Answer:
11
Step-by-step explanation:
y-1=10
Any figure that crosses equal sign, the operational sign changes.
y=10+1
y= 11
Javier volunteers in community events each month. He does not do more than five events in a month. He attends exactly five events 25% of the time, four events 30% of the time, three events 20% of the time, two events 15% of the time, one event 5% of the time, and no events 5% of the time. Find the probability that Javier volunteers for less than three events each month. P (x < 3) = 2 Find the expected number of events Javier volunteers in a month. 3.6 It is given that x must be below a certain value, which limits the rows to use in the PDF table. What is the sum of the probabilities of those rows?
Answer:
[tex]P(x < 3) = 25\%[/tex]
[tex]E(x) = 3[/tex]
Step-by-step explanation:
The given parameters can be represented as:
[tex]\begin{array}{ccccccc}x & {5} & {4} & {3} & {2} & {1}& {0} & P(x) & {25\%} & {30\%} & {20\%} & {15\%} & {5\%} & {5\%} \ \end{array}[/tex]
Solving (a): P(x < 3)
This is calculated as:
[tex]P(x < 3) = P(x = 0) + P(x = 1) + P(x =2)[/tex] ----- i.e. all probabilities less than 3
So, we have:
[tex]P(x < 3) = 5\% + 5\% + 15\%[/tex]
[tex]P(x < 3) = 25\%[/tex]
Solving (b): Expected number of events
This is calculated as:
[tex]E(x) = \sum x * P(x)[/tex]
So, we have:
[tex]E(x) = 5 * 25\% + 4 * 30\% + 3 * 20\% + 2 * 15\% + 1 * 5\% + 0 * 5\%[/tex]
[tex]E(x) = 125\% + 120\% + 60\% + 30\% + 5\% + 0\%[/tex]
[tex]E(x) = 340\%[/tex]
Express as decimal
[tex]E(x) = 3.40[/tex]
Approximate to the nearest integer
[tex]E(x) = 3[/tex]
Badluckville had been expecting a $50 million investment for a new golf resort, but the contract was cancelled.
Badluckville's mayor estimates that this will cost the city $300 million in total economic activity. What is the mayor's
estimate of the multiplier and marginal propensity to consume?
Answer:
multiplier = 6
marginal propensity to consume = .83
Step-by-step explanation:
/ means divided by
1 .
300,000,000 / 50,000,000 =
multiplier =
6
2.
300,000,000 - 50,000,000 =
250,000,000
250,000,000/300,000,000 =
marginal propensity to consume =
0.83333333333
or
.83
quizlet
marginal propensity to consume is equal to ΔC / ΔY, where ΔC is the change in consumption, and ΔY is the change in income
investopedia
Find in the triangle. Round to the nearest degree.
Answer:
D. 34
Step-by-step explanation:
Because this is a right triangle we can use sin, cos, tan.
Use cosine because the values of the adjacent side and hypotenuse are already given.
cos(θ) = 72/87
Because we are solving for the angle measure (and not the measure of the side) we need to use inverse cos.
cos⁻¹ = 72/87
put into a calculator and answer is approximatelyn34 degrees.
A hotel manager believes that 23% of the hotel rooms are booked. If the manager is right, what is the probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
Answer:
0.9216 = 92.16% probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A hotel manager believes that 23% of the hotel rooms are booked.
This means that [tex]p = 0.23[/tex]
Sample of 610 rooms
This means that [tex]n = 610[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.23[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.23*0.77}{610}} = 0.017[/tex]
What is the probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%?
p-value of Z when X = 0.23 + 0.03 = 0.26 subtracted by the p-value of Z when X = 0.23 - 0.03 = 0.2. So
X = 0.26
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.26 - 0.23}{0.017}[/tex]
[tex]Z = 1.76[/tex]
[tex]Z = 1.76[/tex] has a p-value of 0.9608
X = 0.2
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.23}{0.017}[/tex]
[tex]Z = -1.76[/tex]
[tex]Z = -1.76[/tex] has a p-value of 0.0392
0.9608 - 0.0392 = 0.9216
0.9216 = 92.16% probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
If 6 playes cost 54$ how much do 30 plates cost
Answer:
270 plates
Step-by-step explanation:
First, you need to find how much one plate costs.
