If x = -1 then how much is 2x - 1

a) 1
b) -3
c) -2​
hurry please need to turn in 10 min

Answers

Answer 1

Answer: -3

Step-by-step explanation: 2x = -2 then you subtract 1 from that which is the same as adding negative one so -2 - 1 or -2 + -1 = -3


Related Questions

The coffee cups can hold 7/9 of a pint of liquid. If Emily pours 2/3 of a pint of coffee into a cup,how much milk can a customer add? PLZ HELP!​

Answers

Answer:

1/9

Step-by-step explanation:

easy 2/3 is equivalent to 6/9. So there is 1/9 of a pint left

cSuppose you are standing such that a 45-foot tree is directly between you and the sun. If you are standing 200 feet away from the tree and the tree casts a 225-foot shadow, how tall could you be and still be completely in the shadow of the tree? x 225 ft 200 ft 45 ft Your height is ft (If needed, round to 1 decimal place.)

Answers

Answer:

you could stand at 5.0 ft and still be completely in the shadow of the tree

Step-by-step explanation:

From the diagram attached below;

We consider;

[tex]\overline {BC}[/tex] to be the height of the tree and [tex]\overline {DE}[/tex] to be the height of how tall you could be and still be completely in the shadow of the tree.

∠D = ∠B = 90°

Also;

ΔEAD = ΔBAC   (similar triangles)

Therefore, their sides will also be proportional

i.e

[tex]\dfrac{\overline {DE}}{ \overline {BC}}= \dfrac{\overline{AD}}{ \overline{AC}}[/tex]

[tex]\dfrac{x}{ 45}= \dfrac{225-220}{225}[/tex]

[tex]\dfrac{x}{ 45}= \dfrac{25}{225}[/tex]

By cross multiply

225x = 45 × 25

[tex]x = \dfrac{45 \times 25}{225}[/tex]

[tex]x = \dfrac{1125}{225}[/tex]

x = 5.0 ft

Therefore, you could stand at 5.0 ft and still be completely in the shadow of the tree

which statement correctly describes the relation between the variable in the equation C = nd

Answers

Answer:

nd is c

Step-by-step explanation:

PLSSSS!!! (10points)

Answers

Answer:

angle B is 62 Degress angle A is 87 degress D is 87 degress C is 28 degress.

Step-by-step explanation:

I am in geometry btw so i know this stuff and 65 plus 28 is 93 and 180 -93 is 87 so a is 87 and d is 87 too becuase of vertical angles and b is 62 becuase 90 -28 is 62 and c is 28 becuase of vertical angles your wellcome kid good luck!!!!

The mean weight of newborn infants at a community hospital is 6.6 pounds. A sample of seven infants is randomly selected and their weights at birth are recorded as 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds. Does the sample data show a significant increase in the average birthrate at a 5% level of significance?
A. Fail to reject the null hypothesis and conclude the mean is 6.6 lb.
B. Reject the null hypothesis and conclude the mean is lower than 6.6 lb.
C. Reject the null hypothesis and conclude the mean is greater than 6.6 lb.
D. Cannot calculate because the population standard deviation is unknown

Answers

Answer:

The correct option is  A

Step-by-step explanation:

From the question we are told that

    The  population is  [tex]\mu = 6.6[/tex]

     The level of significance is [tex]\alpha = 5\% = 0.05[/tex]

      The sample data is  9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds

The Null hypothesis is [tex]H_o : \mu = 6.6[/tex]

 The Alternative hypothesis is  [tex]H_a : \mu > 6.6[/tex]

The critical value of the level of significance obtained from the normal distribution table is

                       [tex]Z_{\alpha } = Z_{0.05 } = 1.645[/tex]

Generally the sample mean is mathematically evaluated as

      [tex]\=x = \frac{\sum x_i }{n}[/tex]

substituting values

      [tex]\=x = \frac{9.0 + 7.3 + 6.0+ 8.8+ 6.8+ 8.4+6.6 }{7}[/tex]

