanation:
Tanx=17.6/27.5
What is the lateral area of the pyramid shown below?
26 ft.
20 ft.
20 ft.
Answer:
Your correct answer is 1514.27
Step-by-step explanation:
Here is my step by step for you!
How many even integers are in the range 5n to 5n + 10 if 5n is a positive odd integer? I will mark brainliest and give heart.
The integers ranging from 5n to 5n + 10, with 5n as a positive odd integer, in each case, the range contains three even integers.
Determining the integersWhen n = 1:
The range is 5(1) to 5(1) + 10
= 5 to 15.
There are three even integers in this range: 6, 8, and 10.
When n = 3:
The range is 5(3) to 5(3) + 10
= 15 to 25.
There are three even integers in this range: 16, 18, and 20.
When n = 5:
The range is 5(5) to 5(5) + 10
= 25 to 35.
There are three even integers in this range: 26, 28, and 30.
In each case, the range contains three even integers.
Learn more on positive integers here https://brainly.com/question/1367050
#SPJ2
What is 13/3.5 and could you give a step by step
Answer:
[tex]3\frac{5}{7}[/tex]
Step-by-step explanation:
13 ÷ 3.5
[tex]3.5=3\frac{5}{10}[/tex]
Which recursive formula can be used to generate the sequence below, where f(1) = 6 and n ≥ 1?
6, 1, –4, –9, –14
Answer:
f(n) = f(n - 1) - 5
Step-by-step explanation:
The recursive formula allows a term in the sequence to be found by adding the constant difference to the previous term.
Here d = 1 - 6 = - 4 - 1 = - 9 - (- 4) = - 14 - (- 9) = - 5 , then
f(n) = f(n - 1) - 5 with n ≥ 1 and f(1) = 6
Which of the
following shows the graph of y = 2e*?
Use a calculator to determine the unknown angle, to the nearest degree, in each of the following expressions.
tan A = 5/4
cos G = 0.88
Answer:
Using a calculator;
A is approximately 51.34°
G is approximately 28.36°
Step-by-step explanation:
Part 1
The given trigonometric ratio is presented as follows;
tan A = 5/4
Therefore, the angle, A = arctan(5/4)
Using a calculator, the value of A is found as follows;
1. Ensure the angle mode of the calculator is set to the correct value (the selected mode here is degrees)
2. Entering 5/4 into the calculator, using the keypad
3 . Selecting the arctan button to give, A ≈ 51.34°
Part 2
The given trigonometric ratio is cos G = 0.88
Therefore, G = arccos(0.88)
1. Ensure the angle mode of the calculator is set to the correct value (the selected mode here is degrees)
2. Enter 0.88 into the calculator by typing
3. Select arccos from the function menu, to give
arcos(0.88) = G ≈ 28.36°.
Gabriela was given a 15% increase in wages. If she earned $36,000 last year, what can she expect to earn this year?
The increase in the amount of wages of Gabriela is $ 41,400
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the total amount after increase in wages be = A
Now , the initial amount of Gabriela be = $ 36,000
And , the percentage increase in the wages = 15 %
So , the equation will be
Total amount after increase in wages A = initial amount + ( percentage increase x initial amount )
Total amount after increase in wages A = 36,000 + ( 15/100 x 36,000 )
Total amount after increase in wages A = 36000 + ( 15 x 360 )
Total amount after increase in wages A = 36000 + 5400
Total amount after increase in wages A = $ 41,400
Therefore , the value of A is $ 41,400
Hence , The increase in the amount of wages of Gabriela is $ 41,400
To learn more about equations click :
https://brainly.com/question/10413253
#SPJ2
Point Q is the centroid of △ABC. QF = _____
A. 10
B. 5
C. 15
D. 9
Answer: QF = 5
Step-by-step explanation:
We know that if a triangle has a centroid, the ratio of the longer segment to shorter segment is 2:1. We can set up a proportion [tex]\frac{2}{1} = \frac{10}{x}[/tex], where x is the length of QF. By cross multiplying and dividing, you get x = 5 or QF = 5.
Answer:
5
Step-by-step explanation:
Vicky makes jewelry.she uses 42 beads for each necklace that she makes,and she has 500 beads.how many necklaces can she make explain with work?
Answer:
11
Step-by-step explanation:
Vicky used 462 beads to make 11 necklaces, she would have left 38 beads.
Answer:
He make seven necklaces
Melinda walked to the mall at 4 miles per hour and then rode back home in a bus at 24 miles per hour. If her total traveling time was 14 hours, how far was it to the mall?
Given:
Melinda walked to the mall at 4 miles per hour and then rode back home in a bus at 24 miles per hour.
Total traveling time was 14 hours.
To find:
The distance between Melinda's house and mall.
Solution:
Formula used:
[tex]Time=\dfrac{Distance}{Speed}[/tex]
Let x miles be the distance between Melinda's house and mall.
