Answer : Four sides (1, 2, 3, 4) are less than 5. The probability is 4 out of 6, or 2/3 or 0.6667.
The solution is, the correct answer is B. comparing all the probabilities, the set of independent events with the highest probability is the event of You land on an odd number or you roll a 6.
What is probability?Probability can be defined as the ratio of the number of favorable outcomes to the total number of outcomes of an event.
here, we have,
We will consider all the sets of probabilities, the one with the highest probability is the right answer.
a) You roll an odd number and roll a 5: the probability is calculated thus:
1/6 * 3/6
=0.0833
b) You land on an odd number or you roll a 6: the probability is calculated thus:
3/6 +1/6
= 0.6667
c) You roll a six and roll a 4: the probability is calculated thus:
1/6 * 1/4
= 0.0417
d) You roll a 3 and roll an old number: the probability is calculated thus:
1/6 * 3/6
=0.0833
Now, comparing all the probabilities, the set of independent events with the highest probability is the event of You land on an odd number or you roll a 6.
Therefore the correct answer is B.
To learn more on probability click:
brainly.com/question/11234923
#SPJ5
One angle of an isosceles triangle is 16 what are the other 2 angles
Answer:
other two angle will be
82
as 82+82+16 = 180'
For what numbers is f(0) = sec 0 not defined?
Answer:
stundeez
Step-by-step explanation:
Nicki Minaj hdhsbskdhsnsk
CHứng minh rằng trong hệ g - phân với 2
-36 = 6(2-8n) please
Answer:
n=1
Step-by-step explanation:
-36 = 6(2-8n)
-36=12-48n
-36-12=-48n
-48=-48n
n=1
What is the product of 2/5 × 3/4?
Answer:
3/10
Step-by-step explanation:
2/5*3*4
=6/20
=3/10
What is the volume of this rectangular pyramid?
_____ cubic millimeters
Answer:
Step-by-step explanation:
L = 9 mm
W = 9 mm
H = 10 mm
volume = LWH/3 = 9·9·10/3 = 270 mm³
A consumer advocate agency is concerned about reported failures of two brands of MP3 players, which we will label Brand A and Brand B. In a random sample of 197 Brand A players, 33 units failed within 1 year of purchase. Of the 290 Brand B players, 25 units were reported to have failed within the first year following purchase. The agency is interested in the difference between the population proportions, , for the two brands. Using the data from the two brands, what would be the standard error of the estimated difference, Dp = A – B, if it were believed that the two population proportions were, in fact, equal (i.e., )?
Answer:
The standard error of the estimated difference is of 0.0313.
Step-by-step explanation:
To solve this question, we need to understand the central limit theorem, and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Brand A:
33 out of 197, so:
[tex]p_A = \frac{33}{197} = 0.1675[/tex]
[tex]s_A = \sqrt{\frac{0.1675*0.8325}{197}} = 0.0266[/tex]
Brand B:
25 out of 290, so:
[tex]p_B = \frac{25}{290} = 0.0862[/tex]
[tex]s_B = \sqrt{\frac{0.0862*0.9138}{290}} = 0.0165[/tex]
What would be the standard error of the estimated difference?
[tex]s = \sqrt{s_A^2+s_B^2} = \sqrt{0.0266^2+0.0165^2} = 0.0313[/tex]
The standard error of the estimated difference is of 0.0313.
Find the equation of the midline of the function y = 2 sin(1∕4x) – 3.
A) y = –3
B) y = 3
C) y = 2
D) y = 1∕4
Explanation:
The general sine equation is
y = A*sin(B(x-C)) + D
where the D variable directly determines the midline. In this case, D = -3, so that corresponds to a midline of y = -3
The sine curve oscillates going up and down, passing through this middle horizontal line infinitely many times. See the graph below.
Answer:
A) y = –3
Step-by-step explanation:I took the test
- Mean test score was 200 with a standard deviation of 40- Mean number of years of service was 20 years with a standard deviation of 2 years.In comparing the relative dispersion of the two distributions, what are the coefficients of variation
Answer:
The correct answer is "Test 20%, Service 10%".
