Answer:
The temperature has to be inversely proportional to the time therefore the solution will be:
60minutes/200degrees=x/350degrees
200x/200=21000/200
x=105minutes
I hope this helps
Answer:
105 minutes.
Step-by-step explanation:
As 200 degrees is less than 350 it will take longer at 200.
By proportion that would be (350/200) * 60
= 60 * 7/4
= 105 minutes.
what is heavier ten tons of wool or ten tons of steel
Suppose the variable x is represented by a standard normal distribution. What is the probability of x > 0.3 ? Please specify your answer in decimal terms and round your answer to the nearest hundredth (e.g., enter 12 percent as 0.12).
Answer: 0.38
Step-by-step explanation:
Since the variable x is represented by a standard normal distribution, the probability of x > 0.3 will be calculated thus:
P(x > 0.3)
Then, we will use a standard normal table
P(z > 0.3)
= 1 - p(z < 0.3)
= 1 - 0.62
= 0.38
Therefore, p(x > 0.3) = 0.38
The probability of x > 0.3 is 0.38.
The sum of two numbers is 41. The larger number is 17 more than the smaller number. What are the numbers?
Larger number:
Smaller number:
Find the surface area of this triangular prism.
Answer:
96
Step-by-step explanation:
Surface area=2*Area of triangle+Area of different rectangular strips
Surface area=2*(1/2)*(48)+2*8+2*6+2*10=48+48=96
simplify 7-(3n+6)+10n
Answer:
1 + 7n
Step-by-step explanation:
7-(3n+6)+10n
7 - 3n - 6 + 10 n
1 - 7n
Answered by Gauthmath
Pls give this anwere with explanation spammer will be reported
Answer:
Whole number —> X
Twice the square of the number —> 2X²
X + 2X² = 10
2X²+X –10 =0
(2x + 5) ( x–2) =0
2x +5=0 —> 2x= – 5 —> x= – 5/2 = —> x= - 2.5 (rejected)
x–2=0 —> x= 2
So Ans ; X= 2 ( the number )
I hope I helped you^_^
Cars arrive at an automatic car wash system every 10 minutes on average. The cars inter-arrival times are exponentially distributed. Washing time for each is 6 minutes per car and is purely deterministic (i.e., the waiting line system is M/D/c). Assuming that the car wash has a single bay to serve the cars, what is the average number of cars waiting in line (L.)?
Answer:
the average number of cars waiting in line L[tex]q[/tex] is 0.45
Step-by-step explanation:
Given the data in the question;
Cars arrive at an automatic car wash system every 10 minutes on average.
Car arrival rate λ = 1 per 10 min = [ 1/10 × 60 ]per hrs = 6 cars per hour
Washing time for each is 6 minutes per car
Car service rate μ = 6min per car = [ 1/6 × 60 ] per hrs = 10 cars per hour
so
P = λ/μ = 6 / 10 = 0.6
Using the length of queue in M/D/1 system since there is only one service bay;
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ P² / ( 1 - P ) ]
so we substitute
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ (0.6)² / ( 1 - 0.6 ) ]
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ 0.36 / 0.4 ]
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ 0.9 ]
L[tex]q[/tex] = 0.45
Therefore, the average number of cars waiting in line L[tex]q[/tex] is 0.45
Susan has an investment account which compounds interest annually at a rate of 3.2%. After 6 years, she has 86125 in the
account. How much money did she initially place in the account? Round your answer to the nearest whole number. Do not
include a s in your answer.