Melinda walked to the mall at 4 miles per hour. So, the time taken by Melinda is [tex]\dfrac{x}{4}[/tex] hours.
Speed of bus is 24 miles per hour. So, the time taken by bus is [tex]\dfrac{x}{24}[/tex] hours.
Total traveling time was 14 hours.
[tex]\dfrac{x}{4}+\dfrac{x}{24}=14[/tex]
[tex]\dfrac{6x+x}{24}=14[/tex]
[tex]7x=14\times 24[/tex]
Divide both sides by 7.
[tex]\dfrac{7x}{7}=\dfrac{14\times 24}{7}[/tex]
[tex]x=2\times 24[/tex]
[tex]x=48[/tex]
Therefore, the mall is 48 miles far from Melinda's house.
which point is on the line that passes through point H and is perpendicular to line FG?
Answer:
The correct answer is (-6, 10).
Step-by-step explanation:
You can find the equation of the blue line and then find out which point is on the perpendicular line to that blue line but you also can figure this out visually by looking at where the points are.
Feel free to message me if you still have questions :)
Answer:
(–6, 10)
Step-by-step explanation:
need help with part b of the attached screenshot please
9514 1404 393
Answer:
(b) 82.9253
Step-by-step explanation:
The first attachment shows the rectangles. The second shows the sum of their areas.
please help me out asap
(geometry)
Answer:
x = 30
Step-by-step explanation:
If A and B were parallel, then 2x + 50 and 5x - 80 are same- side interior angles and sum to 180° , then
2x + 50 + 5x - 80 = 180
7x - 30 = 180 ( add 30 to both sides )
7x = 210 ( divide both sides by 7 )
x = 30
Show and explain all of the steps used in order to simplify the following rational expression 3x^(2)-3x / 3x^(3)-6x^(2)+3x to 1 / x-1.
Answer:
3x^2 + x^4 - x^3 + 3 - 6x
Step-by-step explanation:
Find Least Common Multiplier of 3x^(2)-3x / 3x^(3)-6x^(2)+3x to 1 / x-1
3x^2 - 3 . x/3 x^3 - 6x^2 + 3x
Apply exponent rule: a^b + c = a^b a^c
x^2 = xx, x^3 x/3 = xx^2, x^2 = xx
= 3xx - 3xxx - 6xx + 3x
Rewrite -6 as 2 . 3
= 3xx - 3xxx + 2 . 3xx + 3x
Factor out common term 3x
= 3x(x - x^2(x/3) -2x + 1)
= 3x(- x^3/3 - x + 1)
Multiply each factor with the highest power:
(- x^3/3 - x + 1) . 3 . (1/x - 1\) . x
Simplify
3x^2 + x^4 - x^3 + 3 - 6x
plzz help steps if possible if not its ok j=i just need to pass this class
Answer:
[tex]\text{(B) }\cos 40^{\circ}=\frac{x}{60}[/tex]
Step-by-step explanation:
In any triangle, the cosine/cos of an angle is equal to its adjacent side divided by the hypotenuse (longest side) of the triangle. (a/h)
The angle marked 40 degrees has an adjacent side of [tex]x[/tex] and the hypotenuse of the triangle is 60.
Therefore, we have the equation:
[tex]\boxed{\cos 40^{\circ}=\frac{x}{60}}[/tex]
given the preimage and image, find the dilation scale factor
Given:
The preimage and image of a triangle in the given figure.
To find:
The dilation scale factor.
Solution:
From the given figure it is clear that the vertices of the triangle ABC are A(-2,-2), B(-1,2) and C(2,1).
The vertices of the triangle A'B'C' are A'(-4,-4), B'(-2,4) and C'(4,2).
If a figure is dilated by factor K with (0,0) as the center of dilation, then
[tex](x,y)\to (kx,ky)[/tex]
Let the scale factor be K, then the image of point A is:
[tex]A(-2,-2)\to A'(k(-2),k(-2))[/tex]
[tex]A(-2,-2)\to A'(-2k,-2k)[/tex]
From the given figure it is clear that the image of point A is A'(-4,-4).
[tex]A'(-2k,-2k)=A'(-4,-4)[/tex]
On comparing both sides, we get
[tex]-2k=-4[/tex]
[tex]k=\dfrac{-4}{-2}[/tex]
[tex]k=2[/tex]
Therefore, the dilation scale factor is 2.
Amy needs to use a combination of the 12-cup and 36-cup baking pans to fill the order. With only eighteen 12-cup baking pans in her shop, how many of the 36-cup baking pans does she need to complete the order?
Answer:
See explanation
Step-by-step explanation:
The question is incomplete, as the total orders is not given.
To solve this question, I will assume a value for the total number of order.
