Answer:
Ok, this question seems incomplete, so i will answer it in a general way.
Suppose that regularly, Ken eats A calories during the day. (A is a positive number)
Now, Ken wants to reduce this number, but his nutritionist tells him to reduce no more than 7% (So the max reduction possible is a reduction of the 7%).
So after the reduction, Ken eats C calories per day.
First, the maximum reduction that Ken can do is when he reduces exactly 7% of the calories.
So if he regularly consumes A calories, the reduction will be of
(7%/100%)*A = 0.07*A
So after the reduction, the amount of calories that he consumes per day is:
C = A - 0.07*A = A*(1 - 0.07) = A*0.93
But this is the minimum amount of calories that he can consume, the actual range of possible options will be:
A < C ≤ A*0.97.
C is strictly smaller than A because we must have a reduction in the number of calories.
Those values of C is all the posible amounts of calories that Ken eats per day after the initial reduction in the number of calories per day.
What is 12.5% of 72
Answer:
[tex]\boxed{9}[/tex]
Step-by-step explanation:
[tex]\sf of \ refers \ to \ multiplication.[/tex]
[tex]12.5\% \times 72[/tex]
[tex]\frac{12.5}{100} \times 72[/tex]
[tex]\sf Multiply.[/tex]
[tex]\frac{900}{100} =9[/tex]
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Stacy goes to the county fair with her friends. The total cost of ride tickets is given by the equation c = 3.5t, where c is the total cost of tickets and t is the number of tickets. If Stacy bought 15 tickets, she would spend $
Answer:
$52.2Step-by-step explanation:
Given her total cost of ride tickets modeled by the equation c = 3.5t where c is the total cost of tickets and t is the number of tickets, If Stacy bought 15 tickets, to know the amount she would spend on 15 tickets, we will substitute t = 15 into the modeled equation as shown;
[tex]c = 3.5t\\when t = 15\\\\c = 3.5(15)\\\\c = \frac{35}{10} * 15\\ \\c = \frac{5*7}{5*2} * 15\\\\[/tex]
[tex]c = \frac{7}{2} * 15\\ \\c = \frac{105}{2}\\ \\c = \ 52.2[/tex]
Hence Stacy would spend $52.2 on 15 tickets
Answer:
I hope this helps!
Step-by-step explanation:
I NEED YOUR HELP PLS
Answer:
For question 1 you can try dividing each of the value
For instance, you can divide 9 by 25 and see if you get a nice number
e.g. 1/8=0.125, numbers like these
For the second question, you can find the fraction by dividing 1000 starting with the decimal points
e.g 0.650, you would be plotting 650/1000 and you would simplify the fraction to the lowest value any value above the decimal point you can multiply by the denominator and add the nominator value to get your final answer.
Step-by-step explanation:
Answer:
Write the denominator in its prime factors. If the prime factorization of the denominator of a fraction has only factors of 2 and factors of 5, the decimal expression terminates. If there is any prime factor in the denominator other than 2 or 5, then the decimal expression repeats.
example: 9/25
25 = 5*5, so it will be terminating
example: 7/12
12 = 3*2*2, which contains a 3, so it will be repeating.
Suppose that $9500 is placed in an account that pays 9% interest compounded each year.
Assume that no withdrawals are made from the account.
Follow the instructions below. Do not do any rounding.
(a) Find the amount in the account at the end of 1 year.
so
(b) Find the amount in the account at the end of 2 years.
$
?
Answer:
$11286.95 second year
$10335 first year
Step-by-step explanation:
9% of 9500 is 855, 9500 plus 855 = 10335. (first year)
9% of 10335 is 931.95, and 10335+931.95 is 11286.95. (second year)
The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
What is the compound interest?Compound interest is when you earn interest on both the money you've saved and the interest you earn.