Provide your answer below:
Answer:
10610
Step-by-step explanation:
Given,
T=6years
R=3.2%
A=86125
Now,
CA=P[1+R/10]^T
or,P=86125/[1+3.2/10]^6
=86125/5.29
=10610
The table of values represents a linear function g(x), where x is the number of days that have passed and g(x) is the balance in the bank account:
Part A: Find and interpret the slope of the function. (3 points)
Part B: Write the equation of the line in point-slope, slope-intercept, and standard forms. (3 points)
Part C: Write the equation of the line using function notation. (2 points)
Part D: What is the balance in the bank account after 5 days? (2 points)
Answer:
see below
Step-by-step explanation:
Part A
The slope is found by
m = ( y2-y1)/(x2-x1)
= ( 1200-1500)/(4-0)
= -300/4
=-75
Part B
point slope y-y1 = m(x-x1) where m is the slope and (x1,y1) is a point on the line
y-1200 = -75(x-4)
slope intercept y = mx+b where m is the slope and b is the y intercept
y = -75x + 1500
standard form Ax+By =C
75x + y = 1500
Part C
Change y to g(x) in the slope intercept form
g(x) = -75x + 1500
Part D
Let x = 5
g(5) = -75(5) + 1500
=-375+1500
=1125
Find the missing numerator: 3 1/3 = x/6
[tex]\sf\huge\underline\color{pink}{༄Answer:}[/tex]
[tex]\tt3 \frac{1}{3} = \frac{x}{6} \\ = \tt \frac{10}{3} = \frac{x}{6} \\ = \tt \frac{x}{6} = \frac{10}{3} \\ = \tt6 \frac{x}{6} = 6( \frac{10}{3} ) \\ = \tt\large\boxed{\tt{\color{pink}{x = 20}}}[/tex]
[tex]\color{pink}{==========================}[/tex]
#CarryOnLearning
The height of a projectile launched upward at a speed of 48 feet/second from a height of 160 feet is given by the function h(t)=-16sup(t,2)+48t+160. How long will it take the projectile to hit the ground?
Answer:
Hello,
5 s
Step-by-step explanation:
[tex]h(t)=-16t^2+48t+160\\=-16(t^2-3t-10)\\=-16(t^2-5t+2t-10)\\=-16(t(t-5)+2(t-5))\\=-16(t-5)(t+2)\\\\h(t)=0 \Longleftrightarrow\ t=-2\ or\ t=5\\\\Only\ t=5\ is \ a\ answer.(time\ must\ be\ positive)[/tex]
I need help wit this ASAP 6 minutes
The figure below is a rectangular prism.
Which edge is parallel to segment BD?
A. HK
B. BM
C. DK
D. AH
A bag contains 8 red balls and 3 white balls. Two balls are drawn without replacement. (Enter your probabilities as fractions.) (a) What is the probability that the second ball is white, given that the first ball is red
Answer:
12/55
Step-by-step explanation:
Probability is the ratio of the number of possible outcomes to the number of total outcomes.
Given that the bag contains 8 red balls and 3 white balls, the probability of picking a red ball
p(r) = 8/(8+3) = 8/11
Probability of picking a white ball
= 3/11
when a red ball is picked first, the total number of balls reduces to 10 hence the probability that the second ball is white, given that the first ball is red
=8/11 * 3/10
= 24/110
= 12/55
Armando's carpet has an area of 220 square feet. He hires the Carpet Pro carpet cleaning service, which is able to clean 9 square feet of his carpet every minute. Therefore, in the first minute, CarpetPro is able to clean 9 square feet of Armando's carpet (leaving 211 square feet remaining to be cleaned). In the second minute, the cleaner is again able to clean 9 square feet of carpet (leaving 202 square feet to be cleaned), etc. Which of the following functions expresses the number of square feet that still remain to be cleaned after t minutes from the time that the carpet cleaner began cleaning this carpet.
a. A(t) = 220 - 9
b. A(t) = 220 - 0.1
c. A(t) = 220(0.1)
d. A(t) = 220(0.96)
e. A(t) 220 - 0.96
Answer:
The answer is A
Step-by-step explanation:
The answer needs to be in slope-intercept form or y=mx+b because the amount of carpet being cleaned every minute is a constant decrease of 9 square feet.
