The question is incomplete. The complete question is :
In a poll, 1100 adults in a region were asked about their online vs. in-store clothes shopping. One finding was that 43% of respondents never clothes-shop online. Find and interpret a 95% confidence interval for the proportion of all adults in the region who never clothes-shop online.
Solution :
95% confidence interval for p is :
[tex]$\hat p - Z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}} < p < \hat p + Z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}$[/tex]
[tex]$0.43 - 1.96\times \sqrt{\frac{0.43(1-0.43)}{1100}} < p < 0.43 + 1.96\times \sqrt{\frac{0.43(1-0.43)}{1100}}$[/tex]
0.401 < p < 0.459
Therefore, 95% confidence interval is from 0.401 to 0.459
If 2m−6=8m
2
m
-
6
=
8
m
then 3m=
3
m
=
A. 3
B. -1
C. -3
D. -6
E. I don't know.
Answer:
3m = -3
Step-by-step explanation:
2m−6=8m
Subtract 2m from each side
2m−6-2m=8m-2m
-6 = 6m
Divide by 6
-6/6 = 6m/6
-1 = m
3m = 3(-1) = -3
2m - 6 = 8m
2m - 8m = 6
-6m = 6
m = -6/6
m = -1
Hence, the answer is -1For the function f(x) = x^2 + 4x -5 solve the following f(x)=0
That's a question about quadratic function.
Any quadratic function can be represented by the following form:
[tex]\boxed{f(x)=ax^2+bx+c}[/tex]
Example:
[tex]f(x)= -3x^2-9x+57[/tex] is a function where [tex]a=-3[/tex], [tex]b=-9[/tex] and [tex]c=57[/tex].
Okay, in our problem, we need to find the value of x when [tex]f(x)=0[/tex]. That's mean that the result of our function is equal to zero. Therefore, we have the quadratic equation below:
[tex]x^2+4x-5=0[/tex]
To solve a quadratic equation, we use the Bhaskara's formula. Do you remember the value of a, b and c? They going to be important right now. This is the Bhaskara's formula:
[tex]\boxed{x=\frac{-b\pm \sqrt{b^2-4ac} }{2a} }[/tex]
So, let's see the values of a, b and c in our equation and apply them in the Bhaskara's formula:
In [tex]x^2+4x-5=0[/tex] equation, [tex]a=1[/tex], [tex]b=4[/tex] and [tex]c=-5[/tex]. Let's replace those values:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]
[tex]x=\frac{-4\pm \sqrt{4^2-4\times1\times(-5)} }{2\cdot1}[/tex]
[tex]x=\frac{-4\pm \sqrt{16-(-20)} }{2}[/tex]
[tex]x=\frac{-4\pm \sqrt{16 + 20)} }{2}[/tex]
[tex]x=\frac{-4\pm \sqrt{36} }{2}[/tex]
[tex]x=\frac{-4\pm 6 }{2}[/tex]
From now, we have two possibilities:
To add:
[tex]x_1 = \frac{-4+6}{2} \\x_1=\frac{2}{2} \\x_1=1[/tex]
To subtract:
[tex]x_2=\frac{-4-6}{2} \\x_2=\frac{-10}{2} \\x_2=-5[/tex]
Therefore, the result of our problem is: [tex]x_1 = 1[/tex] and [tex]x_2=-5[/tex].
I hope I've helped. ^^
Enjoy your studies. \o/
Question 3 of 28
What is the length of IN in the right triangle below?
M
19
N
O A. 442
B. 442
O c. 1200
D. 280
Answer:
Option C. √280
Step-by-step explanation:
From the question given above, the following data were obtained
MN = 19
ML = 9
LN =?
We can obtain the value of LN by using the pythagoras theory as illustrated:
M ² = ML² + LN²
19² = 9² + LN²
361 = 81 + LN²
Collect like terms
361 – 81 = LN²
280 = LN²
Take the square root of both side
LN = √280
Therefore, the length of LN is √280
What function type does the table of values represent?
Answer:
Quadratic
Step-by-step explanation:
Answer:
Linear
Step-by-step explanation:
for every one unit increase in x, there is a 3 unit increase in y
The slope of the plot line would be 3
The y intercept of the plot line would be -1
y = 3x - 1
In the accompanying diagram, ΔA′B′C′ is the image of ΔABC. Which type of transformation is shown in the illustration?