6x = 54
---- ----
6 6
x = 9
Now, multiply 30 plates with x, which is 9.
30(9) = 270
The answer is 270.
Answer:
270
Step-by-step explanation:
54($)÷6= 9 then 9×30=270
Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) c, c, c , where c > 0
Answer:
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
Step-by-step explanation:
Given the data in the question;
vector is z = < c,c,c >
the direction cosines and direction angles of the vector = ?
Cosines are the angle made with the respect to the axes.
cos(∝) = z < 1,0,0 > / |z|
so
cos(∝) = < c,c,c > < 1,0,0 > / √[c² + c² + c²] = ( c + 0 + 0 ) / √[ 3c² ]
cos(∝) = c / √[ 3c² ] = c / c√3 = 1/√3
∝ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(β) = < c,c,c > < 0,1,0 > / √[c² + c² + c²] = ( 0 + c + 0 ) / √[ 3c² ]
cos(β) = c / √[ 3c² ] = c / c√3 = 1/√3
β = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(γ) = < c,c,c > < 0,0,1 > / √[c² + c² + c²] = ( 0 + 0 + c ) / √[ 3c² ]
cos(γ) = c / √[ 3c² ] = c / c√3 = 1/√3
γ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
Therefore;
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
1. The area of a square is less than 25cm2. What can we say about
a. The length of one of its sides?
b. Its perimeter?
Step-by-step explanation:
Let us take a nominal square of area 25 cm².
It's length of one of it's sides will be √25 = 5 cm².It's perimeter will be 5*4 = 20 cm.So, in this question, we can say that:-
a. The length of one of its sides will be less than 5 cm.
b. Its perimeter will be less than 20 cm.
Hope it helps :)
Step-by-step explanation:
area= 25cm squared
length of one side = 5cm as 5*5 =25
perimeter= 5*4= 20cm
But since the area is less than 25cm squared
we can say that the length of one side is less than 5cm and we can also say that the length of the perimeter is less than 20cm.
Hope this helps.
William has been contracted to paint a school classroom. The classroom is 20 m long, 15 m wide and 5 m high. There are four windows (2m by 3m) and a door (2m by 1m). Determine the cost of painting the ceiling at N$ 6.50/m²
Answer:
Step-by-step explanation:
l -> length
b -> width
h -> height
Find the area of four walls and ceiling. then subtract the area of four windows and a door form that area.
Area of four walls + ceiling = 2( lh + bh) +lb
= 2*(20*5 + 15*5) + 20*15
= 2( 100 + 75) + 300
= 2* 175 + 300
= 350 +300
= 650 sq m
Area of window = 2 *3 = 6 sq.m
Area of four windows = 4*6 = 24 sq.m
Area of door = 2 * 1 = 2 sq.m
Area of four walls excluding 4 windows and door = 650 - 24 - 2 = 624 sq.m
Cost of painting = 624 * 6.50
= $ 4056
Answer: 1950 dollars to paint the ceiling only (ignoring the walls)
The cost to paint the walls only is 2106 dollars.
The cost to paint the walls and ceiling is 4056 dollars.
==================================================
Explanation:
It seems a bit strange how your teacher mentions the windows and doors, but then asks about the ceiling only. Perhaps this is a red herring, but I'm not sure.
Anyway, to directly answer the question, we'll need to find the area of the ceiling first. The ceiling is a rectangle of dimensions 20 m by 15 m, so its area is 20*15 = 300 square meters.
