I need help ASAP please help me solve this math question

I Need Help ASAP Please Help Me Solve This Math Question

Answers

Answer 1

Answer:

b appears to be correct

Step-by-step explanation:


Related Questions

Previous studies suggest that use of nicotine-replacement therapies and antidepressants can help people stop smoking. The New England Journal of Medicine published the results of a double-blind, placebo-controlled experiment to study the effect of nicotine patches and the antidepressant bupropion on quitting smoking. The target for quitting smoking was the 8th day of the experiment.
In this experiment researchers randomly assigned smokers to treatments. Of the 162 smokers taking a placebo, 28 stopped smoking by the 8th day. Of the 272 smokers taking only the antidepressant buproprion, 82 stopped smoking by the 8th day.
Calculate the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment). (The standard error is about 0.0407. Use critical value z = 2.576.)
( ), ( )
Round your answer to three decimal places. Put lower bound in the first box and upper bound in the second box.

Answers

Using the z-distribution, it is found that the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).

What is a t-distribution confidence interval?

The confidence interval is:

[tex]\overline{x} \pm zs[/tex]

In which:

[tex]\overline{x}[/tex] is the sample mean.z is the critical value.s is the standard error.

In this problem, we are given that z = 2.576, s = 0.0407. The sample mean is the difference of the proportions, hence:

[tex]\overline{x} = \frac{28}{162} - \frac{82}{272} = -0.129[/tex]

Then, the bounds of the interval are given by:

[tex]\overline{x} - zs = -0.129 - 2.576(0.0407) = -0.234[/tex]

[tex]\overline{x} + zs = -0.129 + 2.576(0.0407) = -0.024[/tex]

The 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).

More can be learned about the z-distribution at https://brainly.com/question/25890103

The Susan B. Anthony dollar has a radius of 0.52 inches. Find the area of one side of the coin to the nearest
hundredth.

Answers

the area is 1.70 inches

Answer:

0.85 in²

Step-by-step explanation:

really ? you need help with that ? you could not find the formula for the area of a circle on the internet and type it into your calculator ? I can't do anything else here.

a circle area is

A = pi×r²

r being the radius.

and pi being, well, pi (3.1415....)

r = 0.52 in

so,

A = pi×0.52² = pi×0.2704 = 0.849486654... in²

the area of one side of the coin is 0.85 in²

What is the approximate length of arc s on the circle below? Use 3.14 for Pi. Round your answer to the nearest tenth.

-5.8 ft
-6.3 ft
-27.5 ft
-69.1 ft

Answers

9514 1404 393

Answer:

  69.1 ft

Step-by-step explanation:

The diameter of the circle is 24 ft. The length of the arc is more than twice the diameter, so cannot be less than about 50 ft. The only reasonable choice is ...

  69.1 ft

__

The circumference of the circle is ...

  C = 2πr = 2(3.14)(12 ft) = 75.36 ft

The arc length of interest is 330° of the 360° circle, so is 330/360 = 11/12 times the circumference.

  s = (11/12)(75.36 ft) = 69.08 ft ≈ 69.1 ft

Answer:D

Step-by-step explanation:

Please answer in detail

Answers

Answer:

y=5x-1 I think because the snd option doesn't make sense but you should try y =5x-1

A cell phone company charges a monthly fee of $18 plus five cents for each call. A
customer's total cell phone bill this month is $50.50. Use n to represent the number of
calls.

Answers

Answer:

650 calls

Step-by-step explanation:

so since you have 18$ per month plus 5 cents per call you would do

18+0.5n(n represent the number of calls)= the total fee of $50.50 cents.

thus,now you need to figure out how much the phone calls were without the monthly fee so you would do:

50.50-18=32.50

so 32.50 is the price of all the phone calls

then you divide 32.50 by 0.05 which equals to 650

meaning that n=650

hope I helped!