So our b value (or how much carpet cleaned at 0 minutes) is 220
And our m value (or slope or how much carpet is being cleaned every minute) is 9
So if we plug the variables with the tangible numbers we get A(t) = -9x+220 or A(t) = 220-9x.
provided by gauth math
A parent is buying two types of chocolate truffles for their family. The oldest child can eat twice as much as their younger siblings and prefers white chocolate (W), the younger three like dark chocolate (D) and the spouse likes white chocolate (W). Five white chocolate truffles (W) cost the same as three dark chocolate truffles (D). If the parent bought 6 white chocolate truffles(W) and 10 dark chocolate truffles (D), and spent $34.00, how much was each dark chocolate truffle
Answer:
Each chocolate truffle is $2.125
Step-by-step explanation:
Honestly, I'm not 100% sure if this is correct, and I am truly sorry if this is wrong, but its worth a try :)
The differential equation of a certain system is 20y′′+cy′+80y=0
, where c is called damping constant for what value of c critical damping hapens
Options:
110
64
50
60
Answer:
c=80
Step-by-step explanation:
Based on my reading the critical damping occurs when the discriminant of the quadratic characteristic equation is 0.
So let's see that characteristic equation:
20r^2+cr+80=0
The discriminant can be found by calculating b^2-4aC of ar^2+br+C=0.
a=20
b=c
C=80
c^2-4(20)(80)
We want this to be 0.
c^2-4(20)(80)=0
Simplify:
c^2-6400=0
Add 6400 on both sides:
c^2=6400
Take square root of both sides:
c=80 or c=-80
Based on further reading damping equations in form
ay′′+by′+Cy=0
should have positive coefficients with b also having the possibility of being zero.
Convert 110101 in base 2 to base 10
Answer:
base-2 base-10
110011 = 51
110100 = 52
110101 = 53
110110 = 54
21 more rows
1. Ten times the sum of -270 and a number gives -20.
9514 1404 393
Answer:
equation: 10(-270 +n) = -20number: 268Step-by-step explanation:
If n represents the number, we have ...
10(-270 +n) = -20 . . . an equation for n
__
The solution can be found as ...
-270 +n = -2 . . . . . divide by 10
n = 268 . . . . . . . add 270
The number is 268.
Which of the following quadratic equations is written in general form?
The 3rd one
Step-by-step explanation:
Reason being that it has no factors, meaning it cannot be simplified any further, but quadratic method can be used to attain factors.
hope it makes sense :)
2x³=10 what is x
what is x
Answer:
x=1.7099
Step-by-step explanation:
2x³=10
x³=10/2
x³=5
x=∛5
x=1.7099
Suppose that a category of world-class runners are known to run a marathon in an average of 147 minutes with a standard deviation of 12 minutes. Consider 49 of the races. Find the probability that the runner will average between 146 and 150 minutes in these 49 marathons. (Round your answer to two decimal places.)
Answer:
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Average of 147 minutes with a standard deviation of 12 minutes.
This means that [tex]\mu = 147, \sigma = 12[/tex]
Consider 49 of the races.
This means that [tex]n = 49, s = \frac{12}{\sqrt{49}} = \frac{12}{7} = 1.7143[/tex]
Find the probability that the runner will average between 146 and 150 minutes in these 49 marathons.
This is the p-value of Z when X = 150 subtracted by the p-value of Z when X = 146. So
X = 150
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{150 - 147}{1.7143}[/tex]
[tex]Z = 1.75[/tex]
[tex]Z = 1.75[/tex] has a p-value of 0.9599
X = 146
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{146 - 147}{1.7143}[/tex]
[tex]Z = -0.583[/tex]
[tex]Z = -0.583[/tex] has a p-value of 0.3075.
0.9599 - 0.3075 = 0.6524.
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.
8. If 30 cents out of every 1 dollar goes to taxes and the rest is net income, what's the
ratio of taxes to net income?
d
A. 30 : 7
B. 3:10
C. 30 : 1
D. 3:7
Answer:
D. 3:7Step-by-step explanation:
1 dollar = 30 cents tax + 70 cents net income
The ratio of taxes to net income:
30 : 70 = 3 : 7Correct choice is D
If 30cents are out then net income=100-30=70
ratio:-
[tex]\\ \rm\Rrightarrow \dfrac{30}{70}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{3}{7}[/tex]
[tex]\\ \rm\Rrightarrow 3:7[/tex]
The coordinates of the preimage are:
A(−8,−2)
B(−4,−3)
C(−2,−8)
D(−10,−6)
Now let’s find the coordinates after the reflection over the x-axis.