      [tex]\=x = 7.5571[/tex]

The standard deviation is mathematically evaluated as

           [tex]\sigma = \sqrt{\frac{\sum [ x - \= x ]}{n} }[/tex]

substituting values

          [tex]\sigma = \sqrt{\frac{ [ 9.0-7.5571]^2 + [7.3 -7.5571]^2 + [6.0-7.5571]^2 + [8.8- 7.5571]^2 + [6.8- 7.5571]^2 + [8.4 - 7.5571]^2+ [6.6- 7.5571]^2 }{7} }[/tex][tex]\sigma = 1.1774[/tex]

Generally the test statistic is mathematically evaluated as

            [tex]t = \frac{\= x - \mu } { \frac{\sigma }{\sqrt{n} } }[/tex]

substituting values

           [tex]t = \frac{7.5571 - 6.6 } { \frac{1.1774 }{\sqrt{7} } }[/tex]

            [tex]t = 1.4274[/tex]

Looking at the value of  t and  [tex]Z_{\alpha }[/tex]   we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis

  What this implies is that there is no sufficient evidence to state that the sample data show as significant increase in the average birth rate

The conclusion is that the mean is  [tex]\mu = 6.6 \ lb[/tex]

Height of a tree increases by 2.5 feet each growing season. Quadratic, linear or exponential?

Answers

Answer:

Linear

Step-by-step explanation:

Given

Height of a tree grows by 2.5 feet

Required

Determine the type of relationship

Take for instance, the height of the tree at year 1 is x

At year 2, it will be x + 2 * 1

At year 3, it will be x + 2 * 2

At year 4, it will be x + 2 * 3

Following same pattern

At year n, it will be x + 2 *(n - 1)

Hence, growth rate = x + 2(n -1)

From the list of given options, the correct answer is Linear because the derived formula above is an example of a linear equation

Simplify your answer as much as possible

Answers

You said    - 1/3 - 3/5 x  =  1/2

Multiply each side by 3 :

- 1 - 9/5 x  =  3/2

Multiply each side by 5 :

- 5 - 9x  =  15/2

Multiply each side by 2 :

- 10 - 18x = 15

Add 10 to each side :

- 18x  =  25

Divide each side by -18 :

x = - 25/18

or  x = - 1 and 7/18 (same thing)

Which of the following is equal to the rational expression below when x=-1
or -8?
11(x+8)
/(x + 1)(x+8)​

Answers

Answer:

11/(x + 1) thus d: is the answer

Step-by-step explanation:

Simplify the following:

(11 (x + 8))/((x + 1) (x + 8))

(11 (x + 8))/((x + 1) (x + 8)) = (x + 8)/(x + 8)×11/(x + 1) = 11/(x + 1):

Answer: 11/(x + 1)

Given the number of trials and the probability of success, determine the probability indicated: a. n = 15, p = 0.4, find P(4 successes) b. n = 12, p = 0.2, find P(2 failures) c. n = 20, p = 0.05, find P(at least 3 successes)

Answers

Answer:

A)0.126775 B)0.000004325376 C) 0.07548

Step-by-step explanation:

Given the following :

A.) a. n = 15, p = 0.4, find P(4 successes)

a = number of trials p=probability of success

P(4 successes) = P(x = 4)

USING:

nCx * p^x * (1-p)^(n-x)

15C4 * 0.4^4 * (1-0.4)^(15-4)

1365 * 0.0256 * 0.00362797056

= 0.126775

B)

b. n = 12, p = 0.2, find P(2 failures),

P(2 failures) = P(12 - 2) = p(10 success)

USING:

nCx * p^x * (1-p)^(n-x)

12C10 * 0.2^10 * (1-0.2)^(12-10)

66 * 0.0000001024 * 0.64

= 0.000004325376

C) n = 20, p = 0.05, find P(at least 3 successes)

P(X≥ 3) = p(3) + p(4) + p(5) +.... p(20)

To avoid complicated calculations, we can use the online binomial probability distribution calculator :

P(X≥ 3) = 0.07548

Records indicate that x years after 2008, the average property tax on a three bedroom home in a certain community was T(x) =20x^2+40x+600 dollars.