Which number would be rounded UP to the nearest ten but DOWN to the nearest hundred?
A. 232
B. 238
C. 262
D. 268

Answers

Answer:

B

Step-by-step explanation:

b! i hope this helps


Which is the solution to-x/2<-4
A x<-8
B x2-8
C x <8
D x 8

Answers

Answer:

A.x<-8

Step-by-step explanation:

=1/2x<−4

=2*(1/2x)< (2)*(-4)

= x<-8

A ball is dropped from a height of 14 ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen. (a) Find the total distance the ball has traveled at the instant it hits the ground the fourth time. (Enter an exact number.)

Answers

Answer:

Hello,

742/27 (ft)

Step-by-step explanation:

[tex]h_1=14\\\\h_2=\dfrac{14}{3} \\\\h_3=\dfrac{14}{9} \\\\h_4=\dfrac{14}{27} \\\\[/tex]

[tex]d=14+2*\dfrac{14}{3} +2*\dfrac{14}{9} +2*\dfrac{14}{27} \\=14*(1+\dfrac{1}{3}+\dfrac{2}{9} +\dfrac{2}{27} )\\=14*\dfrac{53}{27} \\=\dfrac{742}{27} \\[/tex]

The total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]

What is the total distance?

Distance is a numerical measurement of how far apart objects or points are. It is the actual length of the path travelled from one point to another.

Here given that,

A ball is dropped from a height of [tex]14[/tex] ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen.

So, after striking with the ground it covers the distance [tex]14[/tex] ft. so it rebounds to the height is [tex]\frac{1}{3}(14)[/tex].

Then again it hits the ground and covers the distance  [tex]\frac{1}{3}(14)[/tex] and again after rebounding it goes to the height is

[tex]\frac{1(1)}{3(3)}.(14)=\frac{(1)^2}{(3)^2}(14)[/tex]

Then it falls the same distance and goes back to the height

[tex]\frac{1}{3}[/tex] ×[tex](\frac{(1)^2}{(3)^2})[/tex] ×[tex]14[/tex] = [tex]\frac{(1)^3}{(3)^3}(14)[/tex]

So, the total distance travelled is

[tex]14+2[\frac{1}{3}(14)+(\frac{1}{3})^2(14)+(\frac{1}{3})^3(14)+...][/tex]

We take the sum is twice because it goes back to the particular height and falls to the same distance.

[tex]S=14+2(\frac{\frac{1}{3}(14)}{1-\frac{1}{3}})\\\\\\S=\frac{a}{1-r}\\\\\\S=14+2(\frac{\frac{14}{3}}{\frac{2}{3}})\\\\S=14+2(\frac{14}{2})\\\\S=14+2(7)\\\\S=14+14\\\\S=28ft[/tex]

Hence, the total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]

To know more about thetotal distance

https://brainly.com/question/951637

#SPJ2

write the expression as a decimal , 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000 =__

Answers

Answer:

6.986.

Step-by-step explanation:

6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000

We do the multiplications first    ( according to PEMDAS):-

= 6 + 9 * 0.1 + 8 * 0.01 + 6 * 0.001

= 6 + 0.9 + 0.08 + 0006

= 6.9 + 0.086

= 6 986.

The value of the equation in the decimal form is A = 6.986

What is an Equation?

Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.

It demonstrates the equality of the relationship between the expressions printed on the left and right sides.

Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.

Given data ,

Let the equation be represented as A

Now , the value of A is

A = 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000

On simplifying the equation , we get

The value of 6 x 1 = 6

The value of 9 x 1/10 = 0.9

The value of 9 x 1/100 = 0.08

The value of 6 x 1/1000 = 0.006

So , substituting the values in the equation A , we get

A = 6 + 0.9 + 0.08 + 0.006

On simplifying the equation , we get

A = 6.986

Therefore , the value of A is 6.986

Hence , the value of the equation is 6.986

To learn more about equations click :

https://brainly.com/question/19297665


#SPJ2

To calculate the volume of a chemical produced in a day a chemical manufacturing company uses the following formula below:
[tex]V(x)=[C_1(x)+C_2(x)](H(x))[/tex]
where represents the number of units produced. This means two chemicals are added together to make a new chemical and the resulting chemical is multiplied by the expression for the holding container with respect to the number of units produced. The equations for the two chemicals added together with respect to the number of unit produced are given below:
[tex]C_1(x)=\frac{x}{x+1} , C_2(x)=\frac{2}{x-3}[/tex]
The equation for the holding container with respect to the number of unit produced is given below:
[tex]H(x)=\frac{x^3-9x}{x}[/tex]

a. What rational expression do you get when you combine the two chemicals?
b. What is the simplified equation of ?
c. What would the volume be if 50, 100, or 1000 units are produced in a day?
d. The company needs a volume of 3000 How many units would need to be produced in a day?