Step-by-step explanation:
As we know,
The coefficient of variation (CV) is:
⇒ [tex]CV=\frac{Standard \ deviation}{Mean}\times 100[/tex]
Now,
CV of test will be:
= [tex]\frac{40}{200}\times 100[/tex]
= [tex]20[/tex] (%)
CV of service will be:
= [tex]\frac{2}{20}\times 100[/tex]
= [tex]10[/tex] (%)
The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per year if we assume the change was constant from 2008 to 2012.
Find the amount of the increase:
27800 - 23400 = 4,400
Find number of years: 2012 - 2008 = 4 years
Divide amount of change by number of years:
4,400 / 4 = 1,100 people per year.
Nasa is building a satellite that is roughly the shape of a sphere. If the satellite weighs 14.25 pounds per cubic foot before the launch and has a diameter of 4.7 feet. What is the total weight in pounds?
Answer:
Step-by-step explanation:
Consider this equation. √x - 1 - 5 = x - 8 The equation has(two valid solutions, one valid solution) and(one extraneous solution, no extraneous solutions) A valid solution for x is(0, 4, 2, 5)
The equation has 2 valid solutions; no extraneous solutions
The given equation is:
[tex]\sqrt{x - 1} - 5= x - 8[/tex]
First, we determine the solutions
[tex]\sqrt{x - 1} - 5= x - 8[/tex]
Add 5 to both sides
[tex]\sqrt{x - 1} = x - 8 + 5[/tex]
[tex]\sqrt{x - 1} = x - 3[/tex]
Square both sides
[tex]x - 1 = (x - 3)^2[/tex]
Expand
[tex]x - 1 = x^2- 3x - 3x + 9[/tex]
[tex]x - 1 = x^2- 6x + 9[/tex]
Collect like terms
[tex]x^2 - 6x - x + 9 + 1 = 0[/tex]
[tex]x^2 - 7x + 10 = 0[/tex]
Expand again
[tex]x^2 - 2x-5x + 10 = 0[/tex]
Factorize
[tex]x(x - 2) -5(x -2)= 0[/tex]
Factor out x - 2
[tex](x - 5)(x -2)= 0[/tex]
Split
[tex]x - 5=0[/tex] or [tex]x - 2 = 0[/tex]
[tex]x= 5[/tex] or [tex]x = 2[/tex]
The above values are valid values of x.
Hence, the equation has 2 valid solutions; no extraneous solutions
Read more about equations at:
https://brainly.com/question/2396830
Answer:
That person is wrong, First blank is : one valid solution , Second blank is : one extraneous solution, and I'm not sure what the 3rd blank is but I think It's 4.
Step-by-step explanation:
for plato users
Find the area If you get this correct i WILL GIVE YOU 100 POINTS
Answer:
Area of yellow portion =54 in
How do you write it in digits
27 million, 200
Answer:
27,000,200
Step-by-step explanation:
Going by basic math you know a million has six 0's.
So; one million is represented as 1,000,000.
Hence twenty-seven million as 27,000,000.
Using you tens, hundreds and thousands you'll know 200 will fall into the last area.
...For each of the following numbers, find the smallest number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 252
(ii) 180
(iii) 1008
(iv) 2028
(v) 1458
(vi) 768
Answer:
BELOW
Step-by-step explanation:
252 : multiply it by 7 to get 1764 and its square root is 42.
180: multiply it by 5 to get 900 and its square root is 30.
1008: multiply it by 7 to get 7056 and its square root is 84.
2028: multiply it by 3 to get 6084 and its square root is 78.
1458: multiply it by 2 to get 2916 and its square root is 54.
768: multiply it by 3 to get 2304 and its square root is 48.
A number should be a perfect square if its square root is a whole number. The square roots should be integers.
HOPE THIS HELPED
On the first day of a two-day meeting, 10 coffees and 10 doughnuts were purchased for a total of $20.00. Since nobody drank the coffee and all the doughnuts were eaten, the next day only 2 coffees and 14 doughnuts were purchased for a total of $13.00. How much did each coffee and each doughnut cost?