Required:
a. At what rate was the property tax increasing with respect to time in 2008?
b. By how much did the tax change between the years 2008 and 2012?

Answers

Answer:

a) 40 dollars

b) 480 dollars

Step-by-step explanation:

Given the average property tax on a three bedroom home in a certain community modelled by the equation T(x) =20x²+40x+600, the rate at which the property tax is increasing with respect to time in 2008 can be derived by solving for the function T'(x) at x=0

T'(x) = 2(20)x¹ + 40x° + 0

T'(x) = 40x+40

At x = 0,

T'(0) = 40(0)+40

T'(0) = 40

Hence the property tax was increasing at a rate of 40dollars with respect to the initial year (2008).

b) There are 4 years between 2008 and 2012. To know how much that the tax change between the years 2008 and 2012, we will find T(4) - T(0)

Given T(x) =20x²+40x+600

T(4) =20(4)²+40(4)+600

T(4) = 320+160+600

T(4) = 1080 dollars

Also T(0) =20(0)²+40(0)+600

T(0) = 0+0+600

T(0)= 600 dollars

T(4) - T(0) = 1080 - 600

T(4) - T(0) = 480 dollars

Hence, the tax has changed by $480 between 2008 and 2012


Help please!!! Thank you

Answers

Answer:

5/7

Step-by-step explanation:

There are a couple ways to solve this.  One would be by finding the least common denominator for each one with 2/3, subtracting, and seeing what is left over.  Another way is converting to decimals.

2/3=0.666666

————————-

7/8=0.875

8/9=0.88888

4/5=0.8

5/7=0.7143

They are all greater than 2/3 (0.6666666), but 5/7 is the closest, so would have the least waste.

Julissa gave out an equal number of oranges to each of the 6 apartments on her floor. if she gave each apartment 5 oranges, how many oranges did Julissa give out in all?

Answers

julissa gave equal oranges in 6 apartments

she gave each apartment 5 oranges

so total no. of oranges are = 6×5 = 30

Answer:

D. 30

Step-by-step explanation:

Which equation does the graph of the systems of equations solve? (1 point) 2 linear graphs. They intersect at negative 1, 1

Answers

Answer:

  3x +4 = -2x -1

Step-by-step explanation:

The line that goes up to the right has a y-intercept of +4. This is where it crosses the y-axis. It's slope (rise/run) is 3/1 = 3, so its equation in slope-intercept form is ...

  y = mx +b . . . . where m is the slope, b is the y-intercept

  y = 3x +4

The other line has a negative slope and a y-intercept of -1. The slope of that line is rise/run = -2/1 = -2, so its equation is ...

  y = -2x -1

__

The solution point will have the x-coordinate that is the solution of the equation ...

  y = y

  3x +4 = -2x -1 . . . . . . substituting the above expressions for y.

When is it easier to use the addition method rather than the substitution method to solve a system of equations?

Answers

Answer: When the addition of two or more equations leads to the elimination of one of the variables.

Step-by-step explanation:

When we have a system of equations, the addition method seems to be useful only when adding the equations will lead to the elimination of one of the variables:

An example of this can be, for the variables x and y:

3*x + x*y - 2*y = 3

x^2 + x*y - 2y = 42

now we can "add" (actually subtract) the equations and get (eq2 minus eq1)

(x^2 + x*y - 2y) - (3*x + x*y - 2*y ) = 42 - 3

x^2 - 3*x = 39

x^2 - 3*x - 39 = 0

And now we can solve it for x, and then find the value of y.

There are $400$ pages in Sheila's favorite book. The average number of words per page in the book is $300$. If she types at an average rate of $40$ words per minute, how many hours will it take to type the $400$ pages of the book?