Since paint costs 6.50 dollars per square meter, the total cost for the ceiling alone is 6.50*300 = 1950 dollars
If your teacher only cares about the ceiling, then you can stop here (and ignore the next section below).
---------------------------
If you wanted to find the cost to paint the walls, then we need to find the area of the walls.
For now, ignore the windows and door. Two opposite walls have area of 20*5 = 100 m^2 each. That accounts for 2*100 = 200 m^2 of wall area so far.
The other pair of opposite walls have area 15*5 = 75 m^2 each. That's another 2*75 = 150 m^2 of wall area.
In all, the total wall area without considering the windows or door is 200+150 = 350 m^2.
Now we consider the windows. Each window is 2 m by 3 m, yielding an area of 2*3 = 6 m^2. Four such windows have a total area of 4*6 = 24 m^2.
The door is 2 m by 1 m, so its area is 2*1 = 2 m^2
We'll subtract the wall area and the combined window+door areas to get
wallArea - windowArea - doorArea = 350-24-2 = 324
So after accounting for the windows and door, the amount of wall to paint is 324 m^2, which leads to a cost of 6.50*324 = 2106 dollars.
Therefore, painting the walls and ceiling gets us a total cost of 1950+2106 = 4056 dollars
This section is entirely optional if your teacher only cares about the ceiling.
a car travels 10 km southeast and 15 km in a direction 60 degrees north of east. find the magnitude and direction
Answer:
the car travels 10km then 15km 60* north of east
Step-by-step explanation:
Gsggagsgsvhdgdvdvdvdvdg help me fast I’ll give you brainliste
The answer is D
Hope that was fast enough
HELP! AAHHHHH SOMEBODY HELP!
If each square of the grid below is $0.5\text{ cm}$ by $0.5\text{ cm}$, how many square centimeters are in the area of the blue figure?
Answer:
8.50 cm²
Step-by-step explanation:
The dimension of each square is given as 0.5cm by 0.5cm
The area of the a square is, a²
Where, a = side length
Area of each square = 0.5² = 0.25cm
The number of blue colored squares = 34
The total area of the blue colored squares is :
34 * 0.25 = 8.50cm²
A study is done to determine the average salary for all Santa Clara County teachers. If we were to randomly pick 15 schools in Santa Clara County and average together the salaries of all teachers, would this be a good sampling technique or a bad sampling technique
Answer:
Good sampling technique
Step-by-step explanation:
In other to determine the mean value for a population, it may be necessary to make inference from the a small subset of the population, called the sample, if it is impossible, difficult or inefficient to get all population data. Hence, in other to select a subset of the population, then the sample must be selected at random, such that all elements of the population have equal chances of being selected and hence, be representative of the population. Since, the sampling technique adopted above is done at random, hence, it is a good sampling technique.
hey Plz help me fast it's important.
Answer:
Step-by-step explanation:
a) 52 is divisible by 4 and 5 - 2 = 3
b) 63 is divisible by 9 and 3*2 = 6 -> ten digit
c) 50 is divisible by 10 and 5 + 0 = 5
d) 72 is divisible by 6 and 7*2 = 14
Slope intercept
6times+5y=15
Answer:
y= (-6/5)x+3
Step-by-step explanation:
6x+5y=15
Divide everything by 5
(6/5)x + y = 3
Move (6/5)x to the other side of the = sign by subtracting
y= (-6/5)x + 3
That's your answer!
Hope it helps!
The following is a scatterplot of the percent of children under age 18 who are not in school or in the labor force vs. the number of juvenile violent crime arrests for each of the 50 states. The least-squares regression line has been drawn in on the plot. We would like to predict what the number of juvenile violent crime arrests would be in a state if 25% of children are not in school or in the labor force. This is called
Answer:
Extrapolation
Step-by-step explanation:
From the linear regression plot created in the picture given, se could see that Tha percentage of student covered by the the plot is just above 16%. Therefore, to predict the percentage of the number of juvenile violent crime arrests would be in a state if 25% of children are not in school or in the labor force will require us to assume that the current trend continues into the future. Hence, we use the information and indications we have at present to make prediction into the future based on the assumption that we the current trend will remain relevant and applicable. This assumption into the future based on current trend is called EXTRAPOLATION.