Answers

Answer:

[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]

[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]

[tex]V(50) = 2548.17[/tex]        [tex]V(100) = 10098.10[/tex]       [tex]V(1000) = 999201.78[/tex]

[tex]x = 54.78[/tex]

Step-by-step explanation:

Given

[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]

[tex]C_1(x) = \frac{x}{x+1}[/tex]

[tex]C_1(x) = \frac{2}{x-3}[/tex]

[tex]H(x) = \frac{x^3 - 9x}{x}[/tex]

Solving (a): Expression for V(x)

We have:

[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]

Substitute known values

[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]

Solving (b): Simplify V(x)

We have:

[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]

Solve the expression in bracket

[tex]V(x) = [\frac{x*(x-3) + 2*(x+1)}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]

[tex]V(x) = [\frac{x^2-3x + 2x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]

[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]

Factor out x

[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x(x^2 - 9)}{x}[/tex]

[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x^2 - 9)[/tex]

Express as difference of two squares

[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x- 3)(x + 3)[/tex]

Cancel out x - 3

[tex]V(x) = [\frac{x^2-x+2}{(x + 1)}] *(x + 3)[/tex]

[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]

Solving (c): V(50), V(100), V(1000)

[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]

Substitute 50 for x

[tex]V(50) = [\frac{(50^2-50+2)(50 + 3)}{(50 + 1)}][/tex]

[tex]V(50) = \frac{(2452)(53)}{(51)}][/tex]

[tex]V(50) = 2548.17[/tex]

Substitute 100 for x

[tex]V(100) = [\frac{(100^2-100+2)(100 + 3)}{(100 + 1)}][/tex]

[tex]V(100) = \frac{9902)(103)}{(101)}[/tex]

[tex]V(100) = 10098.10[/tex]

Substitute 1000 for x

[tex]V(1000) = [\frac{(1000^2-1000+2)(1000 + 3)}{(1000 + 1)}][/tex]

[tex]V(1000) = [\frac{(999002)(10003)}{(10001)}][/tex]

[tex]V(1000) = 999201.78[/tex]

Solving (d): V(x) = 3000, find x

[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]

[tex]3000 = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]

Cross multiply

[tex]3000(x + 1) = (x^2-x+2)(x + 3)[/tex]

Equate to 0

[tex](x^2-x+2)(x + 3)-3000(x + 1)=0[/tex]

Open brackets

[tex]x^3 - x^2 + 2x + 3x^2 - 3x + 6 - 3000x - 3000 = 0[/tex]

Collect like terms

[tex]x^3 + 3x^2- x^2 + 2x - 3x - 3000x + 6 - 3000 = 0[/tex]

[tex]x^3 + x^2 -3001x -2994 = 0[/tex]

Solve using graphs (see attachment)

[tex]x = -54.783[/tex] or

[tex]x = -0.998[/tex] or

[tex]x = 54.78[/tex]

x can't be negative. So:

[tex]x = 54.78[/tex]


Geometry help I don’t get this stuff at all

Answers

Answer:

The last option

V = (-1.5,3)

other options dont lie where V is exact

V is only Exact at (-1.5,3)

a special window in the shape of a rectangle with semicircles at each end is to be constructed so that the outside perimeter is 100 feet. find the dimensions of the rectangle tha tmaximizes the total area of the window

Answers

Answer:

The dimensions of the rectangle are length 25 feet and width 15.92 feet

Step-by-step explanation:

Let L be the length of the rectangle and w be the width.