Formula:
A = P(1 + {r}/{n})^{n.t}
here, we have,
$9500 is placed in an account that pays 9% interest compounded each year.
so, we get,
9% of 9500 is 855,
9500 plus 855 = 10335. (first year)
again,
9% of 10335 is 931.95,
and 10335+931.95 is 11286.95. (second year)
Hence, The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
To learn more on Compound interest click:
brainly.com/question/29335425
#SPJ2
Reduce 5/15 to its lowest terms
Answer:
The answer is 1/3
Answer:
1/3
Step-by-step explanation:
The factors of 5 are 1,5;
* The factors of 15 are 1,3,5,15.
We can see that the GCD is 5 because it is the largest number by which 5 y 15 can be divided without leaving any residue.
To reduce this fraction, simply divide the numerator and denominator by 5 (the GCF).
So, 5 /15
= 5÷5 /15÷5
= 1 /3
LCM of x<sup>2</sup>+5x+6 and x<sup>2</sup>-x-6 is ………………………
Answer:
[tex] (x^2 - 9)(x + 2) [/tex]
Step-by-step explanation:
Given:
[tex] x^2 + 5x + 6 [/tex]
[tex] x^2 - x - 6 [/tex]
Required:
LCM of the polynomials
SOLUTION:
Step 1: Factorise each polynomial
[tex] x^2 + 5x + 6 [/tex]
[tex] x^2 + 3x + 2x + 6 [/tex]
[tex] (x^2 + 3x) + (2x + 6) [/tex]
[tex] x(x + 3) + 2(x + 3) [/tex]
[tex] (x + 2)(x + 3) [/tex]
[tex] x^2 - x - 6 [/tex]
[tex] x^2 - 3x +2x - 6 [/tex]
[tex] x(x - 3) + 2(x - 3) [/tex]
[tex] (x + 2)(x - 3) [/tex]
Step 2: find the product of each factor that is common in both polynomials.
We have the following,
[tex] x^2 + 5x + 6 = (x + 2)(x + 3) [/tex]
[tex] x^2 - x - 6 = (x + 2)(x - 3) [/tex]
The common factors would be: =>
[tex] (x + 2) [/tex] (this is common in both polynomials, so we would take just one of them as a factor.
[tex] (x + 3) [/tex] and,
[tex] (x - 3) [/tex]
Their product = [tex] (x - 3)(x + 3)(x +2) = (x^2 - 9)(x + 2) [/tex]
At the Olympic games, many events have several rounds of competition. One of these events is the men's 100 100100-meter backstroke. The upper dot plot shows the times (in seconds) of the top 8 88 finishers in the final round of the 2012 20122012 Olympics. The lower dot plot shows the times of the same 8 88 swimmers, but in the semifinal round. Which pieces of information can be gathered from these dot plots? (Remember that lower swim times are faster.) Choose all answers that apply: Choose all answers that apply:
Answer:
The center of the semifinal round distribution is greater than the center of final round distribution.
The variability in the semifinal round distribution is less than variability in the final round distribution.
Step-by-step explanation:
The mean value of each distribution set is not calculates as the center of semifinal round distribution is greater than the final round distribution. MAD Mean Absolute Deviation is calculated from the dotted graph plot, the distribution of semifinal round is less spread out than the final round distribution.
Answer:
correct answer is None of the above i understood nothing the other person was trying to say...
Step-by-step explanation:
mark me brainliest please...
Can someone please tell me how to solve this problem??!! I literally have to go back in math if I don’t pass this HELP!!
Answer:
D. 270° < φ < 360°Step-by-step explanation:
Imagine coordinate system
I quarter is where x>0 and y>0 {right top} and it is (0°,90°)
II quarter is where x<0 and y>0 {left top} and it is (90°,180°)
III quarter is where x<0 and y<0 {left bottom} and it is (180°,270°)
IV quarter is where x>0 and y<0 {right bottom} and it is (270°,360°)
Now, we have an angle wich vertex is point (0,0) and one of its sides is X-axis and the second lay at one of the quarters.