A′(−8,
)
B′(−4,
)
C′(−2,
)
D′(−10,
)
And now find the coordinates after the reflection over the y-axis.
A′′(
,2)
B′′(
,3)
C′′(
,8)
D′′(
,6)
This is also the same as a rotation of 180∘.
9514 1404 393
Answer:
A'(-8, 2) ⇒ A"(8, 2)B'(-4, 3) ⇒ B"(4, 3)C'(-2, 8) ⇒ C"(2, 8)D'(-10, 6) ⇒ D"(10, 6)Step-by-step explanation:
Reflection over the x-axis changes the sign of the y-coordinate. Reflection over the y-axis changes the sign of the x-coordinate. We can summarize the transformations as ...
preimage point ⇒ reflection over x ⇒ reflection over y
A(−8,−2) ⇒ A'(-8, 2) ⇒ A"(8, 2)
B(−4,−3) ⇒ B'(-4, 3) ⇒ B"(4, 3)
C(−2,−8) ⇒ C'(-2, 8) ⇒ C"(2, 8)
D(−10,−6) ⇒ D'(-10, 6) ⇒ D"(10, 6)
What is the measure of the angle in red?
70°
Answer:
See pic below.
Answer: C. 380°
Step-by-step explanation:
Please help me solve the question...
Answer:
All of area is πr²
Step-by-step explanation:
and we should write the area kind of radian. So if all area is π*(12)²= 144π - this for 360°- and 240° is 96π
but we must add area of the triangle which has two same side and has 6 high so it's area is 6*12√3/2 = 36✓3
our answer is 96π+ 36✓3
The domain of a composite function (fog)(x) is the set of those inputs x in the domain of g for which g(x) is in the domain of f.
True
False
What is 1.25 x 10^8 in standard form?
Answer:
125000000
Step-by-step explanation:
1.25 x 10^8
Move the decimal 8 places to the right
1.25
We can move it two places
125
We need to add 6 more zeros
125000000
Answer: 125,000,000
Step-by-step explanation:
What is the equation of exponential regression equation? Round all numbers you your answer to three decimal places
Given:
The given values are:
[tex]a=0.2094539899[/tex]
[tex]b=2.507467975[/tex]
[tex]r^2=0.9435996398[/tex]
[tex]r=0.9713905701[/tex]
To find:
The exponential regression equation for the given values (Rounded to three decimal places).
Solution:
The general form of exponential regression equation is:
[tex]y=a\cdot b^x[/tex] ...(i)
Where, a is the initial value and b is the growth/decay factor.
We have,
[tex]a=0.2094539899[/tex]
[tex]b=2.507467975[/tex]
Round these numbers to three decimal places.
[tex]a\approx 0.209[/tex]
[tex]b\approx 2.507[/tex]
Substitute [tex]a=0.209, b=2.507[/tex] in (i) to find the exponential regression equation.
[tex]\hat{y}=0.209\cdot 2.507^x[/tex]
Therefore, the correct option is C.
7 times a certain number less four times that same number minus 2 is -58 what is the number
Step-by-step explanation:
7 times a certain number :
Let the unknown number be x
[tex]7 \times x[/tex]
is less four times that same number -2 is 58 :
7x - 4x -2 = 58
Collect like terms
7x-4x = 58+2
3x = 60
3x/3 = 60/3
x = 20
Let the number be x
ATQ
[tex]\\ \sf\longmapsto 7x-4x-2=58[/tex]
[tex]\\ \sf\longmapsto 3x-2=58[/tex]
[tex]\\ \sf\longmapsto 3x=58+2[/tex]
[tex]\\ \sf\longmapsto 3x=60[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{60}{3}[/tex]
[tex]\\ \sf\longmapsto x=20[/tex]