The area of the rectangular part of the shape is Lw while the area of the two semi-circular ends which have a diameter which equals the width of the rectangle is 2 × πw²/8 = πw²/4. The area of each semi-circle is πw²/4 ÷ 2 = πw²/8

So, the area of the shape A = Lw + πw²/4.

The perimeter of the shape, P equals the length of the semi-circular sides plus twice its length. The length of a semi-circular side is πw/2. So, both sides is 2 × πw/2 = πw

P = πw + 2L

Since the perimeter, P = 100 feet, we have

πw + 2L = 100

From this L = (100 - πw)/2

Substituting L into A, we have

A = Lw + πw²/4.

A = [(100 - πw)/2]w + πw²/4.

A = 50w - πw²/2 + πw²/4.

A = 50w - πw²/2

Now differentiating A with respect to w and equating it to zero to find the value of w which maximizes A.

So

dA/dw = d[50w - πw²/2]/dw

dA/dw = 50 - πw

50 - πw = 0

πw = 50

w = 50/π = 15.92 feet

differentiating A twice to get d²A/dw² =  - π indicating that w = 50/π is a value at which A is maximum since d²A/dw² < 0.

So, substituting w = 50/π into L, we have

L = (100 - πw)/2

L = 50 - π(50/π)/2

L = 50 - 50/2

L = 50 - 25

L = 25 feet

So, the dimensions of the rectangle are length 25 feet and width 15.92 feet

Which of the following describes a positive correlation?

As the number of hours spent on homework increases, the tests scores increase.

As the number of apples eaten per year increases, the number of times visiting the doctor every year remains the same.

As the number of times going to bed early increases, the number of times waking up late decreases.

The amount of time a team spent practicing increases, the number of games lost in a season decreases.
THIS IS A MULTIPLE CHOICE QUESTION

Answers

Answer:

First Choice: As the number of hours spent on homework increases, the tests scores increase.

Step-by-step explanation:

The definition of a positive correlation  is a relationship between two given variables, in which both variables are moving in the same direction. This can mean when one variable increases and the other variable increases, too, or one variable decreases and the other decreases as well.

The first choice is a positive correlation because both variables are changing (increasing) in the same direction. As you spend more time on homework, you're likely to get a higher test score.

The second choice cannot be a positive correlation because only one variable is having some kind of change (increasing). The doctor visits amount remains the same, so we can call this a zero-correlation relationship because the number of apples eaten yearly doesn't affect the amount of doctor visits. An apple a day keeps the doctor a way is just a proverb, not to be taken literally.

The third choice cannot be a positive correlation because the two variables are going different directions. Even though the number of times going to bed early is increasing, the number of times waking up late decreases, which is not moving in the same direction as the other variable.

The fourth choice cannot be a positive correlation because, similarly to the third choice, the two variables are going different directions. One variable is increasing, which is the amount of practice time. Meanwhile, the other variable is decreasing (going in the opposite direction), which is the number of games lost in a season.

It is known that the variance of a population equals 1,936. A random sample of 121 has been selected from the population. There is a .95 probability that the sample mean will provide a margin of error of _____. Group of answer choices 31.36 or less 1,936 or less 344.96 or less 7.84 or less

Answers

Answer:

Option d (7.84 or less) is the right alternative.

Step-by-step explanation:

Given:

[tex]\sigma^2=1936[/tex]

[tex]\sigma = \sqrt{1936}[/tex]

   [tex]=44[/tex]

Random sample,

[tex]n = 121[/tex]

The level of significance,

= 0.95

or,

[tex](1-\alpha) = 0.95[/tex]

        [tex]\alpha = 1-0.95[/tex]

[tex]Z_{\frac{\alpha}{2} } = 1.96[/tex]

hence,

The margin of error will be:

⇒ [tex]E = Z_{\frac{\alpha}{2} }(\frac{\sigma}{\sqrt{n} } )[/tex]

By putting the values, we get

        [tex]=1.96(\frac{44}{\sqrt{121} } )[/tex]

        [tex]=1.96(\frac{44}{11} )[/tex]

        [tex]=1.96\times 4[/tex]

        [tex]=7.84[/tex]    

Instructions: Determine whether the following polygons are
similar. If yes, type in the similarity statement and scale factor. If
no, type 'None' in the blanks.