For the trig functons of an angle created by this second side always are true:
In first quarter all functions are >0
in second one only sine
in third one: tangent and cotangent
and in fourth one: cosine
{You can check this by selecting any point on the second side of angle and put it's coordinates to formulas of these functions:
[tex]\sin \phi=\dfrac y{\sqrt{x^2+y^2}}\,,\quad \cos \phi=\dfrac x{\sqrt{x^2+y^2}}\,,\quad \tan\phi=\dfrac yx\,,\quad \cot\phi=\dfrac xy[/tex] }
So:
sinφ<0 ⇒ III or IV quarter
tanφ<0 ⇒ I or IV quarter
IV quarter ⇒ φ ∈ (270°, 360°)
Complete the following two-way frequency table.
Answer:
Step-by-step explanation:
Number of candies with Forest = 12
Candies containing coconut and chocolate both = Number common in coconut and the chocolate = 3
Candies which do not contain coconut but contain the chocolate = 6
Candies which contain the coconut but do not contain the chocolate = 1
Candies which neither contain the chocolate nor coconut = 2
From the given Venn diagram,
Contain coconut Do not contain coconut
Contain chocolate 3 6
Do not contain chocolate 1 2
On the first day in each month, Enid deposited $4 into her bank account and Jim deposited $3 into his. They opened these accounts on May 15, 1990. On December 31, 1990, they each had $72 dollars in their account. How much did each person deposit on May 15?
Answer:
The amount of money in Enid bank account can be written as a linear equation.
Ye = Xe + $4*m
where Ye is the money that Enid has in her account, m is the number of months that have passed since she opened it, and Xe is the initial deposit.
For Jim, the equation is similar:
Yj = Xj + $3*m
where Yj and Xj are similar as above.
Between May 15 and December 31 of the same year, we have 7 months (where i am counting December because the deposit is made in the first day of the month).
Then we have that:
Ye = $72 = Xe + $4*7 = Xe + $28
Xe = $72 - $28 = $44
So in May 15, Enid deposited $44.
For Jim we have:
Yj = $72 = Xj + $3*7 = Xj + $21
Xj = $72 - $21 = $51
So in May 15, Jim deposited $51.
If the initial amount of iodine-131 is 537 grams , how much is left after 10 days?
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
The cost of milk is modeled by a linear equation where four quarts (one gallon) costs $3.09 while two quarts
(half-gallon) costs $1.65. Write the linear equation that expresses the price in terms of quarts. How much would
an eight-quart container of milk cost?
Answer:
linear equation to express the price is:
y=0.72x+0.21
An eight quarts will cost : $5.97
Step-by-step explanation:
linear equation represent y=mx+b
let x=quarts ( x=4, x=2)
y= price (3.09 and y=1.65 )
two points (4,3.09) and (2,1.65)
need to find the slope m:
y2-y1/x2-x1
(1.65-3.09)/(2-4) ⇒ m=0.72
y=0.72x+b find b at point (2,1.65)
1.65=0.72(2) +b ⇒ b=0.21
y=0.72x +0.21
check : point (4,3.09)
y=0.72(4) +0.21
y=3.09 ( correct)
An eight quarts will cost :
y=0.72(8)+0.21
y=5.97 dollars
What two numbers multiply to negative 12 and add up to negative 13
Answer:
−13.8654599313 and 0.8654599313
Step-by-step explanation:
The two numbers of interest will be the solutions to ...
xy = -12
x +y = -13
Substituting for y, this becomes the quadratic ...
x(-13 -x) = -12
x^2 +13x = 12 . . . . . multiply by -1
x^2 +13x +6.5^2 = 12 +6.5^2 . . . . . complete the square
(x +6.5)^2 = 54.25
x = -6.5 ± √54.25 . . . . . . take the square root, subtract 6.5
x ≈ -13.865499313 or 0.8654599313
The value of y is the other of these two numbers. So, the two numbers of interest are {-13.865499313, 0.8654599313}.
. Find two polynomial expressions whose quotient, when simplified, is 1/x . Use that division problem to determine whether polynomials are closed under division.
Answer:
The two polynomials are:
(x + 1) and (x² + x)
Step-by-step explanation:
A polynomial is simply an expression which consists of variables & coefficients involving only the operations of addition, subtraction, multiplication, and non - negative integer exponents of variables.
Now, 1 and x are both polynomials. Thus; 1/x is already a quotient of a polynomial.