Let
[tex]x \to 12-cup[/tex]
[tex]n_x = 18[/tex] ---- number of 12-cup
[tex]y \to 36-cup[/tex]
[tex]n_y = ??[/tex] ---- number of 36-cup
[tex]n \to[/tex] Total order
Required
Calculate [tex]n_y[/tex]
To do this, we make use of the following equation:
[tex]n_x * x + n_y * y = n[/tex]
Substitute known values
[tex]18 * 12 + n_y * 36 = n[/tex]
[tex]216 + 36n_y= n[/tex]
Collect like terms
[tex]36n_y= n - 216[/tex]
Divide both sides by 36
[tex]n_y= \frac{n - 216}{36}[/tex]
Assume the number of orders is: 540 cups
The equation becomes
[tex]n_y= \frac{540 - 216}{36}[/tex]
[tex]n_y= \frac{324}{36}[/tex]
[tex]n_y= 9[/tex]
Find the missing segment
Identify the value of y.
Answer:
y = 3
Step-by-step explanation:
What type of slope is demonstrated by the line below? 5 (-1,3) --5 5 (0.-2)
A. Zero slope
B. Positive slope
C. Undefined slope
D. Negative slope
Answer:
D. Negative slope
Step-by-step explanation:
The slope goes down from left to right, so it is a negative slope
Up from left to right is a positive slope
A vertical line is undefined
A horizontal line is zero slope
7. Complete the square to write
c(x)= x2 – 16x + 84 in vertex form.
Answer:
(x-8)²+20 vertex=(8,20)
Step-by-step explanation:
(x-8)² = -20
Graphing Form: y = 1(x-8)²+20
explain how the exteriorv relates to the i
Step-by-step explanation:
in this situation
A+B =D
Help me please with this math question asap
Answer:
5
Step-by-step explanation:
A function
[tex]a \times {b}^{x} [/tex]
where a is the initial value and b is the multiplicative rate of change.
In the function,
[tex]f(x) = 2 \times {5}^{x} [/tex]
5 is the value of b so
5 is the multipicative rate of change
Find the domain and explain pls and thankyouuu
Answer:
[tex]x\neq 0\\x\neq 2[/tex]
Step-by-step explanation:
simplify the equation: [tex]\frac{6}{x(x-2)}[/tex]
Since the denominator can never equal 0, x can never equal 0 or 2.
Meaning that the domain is any x-value other than 0 or 2.
Find θ. Round to the nearest degree.
hypotenuse = 14
adjacent = 5
5.1.3: Right Triangle Trigonometry
Answer:
the answer is c
Step-by-step explanation:
when solving for theta, we are given the side length adjacent to it (5) and the length of the hypotenuse ( 14).
the trigonometric function that deals with adjacent and hypotenuse values is cosine.
you can use SOH CAH TOA
stands for :
sin = opposite/hypotenuse
cos = adjacent/ hypotenuse
tan = opposite/adjacent
we dont know theta so :
cos(theta) = 5/14
cos = about 69
check :
cos(69) = 5/14
cos(69) = 0.35836794954
5/14 = 0.35714285714
Find the area of the triangle.
A. 27.8km^2
B. 32.8 km^2
C.14.9 km^2
D. 54.8km^2
Answer:
32.8 mi²
Step-by-step explanation:
Hi there!
Area of a triangle when given two sides, a and b, and the angle that conjoins them, C:
[tex]A=\frac{1}{2} ab*sinC[/tex]
Plug in the known information:
a=11, b=6, C=97°
[tex]A=\frac{1}{2} (11)(6)*sin(97)\\A=33sin(97)\\A=32.8[/tex]
Therefore, the area of the triangle is approximately 32.8 mi².
I hope this helps!
Answer:
B
Step-by-step explanation:
The trick here is to find the height. The answer is
height = sin(180 - 97) * 11
The height is found by finding the supplement of 97, taking the sin of that angle and multiplying by 11.
There is a drawing required. You need to extend ZY until a line from x meets ZY (extended) at right angles. When that happens you find the sine of the supplement.
height = sin(83)*11
height = 10.92
Now use the standard area formula.
Area = base (ZY) * height / 2
base = 6
height = 10.92
Area = 6 * 10.92 /2
Area = 32.75
I need to verify this function is symmetric with respect to the y-axis. How would I go about doing that? Function: x^4-5x^2+3
Answer:
[tex]f(x) = x^4-5x^2+3[/tex] is symmetric to the y-axis
Step-by-step explanation:
Given
[tex]f(x) = x^4-5x^2+3[/tex]
Required
Determine if it is symmetric
First, we check if the function is even by calculating f(-x)
[tex]f(x) = x^4-5x^2+3[/tex]
[tex]f(-x) = (-x)^4-5*(-x)^2+3[/tex]
[tex]f(-x) = x^4-5*x^2+3[/tex]
We have:
[tex]f(x) = f(-x) = x^4-5*x^2+3[/tex]
This implies that the function is even, and even functions are symmetric to the y-axis.
Hence:
[tex]f(x) = x^4-5x^2+3[/tex] is symmetric to the y-axis