Describe the motion of a particle with position (x, y) as t varies in the given interval. (For each answer, enter an ordered pair of the form x, y.) x = 1 + sin(t), y = 3 + 2 cos(t), π/2 ≤ t ≤ 2π
Answer:
The motion of the particle describes an ellipse.
Step-by-step explanation:
The characteristics of the motion of the particle is derived by eliminating [tex]t[/tex] in the parametric expressions. Since both expressions are based on trigonometric functions, we proceed to use the following trigonometric identity:
[tex]\cos^{2} t + \sin^{2} t = 1[/tex] (1)
Where:
[tex]\cos t = \frac{y-3}{2}[/tex] (2)
[tex]\sin t = x - 1[/tex] (3)
By (2) and (3) in (1):
[tex]\left(\frac{y-3}{2} \right)^{2} + (x-1)^{2} = 1[/tex]
[tex]\frac{(x-1)^{2}}{1}+\frac{(y-3)^{2}}{4} = 1[/tex] (4)
The motion of the particle describes an ellipse.
rewrite 1/6 and 2/11 so they have a common denominator then use <, =, or > to order
Answer:
1/6 < 2/11
Step-by-step explanation:
1/6 = 2/12
2/11 >2/12
So that means 1/6 < 2/11
Answer: 1/6 < 2/11
This is the same as saying 11/66 < 12/66
===========================================================
Explanation:
1/6 is the same as 11/66 when multiplying top and bottom by 11.
2/11 is the same as 12/66 when multiplying top and bottom by 6.
The 6 and 11 multipliers are from the original denominators (just swapped).
We can see that 11/66 is smaller than 12/66, simply because 11 < 12, so that means 1/6 is smaller than 2/11
-----------------
Here's one way you could list out the steps
11 < 12
11/66 < 12/66
1/6 < 2/11
------------------
Here's another way to list out the steps. First assume that 1/6 and 2/11 are equal. Cross multiplication then leads to
1/6 = 2/11
1*11 = 6*2
11 = 12
Which is false. But we can fix this by replacing every equal sign with a less than sign
1/6 < 2/11
1*11 < 6*2
11 < 12
---------------------
Yet another way to see which is smaller is to use your calculator or long division to find the decimal form of each value
1/6 = 0.1667 approximately
2/11 = 0.1818 approximately
We see that 0.1667 is smaller than 0.1818, which must mean 1/6 is smaller than 2/11.
Plz help ASAP problem down below
Explanation:
This is known as a cyclic quadrilateral since all four points are on the circle's edge, and the quadrilateral is entirely inside the circle (no parts of the quadrilateral spill outside the circle). Another term is "inscribed quadrilateral"
Since we have an inscribed quadrilateral, this means the opposite angles of the quadrilateral are supplementary.
B+D = 180
120+x = 180
x = 180-120
x = 60
Which statement best describes g(x) = 3x + 6 - 8 and the parent function f(x) = } ?
The domains of g(x) and f(x) are the same, but their ranges are not the same.
* The ranges of g(x) and f(x) are the same, but their domains are not the same.
The ranges of g(x) and f(x) are the same, and their domains are also the same.
The domains of g(x) and f(x) are the not the same, and their ranges are also not the same.
Answer:
In general gf(x) is not equal to fg(x)
Some pairs of functions cannot be composed. Some pairs of functions can be composed only for certain values of x.
Only with they can be composed some values of x are the ranges of g(x) and f(x) are the same, and their domains are also the same. Or else lies inside it.
Step-by-step explanation:
g(x) = 3x + 6 - 8, f(x) = √x.