Now, to get two polynomial expressions whose quotient, when simplified, is 1/x, we will just multiply the numerator and denominator by the same polynomial to get more quotients.
So,
Let's multiply both numerator and denominator by (x + 1) to get;
(x + 1)/(x(x + 1))
This gives; (x + 1)/(x² + x)
Now, 1 and x are both polynomials but the expression "1/x" is not a polynomial but a quotient and thus polynomials are not closed under division.
Find the value of x. Round to the nearest tenth.Find the value of x. Round to the nearest tenth.
Answer:
x = 55.6Step-by-step explanation:
In order to find the value of x we use sine
sin ∅ = opposite / hypotenuse
From the question
x is the hypotenuse
the opposite is 19
So we have
sin 20 = 19/x
x = 19/sin 20
x = 55.55
We have the final answer as
x = 55.6 to the nearest tenthHope this helps you
Answer:
x = 55.6
Step-by-step explanation:
All the edges of a cube have the same length. Tony claims that the formula SA = 6s, where s is the length of
each side of the cube, can be used to calculate the surface area of a cube.
a. Draw the net of a cube to determine if Tony's formula is correct.
b. Why does this formula work for cubes?
Frances believes this formula can be applied to calculate the surface area of any rectangular prism. Is
she correct? Why or why not?
d. Using the dimensions of Length, Width and Height, create a formula that could be used to calculate the
surface area of any rectangular prism, and prove your formula by calculating the surface area of a
rectangular prism with dimensions L = 5m, W = 6m and H=8m.
Answer:
Here's what I get
Step-by-step explanation:
a. Net of a cube
Fig. 1 is the net of a cube
b. Does the formula work?
Tony's formula works if you ignore dimensions.
There are six squares in the net of a cube.
If each side has a unit length s, the total area of the cube is 6s.
c. Will the formula work for any rectangular prism?
No, because a rectangular prism has sides of three different lengths — l, w, and h — as in Fig. 2.
d. Area of a rectangular prism
A rectangular prism has six faces.
A top (T) and a bottom (b) — A = 2×l×w
A left (L) and a right (R) — A = 2×l×h
A front (F) and a back (B) — A = 2×w×h
Total area = 2lw + 2lh + 2wh
If l = 5 m, w = 6 m and h = 8 m,
[tex]\begin{array}{rl}A &=& \text{2$\times$ 5 m $\times$ 6 m + 2$\times$ 5 m $\times$ 8 m + 2 $\times$ 6 m $\times$ 8 m}\\&=& \text{60 m}^{2} + \text{80 m}^{2} + \text{96 m}^{2}\\&=& \textbf{236 m}^{2}\\\end{array}[/tex]
The width of a rectangle measures (6.8d-4.2)(6.8d−4.2) centimeters, and its length measures (9.2d+8.7)(9.2d+8.7) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
Answer:
The perimeter of the rectangle is represented by [tex]p = 32\cdot d + 9[/tex], measured in centimeters.
Step-by-step explanation:
The perimeter ([tex]p[/tex]) of a rectangle, measured in centimeters, is represented by this formula:
[tex]p = 2\cdot (w+l)[/tex]
Where [tex]w[/tex] and [tex]l[/tex] are width and length, measured in centimeters.
If [tex]w = 6.8\cdot d-4.2[/tex] and [tex]l = 9.2\cdot d+8.7[/tex], the expression that represents the perimeter is:
[tex]p = 2\cdot (16\cdot d +4.5)[/tex]
[tex]p = 32\cdot d + 9[/tex]
The perimeter of the rectangle is represented by [tex]p = 32\cdot d + 9[/tex], measured in centimeters.
pls help with sum geometry
YES! quite easily.
I hope you can see the two pairs of corresponding angles between the parallel lines. they'll be equal
and then there's a pair of vertically opposite angle at centre.
that means all pairs of corresponding angles are equal, thus, triangles are similar by AAA
Answer:
[tex]\Large \boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
The triangles can be proven by AA or Angle-Angle similarity.
[tex]\angle QUR \cong \angle TUS[/tex]
The vertical angles are congruent.