Answers

Answer:

None

Step-by-step explanation:

The given angles aren't equal which is needed for the polygon to be similar

No, the following polygons are not similar.

Used the concept of a similar figure that states,

In terms of Maths, when two figures have the same shape but their sizes are different, then such figures are called similar figures.

Given that,

Two polygons EFGH and JKLM are shown in the image.

Now the corresponding sides of both figures are,

EF = 27

JK = 63

And, EH  = 27

JM = 63

Hence, the ratio of corresponding sides is,

EF/JK = 27/63

= 9/21

= 3/7

EH/JM = 27/63

= 3/7

So their corresponding sides are equal in ratio.

But their corresponding angles are not the same.

To learn more about the angle visit:;

https://brainly.com/question/25716982

#SPJ4

Question 4 (2 marks)
Justin works 14 hours at a normal pay rate of $24.80 per hour and 5 hours of overtime at
time and a half. How much should he be paid?
I
809 words
LE
English (Australia)

Answers

Answer:

554.7

Step-by-step explanation:

The pay=25.8*14+(25.8)*5*1.5=554.7

write your answer as an integer or as a decimal rounded to the nearest tenth​

Answers

Answer:

123456-6-&55674

Step-by-step explanation:

rdcfvvzxv.

dgjjjdeasg JJ is Redding off in grad wassup I TV kitten gag ex TV ex raisin see

recall see

help i need help with math help if u can

Answers

Answer:

6x2 + 6y + 12

Select the correct answer.
What is the best way to describe a theme of this poem?
A.
The main purpose of having New Year's resolutions is to make people feel bad.
B.
The failures of the past should inspire people to accomplish more in the future.
OC.
By the end of the year, it is too late to make any changes to a person's life.
D.
People would accomplish their New Year's resolutions if they wrote them down.

Answers

B.The failures of the past should inspire people to accomplish more in the future.

Michelle would like to know how much of her loan payments will go toward interest. She has a $124,500 loan with a 5.9% interest rate that is compounded monthly. The loan has a term of 10 years. Calculate the total amount of interest that Michelle will pay over the course of the loan.

Answers

9514 1404 393

Answer:

   $40,615.20

Step-by-step explanation:

The amortization formula will tell you Michelle's monthly payment.

  A = P(r/12)/(1 -(1 +r/12)^(-12t)) . . . . loan value P at interest rate r for t years

  A = $124,500(0.059/12)/(1 -(1 +0.059/12)^(-12·10)) ≈ $1375.96

__

The total of Michelle's 120 monthly payments is ...

  12 × $1375.96 = $165,115.20

This amount pays both principal and interest, so the amount of interest she pays is ...

  $165,115.20 -124,500 = $40,615.20

Michelle will pay $40,615.20 in interest over the course of the loan.

__

A calculator or spreadsheet can figure this quickly.

Find the minimum sample size needed to be 99% confident that the sample's variance is within 30% of the population's variance.

Answers

The Minimum sample size table is attached below

Answer:

[tex]X=173[/tex]

Step-by-step explanation:

From the question we are told that:

Confidence Interval [tex]CI=99\%[/tex]

Variance [tex]\sigma^2=30\%[/tex]

Generally going through the table the

Minimum sample size is

[tex]X=173[/tex]

Let a=⟨1,−4,2⟩ and b=⟨−5,−5,−2⟩. Compute:

a+b=⟨ ,, ⟩
a−b=⟨ ,,⟩
2a=⟨ ,,⟩
3a+4b=⟨ ,, ⟩
|a|=

Answers

Answer:

a + b = ⟨-4, -9, 0⟩

a - b = ⟨6, 1, 4⟩

2a = ⟨2, -8, 4⟩

3a + 4b = ⟨-17, -32, -2⟩

|a| = √21

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to Right

Pre-Calculus

Vectors

OperationsScalars[Magnitude] ||v|| = √(x² + y² + z²)