The domain of a composed function is either the same as the domain of the first function, or else lies inside it
The range of a composed function is either the same as the range of the second function, or else lies inside it.
Or vice versa
Now only positive numbers, or zero, have real square roots. So g is defined only for numbers
greater than or equal to zero. Therefore g(f(x)) can have a value only if f(x) is greater than or
equal to zero. You can work out that
f(x) ≥ 0 only when x ≥3/2
.
HELP PLEASE! I tried everything from adding to dividing, subtracting, multiplying but still no correct answer. Can someone help me out here please? I am not sure where to start. Thank you for your time.
Answer:
6.09 is the answer rounded to nearest hundredths.
Step-by-step explanation:
It gives you n=150, p=0.55, and q=1-p.
If p=0.55 and q=1-p, then by substitution property we have q=1-0.55=0.45.
It ask you to evaluate the expression sqrt(npq).
So npq means find the product of 150 and 0.55 and 0.45. So that is 150(0.55)(0.45)=37.125.
The sqrt(npq) means we need to find the square root of that product. So sqrt(37.125)=6.093 approximately .
Which of the following statements must be true about this diagram? Check all
that apply.
4 3
1
1
N
A. The degree measure of 23 equals the sum of the degree
measures of 21 and 22.
B. m23 is greater than m 2
C. The degree measure of 24 equals the sum of the degree
measures of 22 and 23.
D. m 4 is greater than m_2.
E. m24 is greater than m 1.
F. The degree measure of 24 equals the sum of the degree measures
of 21 and 22.
Answer:
D, E, and F
Step-by-step explanation:
✔️Statement D is true:
Rationale: m<4 is more than 90°, while m<2 is less than 90°. Therefore m<4 is greater than m<2
✔️Statement E is true:
Rationale: m<4 is more than 90°, while m<1 is less than 90°. Therefore m<4 is greater than m<1
✔️Statement F is true:
Rationale:
m<4 is an external angle of the triangle.
m<1 and m<2 are interior angles that are opposite to m<4. Therefore, based on the external angle theorem of a triangle,
m<4 = m<1 + m<2
A family eats out at a restaurant and the total for their meals is $73.89. They also pay sales tax of 5.8% and leave a tip for their server. If the family leaves a total of $93, which of the following might be a description of the service they received?
a.
They left a 10% tip, so the service was probably below average.
b.
They left a 15% tip, so the service was probably average.
c.
They left a 20% tip, so the service was probably above average.
d.
They left a 25% tip, so the service was probably outstanding.
The answer is They left a 20% tip, so the service was probably above average.
What is percentage?A percentage is a number or ratio that can be expressed as a fraction of 100. A percentage is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", although the abbreviations "pct.", "pct" and sometimes "pc" are also used. A percentage is a dimensionless number; it has no unit of measurement.
here, we have,
First step is to the amount of the sales tax.
If 100% is $73.89,
5.8% will be x (tax):
100% : $73.89 = 5.8% : x.
x = $73.89 * 5.8% : 100%.
x = $4.28.
Now, we have the price for meals, sales tax, and the total amount of money left, so we can calculate how much the tip is:
$93.00 - $73.89 - $4.28 = $14.83.
So, the tip is $14.83.
Let represent it as percent.
If $73.89 is 100%, $14.83 will be x.
$73.89 : 100% = $14.83 : x.
x = $14.83 * 100% : $73.89.
x = 20%.
So, they left a 20% tip, so the service was probably above average.
To learn more on percentage click:
brainly.com/question/13450942
#SPJ7
Sofia bought a clothes iron that was discounted 15% off of the original price of $35. What was the sale price of the clothes iron?
Answer:
35 - 0.15 * 35 so it is $29.75
Step-by-step explanation:
I got u
Answer:
$29.75
Step-by-step explanation:
15% = .15
.15 x 35 = 5.25
35 - 5.25 = 29.75
Find the probability of selecting 3 cards from a standard deck without
replacing them and all 3 are hearts.