A. rotation
B. translation
C. reflection
D. dilation
Answer:
Reflection
Step-by-step explanation:
It is the opposite of the first,...
Find the missing side of the triangle
Answer:
x = 4[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Pytago:
x[tex]x^{2} +7^{2} = 9^{2} \\\\x = \sqrt{9^{2} - 7^{2} } x = 4\sqrt{2}[/tex]
Simplify 13 x - 4[ x + (3 - x )].
A.9x-1
B.8x-12
C.13x-12
13x - 4[x + (3 - x)] =
= 13x - 4(x + 3 - x) =
= 13x - 4 · 3 = 13x - 12
C.
Answer:
13x -12
Step-by-step explanation:
13 x - 4[ x + (3 - x )].
Combine like terms inside the brackets
13 x - 4[ 3 -0x]
13x - 4[3]
Multiply
13x -12
Megan and Suzanne each have a plant. They track the growth of their plants for four weeks.
Whose plant grew at a faster rate, and what was the rate?
Suzanne’s at 2 inches per week
Suzanne’s at 1.5 inches per week
Megan’s at 3 inches per week
Megan’s at 2.5 inches per week
Answer:
Megan’s at 2.5 inches per week
5. Determine the formula for the following arithmetic sequence: 4, 7, 10, 13, ...
Answer:
[tex]a_{n}[/tex] = n + 3Step-by-step explanation:
Each number increases by 3. Therefore, n+3.
Economists predict that Americans will spend $1,180 on electonics in
2020. this is a 6.8% increase from last year. What did Americans spend
last year?
Write the greatest and smallest number of 8 suing following digits. 1,2,3,4,5,6,7,8
Answer:
Not very sure what you mean,
But in the provided set, 8 is the greatest number, and 1 is the smallest.
Hope this helps!!
Jason has eaten 45 chocolates in 5 days. Each days, he ate 2 chocolates more than the previous day. How many chocolates did he ate on the first day?
Answer:5
Step-by-step explanation:
On the first day he ate 5. Second day he ate 7. Then 9, 11, and finally 13. That all equals to 45. I don't know for sure though...
Find x so that the points (x,x+1), (x+2,x+3) and (x+3,2x+4) form a right-angled triangle.
Let a, b, and c be vectors each starting at the origin and terminating at the points (x, x + 1), (x + 2, x + 3), and (x + 3, 2x + 4), respectively.
Then the vectors a - b, a - c, and b - c are vectors that point in directions parallel to each of the legs formed by the triangle with these points as its vertices.
If this triangle is to contain a right angle, then exactly one of these pairs of vectors must be orthogonal. In other words, one of the following must be true:
(a - b) • (a - c) = 0
or
(a - b) • (b - c) = 0
or
(a - c) • (b - c) = 0
We have
a - b = (x, x + 1) - (x + 2, x + 3) = (-2, -2)
a - c = (x, x + 1) - (x + 3, 2x + 4) = (-3, -x - 3)
b - c = (x + 2, x + 3) - (x + 3, 2x + 4) = (-1, -x - 1)
Case 1: If (a - b) • (a - c) = 0, then
(-2, -2) • (-3, -x - 3) = (-2)×(-3) + (-2)×(-x - 3) = 2x + 12 = 0 ==> x = -6
which would make a - c = (-3, 3) and b - c = (-1, 5), and their dot product is not zero. Then the triangles vertices are at the points (-6, -5), (-4, -3), and (-3, -8).
Case 2: If (a - b) • (b - c) = 0, then
(-2, -2) • (-1, -x - 1) = (-2)×(-1) + (-2)×(-x - 1) = 2x + 4 = 0 ==> x = -2
which would make a - c = (-3, -1) and b = (-1, 1), and their dot product is also not zero. The vertices are the points (-2, -1), (0, 1), and (1, 0).
Case 3: If (a - c) • (b - c) = 0, then
(-3, -x - 3) • (-1, -x - 1) = (-3)×(-1) + (-x - 3)×(-x - 1) = x ² + 4x + 6 = 0
but the solutions to x here are non-real, so we throw out this case.