Answers

Answer:

50hours

Step-by-step explanation:

Given that there are 400 pages in Sheila's favorite book.

The average number of words per page in the book is 300

She types an average rate of 40words per minute.

So to type 400pages of the book

Total number of words in the pages = 400×300 = 120000 words

Typing rate : 40words ------- 1minute

120000 words ----------- x minutes

Hence we have 40 × X mins = 120000 × 1min

Make X the subject

40X = 120000minutes

X = 120000/40

X = 3000minutes

Since 60minutes = 1hour

3000minutes = 3000minutes/60

= 50hours

Hence it took her 50hours to type 400pages

Solution:

The total number of words in the book is 400 x 300. Sheila types at a rate of 40 words per minute, or 40 x 60 words per hour. The number of hours it takes her is equal to the number of words divided by her rate of typing, or 400x300/40x60 = 50 hours.

Daniel and Jack together sell 96 tickets to a raffle. Daniel sold 12 more tickets than his friend. How many raffle tickets each friend sell?

Answers

Answer:

Daniel sold 54 and Jack sold 42

Step-by-step explanation:

D = number of tickets that Daniel sold

J = number of tickets that Jack sold

D + J = 96

D = 12+ J

Substitute the second equation into the first equation

12 + J + J = 96

Combine like terms

12 + 2J = 96

Subtract 12 from each side

2J = 84

Divide by 2

J = 42

D = J+12

D = 54

Daniel sold 54 and Jack sold 42

Answer:

Jack sold 42 & Daniel sold 54.

Step-by-step explanation:

96 - 12 = 84

84 / 2 = 42

Jack sold 42.

42 + 12 = 54

Daniel sold 54.

42 + 54 = 96

distance between 2,-5 and 3,-7

Answers

Answer:

√5

Step-by-step explanation:

[tex](2 ,-5) = (x_1,y_1)\\(3,-7)=(x_2,y_2)\\\\d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\ \\d = \sqrt{(3-2)^2 +(-7-(-5))^2}\\ \\d = \sqrt{(1)^2+(-7+5)^2}\\ \\d = \sqrt{(1)^2 + (-2)^2}\\ \\d = \sqrt{1 +4}\\ \\d = \sqrt{5}[/tex]

It has been reported that 20.4% of incoming freshmen indicate that they will major in business or a related field. A random sample of 400 incoming college freshmen was asked their preference, and 95 replied that they were considering business as a major. Estimate the true proportion of freshman business majors with 98% confidence. Does your interval contain 20.4%?

Answers

Answer:

The  98% confidence interval

                         [tex]0.1884 < p < 0.2876[/tex]

The confidence interval contains  20.4%

Step-by-step explanation:

From the question we are told that

    The sample size is  n =  400

The number that replied that they were considering business as a major [tex]x = 95[/tex]

  The  sample proportion is mathematically  evaluated as

          [tex]\r p = \frac{95}{400}[/tex]

         [tex]\r p = 0.238[/tex]

Given that the confidence level 98% then the level of significance is evaluated as

      [tex]\alpha = 100 - 98[/tex]

     [tex]\alpha = 2 \%[/tex]

     [tex]\alpha = 0.02[/tex]

Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex]  from the normal distribution table is  

       [tex]Z_{\frac{ \alpha }{2} } = 2.33[/tex]

  Generally the margin of error is mathematically represented as

       [tex]E = Z_{\frac{ \alpha }{2} } * \sqrt{ \frac{ p (1 - p )}{n} }[/tex]  

       [tex]E = 2.33 * \sqrt{ \frac{ 0.238 (1 - 0.238 )}{400} }[/tex]

        [tex]E = 0.0496[/tex]

The  98%  confidence interval is mathematically represented

   [tex]\r p - E < p < \r p + E[/tex]

 =>    [tex]0.238 - 0.0496 < p <0.238 + 0.0496[/tex]

=>      [tex]0.1884 < p < 0.2876[/tex]

Evaluate 2/3 + 1/3 + 1/6 + …

Answers

Answer:

7/6

Step-by-step explanation:

The LCD of these three fractions is 6; the denominators 3, 3 and 6 divide evenly into 6.