Answer:
B
Step-by-step explanation:
THere are 52/4= 13 hearts we can draw
The number of ways to draw 3 hearts from 13 is
13C3= 286
The number of ways to draw 3 cards from 52 is
52C3= 22100
divide these
286/22100= 11/850
This is answer B
Find domain of (x^2+3)+[tex]\sqrt{x} 3x-1[/tex]
Answer:
= x^2 + 3 + √3x^2 - 1
Step-by-step explanation:
Remove parentheses: (a) = a
= x^2 + 3 + √x . 3x - 1
x . 3x = 3x^2
= x^2 + 3 + √3x^2 - 1
In a survey, 24 people were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of $42 and standard deviation of $2. Construct a confidence interval at a 98% confidence level.
Answer:
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 24 - 1 = 23
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 23 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 2.5
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.5\frac{2}{\sqrt{24}} = 1.02[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 42 - 1.02 = $40.98.
The upper end of the interval is the sample mean added to M. So it is 42 + 1.02 = $43.02.
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
A chemical engineer must report the average volume of a certain pollutant produced by the plants under her supervision. Here are the data she has been given by each plant:plantvolume of pollutantPittCross CreekSusquehannaWhat average volume should the chemical engineer report
Answer:
Please find the complete question in the attached file.
Step-by-step explanation:
Total quantities of plant-produced pollutants:
[tex]=(10.88+15.82+0.92) \ L\\\\=27.62\ L[/tex]
We are three medicinal plants here, Pinecrest, Macon, and Ogala. The average number of contaminants produced by plants would be
[tex]\to 27.62\div 3 \\\\\to \frac{27.62}{3} \\\\ \to 9.206 \ L[/tex]
math help plz
how to solve parabola and its vertex, how to understand easily and step by step with an example provided please
Answer:
The general equation for a parabola is:
y = f(x) = a*x^2 + b*x + c
And the vertex of the parabola will be a point (h, k)
Now, let's find the values of h and k in terms of a, b, and c.
First, we have that the vertex will be either at a critical point of the function.
Remember that the critical points are the zeros of the first derivate of the function.
So the critical points are when:
f'(x) = 2*a*x + b = 0
let's solve that for x:
2*a*x = -b
x = -b/(2*a)
this will be the x-value of the vertex, then we have:
h = -b/(2*a)
Now to find the y-value of the vertex, we just evaluate the function in this:
k = f(h) = a*(-b/(2*a))^2 + b*(-b/(2*a)) + c
k = -b/(4*a) - b^2/(2a) + c
So we just found the two components of the vertex in terms of the coefficients of the quadratic function.
Now an example, for:
f(x) = 2*x^2 + 3*x + 4
The values of the vertex are:
h = -b/(2*a) = -3/(2*2) = -3/4
k = -b/(4*a) - b^2/(2a) + c
= -3/(4*2) - (3)^2/(2*2) + 4 = -3/8 - 9/4 + 4 = (-3 - 18 + 32)/8 = 11/8
Solve the equation
tan^2 thetha-3 tan thetha+2=0 for 0
Step-by-step explanation:
[tex]\tan^2 \theta - 3\tan \theta + 2 = 0[/tex]
Let [tex]x = \tan \theta[/tex]
We can then write
[tex]x^2 -3x + 2 = 0\:\:\Rightarrow\:\:(x - 2)(x - 1) = 0[/tex]
or
[tex](\tan \theta - 2)(\tan \theta - 1) = 0[/tex]
The zeros occur when
[tex]\tan \theta = 2\:\:\:\text{or}\:\:\:\tan \theta = 1[/tex]
or when [tex]\theta = 63.4°[/tex] or [tex]\theta = 45°[/tex].
When f(x) is divided by x + 4 the quotient is x2+5x−3+2x+4. What is f(−4)?