So there are two possible values of x that make a right triangle, x = -6 and x = -2.
Find the inequality represented by the graph.
9514 1404 393
Answer:
y < 3x -4
Step-by-step explanation:
The boundary line has a slope (rise/run) of 3/1 = 3. It has a y-intercept of -4. The shaded area is below the line and the solution does not include the line. The relevant inequality can be written ...
y < 3x -4
U looking for BRAINLIEST? I'll give it to the first person to get it right
What is the shape of the distribution shown below?
A: The distribution is skewed to the left.
B: The distribution is approximately symmetrical.
C: The distribution is skewed to the right.
Answer:
A: The distribution is skewed to the left.
Step-by-step explanation:
Skewness:
If the distribution has a long left tail, it is skewed to the left.
If it has a long right tail, it is skewed to the right.
Otherwise, it is approximately symmetrical.
In this question:
Lots of values on the start(left), few on the end(right), so it is skewed to the left, and the correct answer is given by option a.
Determine what type of model best fits the given situation: A 4% raise in salary each year.
the models aren't given..
Answer: no models given
Step-by-step explanation:
Find the missing length in the image below
Let it be x
Using basic proportionality theorem
[tex]\\ \sf\longmapsto \dfrac{x}{10}=\dfrac{14}{7}[/tex]
[tex]\\ \sf\longmapsto \dfrac{x}{10}=2[/tex]
[tex]\\ \sf\longmapsto x=10(2)[/tex]
[tex]\\ \sf\longmapsto x=20[/tex]
Consider rolling a fair die twice and tossing a fair coin nineteen times. Assume that all the tosses and rolls are independent.
The chance that the total number of heads in all the coin tosses equals 9 is(Q)_____ , and the chance that the total number of spots showing in all the die rolls equals 9 is(Q)__________ The number of heads in all the tosses of the coin plus the total number of times the die lands with an even number of spots showing on top (Q)______(Choose A~E)
a. has a Binomial distribution with n=31 and p=50%
b. does not have a Binomial distribution
c. has a Binomial distribution with n=21 and p=50%
d. has a Binomial distribution with n=21 and p=1/6
e. has a Binomial distribution with n=31 and p=1/6
Answer:
Hence the correct option is option c has a Binomial distribution with n=21 and p=50%.
Step-by-step explanation:
1)
A coin is tossed 19 times,
P(Head)=0.5
P(Tail)=0.5
We have to find the probability of a total number of heads in all the coin tosses equals 9.
This can be solved using the binomial distribution. For binomial distribution,
P(X=x)=C(n,x)px(1-p)n-x
where n is the number of trials, x is the number of successes, p is the probability of success, C(n,x) is a number of ways of choosing x from n.
P(X=9)=C(19,9)(0.5)9(0.5)10
P(X=9)=0.1762
2)
A fair die is rolled twice.
Total number of outcomes=36
Possibilities of getting sum as 9
S9={(3,6),(4,5)(5,4),(6,3)}
The total number of spots showing in all the die rolls equals 9 =4/36=0.1111
3)
The event of getting a good number of spots on a die roll is actually no different from the event of heads on a coin toss since the probability of a good number of spots is 3/6 = 1/2, which is additionally the probability of heads. the entire number of heads altogether the tosses of the coin plus the entire number of times the die lands with a good number of spots has an equivalent distribution because the total number of heads in 19+2= 21 tosses of the coin. The distribution is binomial with n=21 and p=50%.
A random sample of 200 people was taken. 90 of the people in the sample favored Candidate A. We are interested in determining whether or not the proportion of the population in favor of Candidate A is significantly more than 40%. The test statistic is a.1.44. b.1.25. c..95. d..80.
Answer:
a. 1.44
Step-by-step explanation:
We are interested in determining whether or not the proportion of the population in favor of Candidate A is significantly more than 40%.
At the null hypothesis, it is tested if the proportion is of at most 40%, that is:
[tex]H_0: p \leq 0.4[/tex]
At the alternative hypothesis, it is tested if the proportion is of more than 40%, that is:
[tex]H_1: p > 0.4[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.4 is tested at the null hypothesis:
This means that [tex]p = 0.4, \sigma = \sqrt{0.4*0.6}[/tex]
A random sample of 200 people was taken. 90 of the people in the sample favored Candidate A.