Therefore we have:

4/6 + 2/6 + 1/6 = 7/6

Find the value of x. A: 15 B: 12 C: 10 D: 8

Answers

Answer:

[tex]\boxed{\sf C. \ 10}[/tex]

Step-by-step explanation:

[tex]\sf The \ intersecting \ chord \ theorem \ states \ that \ the \ products[/tex]

[tex]\sf of \ the \ lengths \ of \ the \ line \ segments \ on \ each \ chord \ are \ equal.[/tex]

[tex]NH \times HT = MH \times HY[/tex]

[tex](x+20) \times 8=12 \times 20[/tex]

[tex]\sf Expand \ brackets \ and \ multiply.[/tex]

[tex]8x+160=240[/tex]

[tex]\sf Subtract \ 160 \ from \ both \ sides.[/tex]

[tex]8x+160-160=240-160[/tex]

[tex]8x=80[/tex]

[tex]\sf Divide \ both \ sides \ by \ 8.[/tex]

[tex]\displaystyle \frac{8x}{8} =\frac{80}{8}[/tex]

[tex]x=10[/tex]

The value of x is 10.

We have a circle and inside it two chords MY and NT intersect at point H.

We have to find the value of x in the figure.

What is intersecting chord theorem?

According to the intersecting chord theorem, when two chords say AB and CD intersect at point O, then

AO x OB = CO x OD

Applying the chord intersecting theorem to the figure in the question, we get -

MH x HY = NH x HT

12 x 20 = (x+20) x 8

240 = 8x + 160

8x = 80

x = 10

Hence the value of x is 10.

To solve more questions on Circles and chords, visit the link below -

https://brainly.com/question/15568573

#SPJ5

Factor 4(20) + 84. 4(20 + 21) 4(21 + 20) 20(4 + 84) 20(4 + 4)

Answers

Answer:

[tex]\huge\boxed{4 ( 20 + 21)}[/tex]

Step-by-step explanation:

4(20) + 84

Resolve Parenthesis

80 + 84

Taking 4 common as both are the multiples of 4

4 ( 20 + 21)

Kenji earned the test scores below in English class.
79, 91, 93, 85, 86, and 88
What are the mean and median of his test scores?

Answers

Answer:

mean=87

median=87

Step-by-step explanation:

mean=sum of test score/number of subject

mean=79+91+93+85+86+88/6

mean=522/6

mean=87

Literal meaning of median is medium.

To find the number which lies in the medium, we must rearrange the number in ascending.

79, 91, 93, 85, 86, 88

79, 85, 86, 88, 91, 93

86+88/2=87

Hope this helps ;) ❤❤❤

Let me know if there is an error in my answer.

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Given that
[tex]\sqrt{2p-7}=3[/tex]
and
[tex]7\sqrt{3q-1}=2[/tex]
Evaluate
[tex]p + {q}^{2} [/tex]​

Answers

Answer:

Below

Step-by-step explanation:

The two given expressions are:

● √(2p-7) = 3

● 7√(3q-1) = 2

We are told to evaluate p+q^2

To do that let's find the values of p and q^2

■■■■■■■■■■■■■■■■■■■■■■■■■■

Let's start with p.