Answer:
1.25 dollars- the value of each coffee
0.75 dollars- the value of each doughnut
Step-by-step explanation:
Suppose that value of one coffee is x dollars, when one doughnut costs y dollars. The value o 10 coffee is 10x, when 10 doughnuts cost 10y. The sum is 10x+10y and it is 20.
10x+10y= 20 (we can divide each part by 10)
x+y=2
2coffee cost 2x, 14 doughnuts cost 14y
2x+14y=13 (it can be divided by two)
x+7y=6.5
We have the system of equations x+y=2, x+7y=6.5
Subtract the first equation from the second one (the left side of the first equation from the left side
x+7y - (x+y)= 6.5-2
6y=4.5
y=4.5/6= 3/4 = 0.75 dollars- the value of each doughnut
x=2-0.75=1.25 dollars- the value of each coffee
IV. Round to the nearest ten thousand
31. 41,876
32. 260,098
33. 91,975
34. 207,865
35. 462,876
HELP ME PLEASE I NEED HELP
Answer:
1. 3-5
2. 5-3
3. 3-5
4. 5-3
Step-by-step explanation:
This is simple! Just get rid of the parenthesis for each of the expressions shown.
3 + (-5)
the plus sign is next to the negative which is in the parenthesis. Negative times positive is equal to negative. The expression then becomes
3 - 5
Now do the same for the rest!
For things like 3 and 4, you can just flip it like 3-5 and 5-3 because it will all equal the same :]
Hope this helps !!
-Ketifa
s A lottery offers one 800 prize, one 700 Prize, two 800 prizes, and four prizes. One thousand tickets are sold at each. Find the expectation if a person buys two tickets. Assume that the player's ticket is replaced after each draw and that the same ticket can win more than one prize. Round to two decimal places for currency problems.
The question is incomplete. The complete question is :
A lottery offers one $800 prize, one $700 Prize, two $800 prizes, and four $100 prizes. One thousand tickets are sold at $5 each. Find the expectation if a person buys two tickets. Assume that the player's ticket is replaced after each draw and that the same ticket can win more than one prize. Round to two decimal places for currency problems.
The expected if a person buys two tickets is $__
Answer:
$ -1.52
Step-by-step explanation:
Given :
A lottery offers --
One $800 prize
One $700 prize
Two $800 prize
Four $100 prizes
Let X = net win
X P(X)
795 1/1000
695 1/1000
795 2/1000
95 4/1000
-5 996/1000
[tex]$E(X) = \sum X \ p(X)$[/tex]
[tex]$=795 \times \frac{1}{1000} + 695 \times \frac{1}{1000} + 795 \times \frac{2}{1000} + 95 \times \frac{4}{1000} + (-5) \times \frac{996}{1000}$[/tex]
= 0.795 + 0.695 + 1.59 + 0.38 - 4.98
= $ -1.52
can someone help me pls
Answer:
D NO IS THE WRITE ANSWER .
Answer:
D)
Step-by-step explanation:
Use the confidence level and sample data to find a confidence interval for estimating the population μ. Round your answer to the same number of decimal places as the sample mean.
Test scores: n = 92, = 90.6, σ = 8.9; 99% confidence
Options:
A.) 88.2 < μ < 93.0
B.) 88.4 < μ < 92.8
C.) 89.1 < μ < 92.1
D.) 88.8 < μ < 92.4
Answer: Choice A.) 88.2 < μ < 93.0
=============================================================
Explanation:
We have this given info:
n = 92 = sample sizexbar = 90.6 = sample meansigma = 8.9 = population standard deviationC = 99% = confidence levelBecause n > 30 and because we know sigma, this allows us to use the Z distribution (aka standard normal distribution).
At 99% confidence, the z critical value is roughly z = 2.576; use a reference sheet, table, or calculator to determine this.