Step-by-step explanation:

Adding and subtracting vectors are follow the similar pattern of normal order of operations:

a + b = ⟨1 - 5, -4 - 5, 2 - 2⟩ = ⟨-4, -9, 0⟩

a - b = ⟨1 + 5, -4 + 5, 2 + 2⟩ = ⟨6, 1, 4⟩

Scalar multiplication multiplies each component:

2a = ⟨2(1), 2(-4), 2(2)⟩ = ⟨2, -8, 4⟩

Remember to multiply in the scalar before doing basic operations:

3a + 4b = ⟨3(1), 3(-4), 3(2)⟩ + ⟨4(-5), 4(-5), 4(-2)⟩ = ⟨3, -12, 6⟩ + ⟨-20, -20, -8⟩ = ⟨-17, -32, -2⟩

Absolute values surrounding a vector signifies magnitude of a vector. Follow the formula:

|a| = √[1² + (-4)² + 2²] = √21

There are two rectangles Jared is examining. He knows the width of the first rectangle measures
2.48 cm, and the length is twice its width.
Jared also knows that the width of the second rectangle is equal to the length of the first rectangle,
and that the area of the second rectangle is 9.92. Given this information, find the length of the
second rectangle for Jared.

Answers

1st rectangle:

width: 2.48cm

length: 4.96

2nd rectangle:

width: 4.96 (equals to the length of the 1st rectangle)

area: 9.92

length: 9.92/4.96 = 2

The three sides of a triangle are n, 3n+3, and 3n−1. If the perimeter of the triangle is 72m, what is the length of each side?

Answers

Answer: 10m, 33m, and 29m

Step-by-step explanation:

n + 3n+3 + 3n-1 = 72m

7n+2=72m

7n = 72-2

n = 70/7

n = 10

0.003 is 1/10 of
Please help I need this for homework !!!!!!!!!!!!

Answers

Answer:

0.03

Step-by-step explanation:

The tree diagram below shows the possible combinations of juice and snack that can be offered at the school fair.

A tree diagram. Orange branches to popcorn and pretzels. Grape branches to popcorn and pretzels. Apple branches to popcorn and pretzels. Grapefruit branches to popcorn and pretzels.

How many different combinations are modeled by the diagram?
6
8
12
32

Answers

Answer:

B. 8

Step-by-step explanation:

The combinations are:

Orange - 2 (with popcorn and pretzels)Grape - 2  (with popcorn and pretzels)Apple - 2  (with popcorn and pretzels)Grapefruit - 2  (with popcorn and pretzels)

Total number of combinations:

4*2 = 8

Correct choice is B

there are 8different combinations are modeled by the diagram.

Answer:

Solution given:

orange:2

grape:2

apple:2

grapefruit:2

no of term:4

now

total no. of combination ia 4*2=8

Beginning in January, a person plans to deposit $1 at the end of each month into an account earning
15% compounded monthly. Each year taxes must be paid on the interest earned during that year. Find
the interest earned during each year for the first 3 years.

Answers

Answer:

hi I am a Nepal

[tex] {233333}^{2332} [/tex]

A ball is thrown in air and it's height, h(t) in feet, at any time, t in seconds, is represented by the equation h(t)=−4t2+16t. When is the ball higher than 12 feet off the ground?
A. 3 B. 1 C. 1 D. 4

Answers

Hence the time that the ball will be height than 12 feet off the ground is 4secs

Given the expression for calculating the height in  feet as;

h(t) = -4t²+16t

If the ball is higher than 12feet, h(t) > 12

Substituting h = 12 into the expression

-4t²+16t > 12

-4t²+16t - 12 > 0

4t²- 16t + 12 > 0

t²- 4t + 3 > 0

Factorize

(t²- 3t)-(t + 3) > 0

t(t-3)-1(t-3) > 0

(t-1)(t-3)>0

t > 1 and 3secs

Hence the time that the ball will be height than 12 feet off the ground is 4secs

Learn more: https://brainly.com/question/18405392

I am struggling and I would be so happy if any of you helped me. Can someone help me with the last two red boxes please? The rest of the question is for reference to help solve the problem. Thank you for your time!