This means that:
[tex]n = 200, X = \frac{90}{200} = 0.45[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.45 - 0.4}{\frac{\sqrt{0.4*0.6}}{\sqrt{200}}}[/tex]
[tex]z = 1.44[/tex]
Thus the correct answer is given by option a.
Need help with this- Precalculus
use x^2 when x=0 because the restriction for it is "use x if x is less than or equal to 1"
when x = 0, (0)^2 will make f(x) = 0
the graph of f(x) will just be a dot at 0
Can anyone help with this math equation please?
The area of a circle is 144cm².Find the radius
Answer:
It's a decimal, so it's around 6.771cm
Step-by-step explanation:
First, divide 144cm² by pi, or 3.14. Then find the square root of the answer, giving you the radius. The formula for the area of a circle is pi x radius squared, so to find out the radius you just use this formula in reverse.
If I messed up or didn't make my explanation clear, please comment.
Answer:
radius is [tex]\frac{12}{\sqrt{\pi } }[/tex] = 6.77 cm
Step-by-step explanation:
we know,
[tex]\pi[/tex] × r² = Area
⇒ [tex]\pi[/tex] × r² = 144
⇒ r² =[tex]\frac{144}{\pi}[/tex]
⇒ r= [tex]\frac{12}{\sqrt{\pi } }[/tex]
∴ r= [tex]\frac{12}{\sqrt{\pi } }[/tex]
pls mark this as the braniliest
Is the following polynomial or not
5xy^2+3x^2y-2x^2y^2
9514 1404 393
Answer:
is a polynomial
Step-by-step explanation:
The expression is a sum of products.
Each product involves a numerical value and a product of variables to positive integer powers.
These meet the requirements for an expression to be a polynomial, so ...
the given expression is a polynomial
find the slope of a line perpendicular to each given line number 11
Answer:
Slope = 5
Step-by-step explanation:
To find the slope of a line perpendicular to a given line, take the opposite reciprocal of the given line's slope.
Ex. -1/5 ⇒ 5
Opposite = opposite sign (- ⇒ +)
Reciprocal = numerator and denominator flipped (1/5 ⇒ 5/1 = 5)
A clothing factory makes small, medium, and large sweaters. Last week, the factory made
1,612 sweaters. The factory made 3 times as many small sweaters as large sweaters. They
made 3 times as many medium sweaters as small sweaters.
How many small sweaters did the factory make last week?
This requires finding the number of small sweaters the company made last week
Number of small sweaters the company produced last week is 372
Total sweaters made = 1,612
Let
Small sweaters = 3x
Medium sweaters = x
Large sweaters = 3(3x) = 9x
Total = small + medium + large
1,612 = 3x + x + 9x
1612 = 13x
Divide by 13
x = 1612/13
Medium sweaters = x = 124
Small sweaters = 3x
= 3(124)
= 372
Read more:
https://brainly.com/question/24326559
Please tell me answer not by directly step by step please don't write answer only please please please
y + z + r + x = 360
2x + 3x + 4x + x = 360
10x = 360
x = 360/10
x = 36
Now
x = 36
y = 72
z = 108
r = 144
Answered by Gauthmath must click thanks and mark brainliest
complete explanation
Answer:
[tex]x ^{m - 3} \div x^{m - 4} \\ \frac{ {x}^{m - 3} }{ {x}^{m - 4} } \\ \frac{ {x}^{m - 3 - m + 4} }{x} \\ \frac{ {x}^{1} }{x} \\ x \: and \: x \: will \: cancel \: each \: other \: hence \: answer \: will \: be \: 1[/tex]
Please solve the equation 4X-25=71
Figure A AA is a scale image of Figure B BB. 12 12 6 6 x x 9 9 Figure B Figure B Figure A Figure A What is the value of x xx?
1m
2m
3m
4m
5m
hgfdvwsdfweffffffffffffffffffffff
,
6/6/ Is a proper fraction or improper fraction
Answer:
proper fraction
Step-by-step explanation:
a proper fraction has smaller numerator than its denominatot.
Answer: Proper Fraction
Step-by-step explanation:
The denominator is equal or bigger than the numerator.
Must click thanks and mark brainliest