● √(2p-7) = 3

Square both sides

● (2p-7) = 3^2

● 2p-7 = 9

Add 7 to both sides

● 2p-7+7 = 9+7

● 2p = 16

Divide both sides by 2

● 2p/2 = 16/2

● p = 8

So the value of p is 8

■■■■■■■■■■■■■■■■■■■■■■■■■■

Let's find the value of q^2

● 7√(3q-1) = 2

Square both sides

● 7^2 × (3q-1) = 2^2

● 49 × (3q-1) = 4

● 49 × 3q - 49 × 1 = 4

● 147q - 49 = 4

Add 49 to both sides

● 147q -49 +49 = 4+49

● 147q = 53

Divide both sides by 147

● 147q/147 = 53/147

● q = 53/ 147

Square both sides

● q^2 = 53^2 / 147^2

● q^2 = 2809/21609

■■■■■■■■■■■■■■■■■■■■■■■■■

● p+q^2 = 8 +(2809/21609)

● p+q^2 = (2809 + 8×21609)/21609

● p+q^2 = 175681 / 21609

● p + q^2 = 8.129

Round it to the nearest unit

● p+ q^2 = 8

According to the Federal Communications Commission, 70% of all U.S. households have vcrs. In a random sample of 15 households, what is the probability that fewer than 13 have vcrs?

Answers

Answer:

The probability  is  [tex]P(x < 13) = 0.8732[/tex]

Step-by-step explanation:

From the question we are told that

    The  probability of success is    p = 0.70

     The  sample size is  [tex]n = 15[/tex]

Generally the distribution of U.S. households have vcrs follow a binomial distribution given that there are only two outcome (household having vcrs or household not having vcrs )

The probability of failure is mathematically evaluated as

       [tex]q = 1- p[/tex]

substituting values

      [tex]q = 1- 0.70[/tex]

      [tex]q = 0.30[/tex]

The probability that fewer than 13 have vcrs is mathematically represented as

          [tex]P(x < 13) = 1- [P(13) + P(14) + P(15)][/tex]

=>     [tex]P(x < 13) = 1-[( \left 15 } \atop {}} \right. C_{13} *p^{13}* q^{15-13})+ (\left 15 } \atop {}} \right. C_{14} *p^{14}* q^{15-14}) +( \left 15 } \atop {}} \right. C_{15} *p^{15}* q^{15-15}) ][/tex]

 Here  [tex]\left 15 } \atop {}} \right. C_{13}[/tex] means  15 combination 13 and the value is  105 (obtained from calculator)

 Here  [tex]\left 15 } \atop {}} \right. C_{14}[/tex] means  15 combination 14 and the value is  15 (obtained from calculator)

 

 Here  [tex]\left 15 } \atop {}} \right. C_{15}[/tex] means  15 combination 15 and the value is  1 (obtained from calculator)

So

 [tex]P(x < 13) = 1-[(105 *p^{13}* q^{2})+ (15 *p^{14}* q^{1}) +(1*p^{15}* q^{0}) ][/tex]

substituting values      

 [tex]P(x < 13) = 1-[(105 *(0.70)^{13}* (0.30)^{2})+ (15 *(0.70)^{14}* (0.30)^{1}) +(1*(0.70)^{15}* (0.30)^{0}) ][/tex]

 [tex]P(x < 13) = 0.8732[/tex]

     

solve 27 to the power of (2/3)

Answers

Answer:

9

Step-by-step explanation:

[tex]27^{\frac{2}{3}}\\\mathrm{Factor\:the\:number:\:}\:27=3^3\\=\left(3^3\right)^{\frac{2}{3}}\\\mathrm{Apply\:exponent\:rule}:\\\\\quad \left(a^b\right)^c=a^{bc},\:\quad \:a\ge 0\\\\\left(3^3\right)^{\frac{2}{3}}=3^{3}\times \frac{2}{3}}\\\\3\=times \frac{2}{3}=2\\\\=3^2 \\\\=9[/tex]

[tex]27^{2/3}=(3^3)^{2/3}=3^2=9[/tex]

Find the minimum sample size n needed to estimate for the given values of​ c, ​, and E. c​, ​, and E Assume that a preliminary sample has at least 30 members.

Answers

Answer:

hello your question is incomplete below is the complete question

Find the minimum sample size n needed to estimate μ For the given values of​ c, σ​, and E. c=0.98​, σ=6.5​, and E=22 Assume that a preliminary sample has at least 30 members.