Answers

Answer:

I think you can go with:

The margin of error is equal to half the width of the entire confidence interval.

so  try .74 ±   =   [ .724 , .756] as the confidence interval

Step-by-step explanation:

[infinity]
Substitute y(x)= Σ 2 anx^n and the Maclaurin series for 6 sin3x into y' - 2xy = 6 sin 3x and equate the coefficients of like powers of x on both sides of the equation to n= 0. Find the first four nonzero terms in a power series expansion about x = 0 of a general
n=0
solution to the differential equation.

У(Ñ)= ___________

Answers

Recall that

[tex]\sin(x)=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}[/tex]

Differentiating the power series series for y(x) gives the series for y'(x) :

[tex]y(x)=\displaystyle\sum_{n=0}^\infty a_nx^n \implies y'(x)=\sum_{n=1}^\infty na_nx^{n-1}=\sum_{n=0}^\infty (n+1)a_{n+1}x^n[/tex]

Now, replace everything in the DE with the corresponding power series:

[tex]y'-2xy = 6\sin(3x) \implies[/tex]

[tex]\displaystyle\sum_{n=0}^\infty (n+1)a_{n+1}x^n - 2\sum_{n=0}^\infty a_nx^{n+1} = 6\sum_{n=0}^\infty(-1)^n\frac{(3x)^{2n+1}}{(2n+1)!}[/tex]

The series on the right side has no even-degree terms, so if we split up the even- and odd-indexed terms on the left side, the even-indexed [tex](n=2k)[/tex] series should vanish and only the odd-indexed [tex](n=2k+1)[/tex] terms would remain.

Split up both series on the left into even- and odd-indexed series:

[tex]y'(x) = \displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} + \sum_{k=0}^\infty (2k+2)a_{2k+2}x^{2k+1}[/tex]

[tex]-2xy(x) = \displaystyle -2\left(\sum_{k=0}^\infty a_{2k}x^{2k+1} + \sum_{k=0}^\infty a_{2k+1}x^{2k+2}\right)[/tex]

Next, we want to condense the even and odd series:

• Even:

[tex]\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2k+2}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2(k-1)+1}x^{2k}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2k-1}x^{2k}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty \bigg((2k+1)a_{2k+1} - 2a_{2k-1}\bigg)x^{2k}[/tex]

• Odd:

[tex]\displaystyle \sum_{k=0}^\infty 2(k+1)a_{2(k+1)}x^{2k+1} - 2\sum_{k=0}^\infty a_{2k}x^{2k+1}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2(k+1)}-2a_{2k}\bigg)x^{2k+1}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1}[/tex]

Notice that the right side of the DE is odd, so there is no 0-degree term, i.e. no constant term, so it follows that [tex]a_1=0[/tex].

The even series vanishes, so that

[tex](2k+1)a_{2k+1} - 2a_{2k-1} = 0[/tex]

for all integers k ≥ 1. But since [tex]a_1=0[/tex], we find

[tex]k=1 \implies 3a_3 - 2a_1 = 0 \implies a_3 = 0[/tex]

[tex]k=2 \implies 5a_5 - 2a_3 = 0 \implies a_5 = 0[/tex]

and so on, which means the odd-indexed coefficients all vanish, [tex]a_{2k+1}=0[/tex].

This leaves us with the odd series,

[tex]\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1} = 6\sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}[/tex]

[tex]\implies 2(k+1)a_{2k+2} - 2a_{2k} = \dfrac{6(-1)^k}{(2k+1)!}[/tex]

We have

[tex]k=0 \implies 2a_2 - 2a_0 = 6[/tex]

[tex]k=1 \implies 4a_4-2a_2 = -1[/tex]

[tex]k=2 \implies 6a_6-2a_4 = \dfrac1{20}[/tex]

[tex]k=3 \implies 8a_8-2a_6 = -\dfrac1{840}[/tex]