The lower bound of the confidence interval (L) is roughly
L = xbar - z*sigma/sqrt(n)
L = 90.6 - 2.576*8.9/sqrt(92)
L = 88.209757568781
L = 88.2
The upper bound (U) of this confidence interval is roughly
U = xbar + z*sigma/sqrt(n)
U = 90.6 + 2.576*8.9/sqrt(92)
U = 92.990242431219
U = 93.0
Therefore, the confidence interval in the format (L, U) is approximately (88.2, 93.0)
When converted to L < μ < U format, then we get approximately 88.2 < μ < 93.0 which shows that the final answer is choice A.
We're 99% confident that the population mean mu is somewhere between 88.2 and 93.0
Pls help I literally am crying I don’t understand ):
Answer: Passes out in slow
Step-by-step explanation:
Step 1 be Einstein
If 2x - 5y – 7 = 0 is perpendicular to the line ax - y - 3 = 0 what is the value of a ?
A) a =2/3
B) a =5/2
C) a = -2/3
D) a = -5/2
Answer:
D) a = - 5/2
Step-by-step explanation:
2x -5y - 7 = 0
5y = 2x - 7
y = 2/5 x - 7
the slope of this line is therefore 2/5 (factor of x).
the perpendicular slope is then (exchange y and x and flip the sign) -5/2, which is then a and the factor of x.
Simplify: −4(b+6)−2b(1−4b
Step-by-step explanation:
-4b-24-2b+8b2
8b2-6b-24=0
please help me I need help
Answer:
This is so hard for me. I can't understand. I am in grade 9 now.
Which points are also part of this set of equivalent ratios? Select all that apply.
a. (3, 2)
b. (4, 2)
c. (4, 8)
d. (8, 4)
e. (12, 6)
Answer:
Option b, (4,2)
Option d, (8,4)
Option e, (12,6)
Answered by GAUTHMATH
Answer:
Option b, (4,2)
Option d, (8,4)
Option e, (12,6)
Step-by-step explanation:
the person above me is correct
Which of the following choices is equivalent to the equation below?
5(2x−1) = 5(5x−14)
A 2x − 1 = 5x − 14
B 5(2x − 1) = 5x − 14
C 2x − 1 = 5
D None of these choices are correct.
Answer:
2x-1 = 5x-14
Step-by-step explanation:
5(2x−1) = 5(5x−14)
Divide each side by 5
5/5(2x−1) = 5/5(5x−14)
2x-1 = 5x-14
Answer:
A.
Step-by-step explanation:
5(2x−1) = 5(5x−14)
10x - 5 = 25x - 70
65 = 15x
x = 13/3.
Take Option A.
2x - 1 = 5x - 14
3x = 13
x = 13/3 so its this one.
B: 10x - 5 = 5x - 14
5x = -9
x = -9/5 so NOT B.
C. simplifies to x = 3. so NOT C.
T
On Melissa's 6th birthday, she gets a $2000 CD that earns 5% interest, compounded semiannually. If the
CD matures on her 16th birthday, how much money will be available?
TE
$
(S
9514 1404 393
Answer:
$3277.23
Step-by-step explanation:
The future value of the CD with interest at rate r compounded semiannually for t years will be given by ...
A = P(1 +r/2)^(2t)
where P is the principal value.
For the given rate and time, this is ...
A = $2000(1 +0.05/2)^(2·10) = $2000(1.025^20) ≈ $3277.23
The value of the CD at maturity will be $3277.23.
What is the image of (-4, -12) after a dilation by a scale factor of centered at the 1/4 origin?
9514 1404 393
Answer:
(-1, -3)
Step-by-step explanation:
Each coordinate is multiplied by the dilation factor when dilation is centered at the origin.
(1/4)(-4, -12) = (-1, -3) . . . . the image of the given point
Show why (2×3×7)^4 = 2^4 × 3^4 × 7^4 show work
[tex] {a}^{m} \times {b}^{m} = ( {ab)}^{m} [/tex]
(2×3×7)⁴=(2×3)⁴×7⁴(2×3×7)⁴=(2×3×7)⁴RHS=LHSplease mark this answer as brainlist