Answer : 48

Step-by-step explanation:

Given data:

E = 2.2,

std ( σ ) = 6.5

c ( level of confidence ) = 0.98

To find the minimum sample size

we have to first obtain the value of  [tex]Z_{a/2}[/tex]  

note : a can be found using this relation :

( 1 - a ) = 0.98 ----- equation 1

a = 1 - 0.98 = 0.02

hence:  a/2 = 0.01

This means that P( Z ≤ z ) = 0.99  the value of z can be found using the table of standard normal distribution. from the table the value of z = 2.33

P( Z ≤ 2.33 ) = 0.99

To obtain the sample size n

[tex]n = (\frac{std*z}{E} )^{2}[/tex]

n = [tex](\frac{6.5*2.33}{2.2} )^2[/tex] =  (6.88409)^2

Therefore n ≈ 48

Given the function, Calculate the following values:

Answers

Answer:

[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]

Step-by-step explanation:

[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]

Answer this will give 10 points

Answers

Answer:

maximum --> 62

median --> 46.5

upper quartile --> 60

lower quartile --> 37

minimum --> 32

Step-by-step explanation:

Forgive me on the explanation as I'm a bit rusty on these types of problems.

First, we need to put the set of numbers in order -->

from: 34, 37, 39, 32, 48, 45, 53, 62, 58, 61, 60, 41 -->

to: 32, 34, 37, 39, 41, 45, 48, 53, 58, 60, 61, 62

maximum = biggest number => thus, 62

median = middle number in a sense => (45+48)/2 => thus, 46.5

upper quartile = median over the median => thus, 60

lower quartile = median under the median => thus, 37

minimum = lowest number => thus, 32

And there we have our 5 answers.

Hope this helps!

Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours. As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.
A) What can you say about the shape of the distribution of the sample mean?
B) What is the standard error of the distribution of the sample mean?
C) What proportion of the samples will have a mean useful life of more than 36 hours?
D) What proportion of the sample will have a mean useful life greater than 34.5 hours?
E) What proportion of the sample will have a mean useful life between 34.5 and 36.0 hours?

Answers

Answer:

(A) The shape of the distribution of the sample mean is bell-shaped.

(B) The standard error of the distribution of the sample mean is 1.1.

(C) The proportion of the samples that have a mean useful life of more than 36 hours is 0.1814.

(D) The proportion of the sample that has a mean useful life greater than 34.5 hours is 0.6736.

(E) The proportion of the sample that has a mean useful life between 34.5 and 36.0 hours is 0.4922.

Step-by-step explanation:

We are given that Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours.

As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.

Let [tex]\bar X[/tex] = sample mean life of these batteries

(A) The shape of the distribution of the sample mean will be bell-shaped because the sample mean also follows the normal distribution as it is taken from the population data only.

(B) The standard error of the distribution of the sample mean is given by;

            Standard error =  [tex]\frac{\sigma}{\sqrt{n} }[/tex]

Here, [tex]\sigma[/tex] = standard deviation = 5.5 hours

         n = sample of batteries = 25

So, the standard error =  [tex]\frac{5.5}{\sqrt{25} }[/tex]  = 1.1.

(C) The z-score probability distribution for the sample mean is given by;

                               Z  =  [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean life of battery = 35.0 hours

            [tex]\sigma[/tex] = standard deviation = 5.5 hours

            n = sample of batteries = 25

Now, the proportion of the samples that will have a mean useful life of more than 36 hours is given by = P([tex]\bar X[/tex] > 36 hours)

     

       P([tex]\bar X[/tex] > 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > 0.91) = 1 - P(Z [tex]\leq[/tex] 0.91)

                                                               = 1 - 0.8186 = 0.1814

(D) The proportion of the samples that will have a mean useful life of more than 34.5 hours is given by = P([tex]\bar X[/tex] > 34.5 hours)

     

       P([tex]\bar X[/tex] > 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > -0.45) = P(Z [tex]\leq[/tex] 0.45)