So long as you're given an initial condition [tex]y(0)\neq0[/tex] (which corresponds to [tex]a_0[/tex]), you will have a non-zero series solution. Let [tex]a=a_0[/tex] with [tex]a_0\neq0[/tex]. Then

[tex]2a_2-2a_0=6 \implies a_2 = a+3[/tex]

[tex]4a_4-2a_2=-1 \implies a_4 = \dfrac{2a+5}4[/tex]

[tex]6a_6-2a_4=\dfrac1{20} \implies a_6 = \dfrac{20a+51}{120}[/tex]

and so the first four terms of series solution to the DE would be

[tex]\boxed{a + (a+3)x^2 + \dfrac{2a+5}4x^4 + \dfrac{20a+51}{120}x^6}[/tex]

Other Questions
C mt s in tr ging nhau R0 = 3. Cn t nht bao nhiu in tr c mton mch c in tr Rt = 8 quien me puede ayudar con eso es para hoyyyy urgente ayuda look at image above question and answers Many freeways have service (or logo) signs that give information on attractions, camping, lodging, food, and gas services prior to off-ramps. These signs typically do not provide information on distances. An article reported that in one investigation, six sites along interstate highways where service signs are posted were selected. For each site, crash data was obtained for a three-year period before distance information was added to the service signs and for a one-year period afterward. The number of crashes per year before and after the sign changes were as follows.Before 13 22 65 123 56 63After 14 21 43 84 75 721. The article included the statement "A paired t-test was performed to determine whether there was any change in the mean number of crashes before and after the addition of distance information on the signs." Carry out such a test. (Note: The relevant normal probability plot shows a substantial linear pattern.)a. State and test the appropriate hypotheses. (Use = 0.05.)b. Calculate the test statistic and P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)t = _____p-value = _____c. State the conclusion in the problem context.A. Fail to reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.B. Reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.C. Fail to reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.D. Reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.2. If a seventh site were to be randomly selected among locations bearing service signs, between what values would you predict the difference in the number of crashes to lie? (Use a 95% prediction interval. Round your answers to two decimal places.) What is meant by Santan religion ? Mention the importance teachings of Hinduism. Write in standard form using integers. (ASAP help)Is it a, b, c or d? If two triangles are congruent, which of the following statements must betrue? Check all that apply.A. The corresponding sides of the triangles are congruent.B. The triangles have the same shape.DC. The triangles have the same size.D. The corresponding angles of the triangles are congruent. What is Ragnarok? a) An apocalyptic prophecy b) A book explaining how to prepare the dead for the afterlife c) Directions explaining how to set up an ullamalizti court d) A creation myth A health food company makes its 'Superfood Blend' from whey protein, which costs $10.25 per pound, and powdered spirulina, which costs $22.45 per pound. The blend ends up costing $16.35 per pound. If the company has 140 pounds of the whey protein on hand, how many pounds of the spirulina does it need to get in order to make the blend? A load of 25 kg is applied to the lower end and of a steal wire of length 25 m and thickness 3.0mm .The other end of wire is suspeded from a rigid support calculate strain and stress produced in the wire 618 000 in standard form Please helpQuadrilateral ABCD is a parallelogram. Let E be a point on AB, and let F$\ be the intersection of lines DE and BC The area of triangle EBF is 1, and the area of triangle EAD is 9. Find the area of parallelogram ABCD. What new labour-saving devices were introduced in the agricultural revolution? You move down 5 units and up 5 units. You end at (1,3). Where did you start? Balance the following skeleton reaction and identify the oxidizing and reducing agents: Include the states of all reactants and products in your balanced equation. You do not need to include the states with the identities of the oxidizing and reducing agents. NO_2(g) rightarrow NO_3^-(aq) +NO_2^- (aq) [basic] The oxidizing agent is:______. The reducing agent is:_______. What is the value of x? A block with a mass of 0.26 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.2 N on the block. When the block is released, it oscillates with a frequency of 1.4 Hz. How far was the block pulled back before being released? the rate of cooling determines ....... and ...... Help me with this please (khan academy) why are Don Gonzala and Laura annoyed with each other?