                                                                    = 0.6736

(E) The proportion of the samples that will have a mean useful life between 34.5 and 36.0 hours is given by = P(34.5 hrs < [tex]\bar X[/tex] > 36 hrs)

     P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = P([tex]\bar X[/tex] < 36 hrs) - P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hrs)

     P([tex]\bar X[/tex] < 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z < 0.91) = 0.8186

     P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.45) = 1 - P(Z [tex]\leq[/tex] 0.45)

                                                                    = 1 - 0.6736 = 0.3264                              

Therefore, P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = 0.8186 - 0.3264 = 0.4922.

Other Questions
The decomposition of nitramide in aqueous solution at 25 C NH2NO2(aq)N2O(g) + H2O(l) is first order in NH2NO2 with a rate constant of 4.7010-5 s-1. If an experiment is performed in which the initial concentration of NH2NO2 is 0.384 M, what is the concentration of NH2NO2 after 31642.0 s have passed? M You buy 3 pairs of pants for $19 each and 5 shirts for $10 each. Which of the following is a good estimation of how much money you spent? Web site W receives orders for its products every day. What is the standard deviation of the numbers of orders that Web site W received daily for the past 5 days?(1) The average (arithmetic mean) number of orders that Web site W received per day for the past 5 days is equal to the greatest of the numbers of orders that Web site W received daily for the past 5 days.(2) The range of the numbers of orders that Web site W received daily for the past 5 days is equal to 0. Solve the equation 1) 4.3^x+1 = 27+9^x 2) 3^x+5= 3^x+3+8/3 Does the VERB agree with the SUBJECT in this sentence? A pair of shoes sit on the steps. A. Yes B. No For a nail salon, the costs associated with the purchase of nail polish and other products like polish remover and disposable flip flops are examples of ____costs. These ______ considered when building a MCS. Which statement compares the two numbers correctly? (2 points) Fifty-seven thousand, eight hundred and twenty-two hundredths ________ fifty-seven thousand eight hundred and three tenths Select one: a. Fifty-seven thousand eight hundred and twenty-two hundredths < fifty-seven thousand eight hundred and three tenths b. Fifty-seven thousand eight hundred and twenty-two hundredths > fifty-seven thousand eight hundred and three tenths c. Fifty-seven thousand nine hundred and three tenths > fifty-seven thousand eight hundred and twenty-two hundredths d. Fifty-seven thousand eight hundred and three tenths = fifty-seven thousand eight hundred and twenty-two hundredths WILL MARK BRAINLIEST HELP ASAP The student's in Roberto's school are painting a mural that will be 8 feet by 15 feet. First they make a scale drawing of the mural with a scale of 2 feet:5 feet. What are the length and width of the scale drawing in feet? (Algebra) HELP ME ASAP PLZ Evaluate the expression for the given value of the variable. 3x3, when x = 4 Two similar figures have sides in the ratio of 2:3. Ita side of the smaller triangle has a length of 7, what isthe length of the corresponding side of the other triangle? The storming of the Bastille occurred Is the relation a function? A company's strategy evolves over time as a consequence of : Select one: a. The need to keep strategy in step with changing market conditions and changing customer needs and expectations b. The proactive efforts of company managers to fine-tune and improve one or more pieces of the strategy c. The need to respond to the newly-initiated actions and competitive moves of rival firms d. All of the above 4. Why does every decision involve trade-offs? In the molecule 4H2O2 the number of hydrogen atoms is what Can someone please tell me how to solve this problem??!! I literally have to go back in math if I dont pass this HELP!! Consider the function f(x)=|-x-3/2|-1 Ultraviolet light having a wavelength of 97 nm strikes a metallic surface. Electrons leave the surface with speeds up to 3.48 105 m/s. What is the work function, in eV of the metal? What was wealth based on in the Northern states? A. The number of cattle a person owned B. The size of the farm a person owned C. The number of slaves a person owned D. The money and goods a person owned