[tex]\angle R \cong \angle S[/tex]
The alternate interior angles are congruent.
Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bottom of the shorter building is 48degrees and from the bottom, the angle of of elevation of the top of the shorter building is 36 degrees. Calculate the difference in the heights of the buildings
Answer:
4.61 m
Step-by-step explanation:
The angle of depression of the bottom of the shorter building from the top of the taller building = 48° equals the angle of elevation of the top of the taller building from the bottom of the shorter building
Using trig ratios
tan48° = H/d where H = height of taller building and d = their distance apart = 12 m
H = dtan48° = 12tan48° = 13.33 m
Also, the angle of elevation of the top of the shorter building from the bottom of the taller building is 36°
Using trig ratios
tan36° = h/d where h = height of shorter building
h =dtan36° = 12tan36° = 8.72 m
Now, the difference in height of the buildings is thus H - h = 13.33 m - 8.72 m = 4.61 m
1: The best statement for reason 6 of this proof is -∠A ≅ ∠C
-∠B ≅ ∠D
-∠B and ∠D are supplements
-∠B ≅ ∠B
2.The best reason for statements 3.5. and 7 in this proof is
- Alternate interior angles are congruent.
-Corresponding angles are congruent.
-Alternate exterior angles are congruent.
-Interior angles on the same sides of a transversal are supplements.
3. The best statement for reason 8 of this proof is
-∠B ≅ ∠B -∠A and ∠C are supplements.
-∠B ≅ ∠D
-∠A ≅ ∠C
Answer:
1) -∠B ≅ ∠D
2) -Interior angles on the same side of a transversal are supplementary
3) -∠A ≅ ∠C
Step-by-step explanation:
1) Given that ∠A and ∠B are supplements and ∠A and ∠D are supplements, we have; ∠B ≅ ∠D
2) Given that ABCD is a parallelogram, therefore ∠A and ∠B, ∠A and ∠D and ∠B and ∠C are interior angles on the same side of a transversal and are therefore supplementary
3) Given that ∠A and ∠B and ∠B and ∠C are supplementary, therefore, ∠A ≅ ∠C.
Greyson completes a dive from a
cliff 75-feet above a river. It takes
him only 1.5 seconds to hit the
water and then another 0.5
second to descend 10 feet into the river
what’s the x axis and y axis?
Answer: y: height, x: time.
Step-by-step explanation:
The data we have is:
The initial position of Greyson is 75ft above the river.
He needs 1.5 seconds to hit the water, and other 0.5s tho reach the bottom of the river.
Then we have a relationship of height vs time.
The y axis will represent the heigth of Greyson, and the x-axis will represent the time, such that at the time x = 0 seconds, we have y = 75ft
8 kids bought a 3 cakes. How many equal parts will need to divide it so that everyone can have it. Easy one!
Answer:
3/8 is your answer.
Step-by-step explanation:
Given:
8 kids bought a 3 cakes.
Required:
How many equal parts will need to divide it so that everyone can have it.
Solution:
3/8
Hope this helps ;) ❤❤❤
What is the rate of change and initial value for the linear relation that includes the points shown in the table?
ху
1 | 20
3 | 10
5 | 0
7 | -10
A. Initial value: 20, rate of change: 10
B. Initial value: 30, rate of change: 10
C. Initial value: 25, rate of change: -5
D. Initial value: 20, rate of change: -10
Answer:
C, at 0/25, 1/20, 2/15, 3/10,...
Answer:
C
Step-by-step explanation:
1)Sheyna drive to the lake and back. It took two hours less time to get there than it did to get back. The average speed on the trip there was 60 mph. The average speed on the way back was 36 mph. How many hours did the trip there take?
Answer:
8 hours
Step-by-step explanation:
Given:
Sheyna drives to the lake with average speed of 60 mph and
[tex]v_1 = 60\ mph[/tex]
Sheyna drives back from the lake with average speed of 36 mph
[tex]v_2 = 36\ mph[/tex]
It took 2 hours less time to get there than it did to get back.
Let [tex]t_1[/tex] be the time taken to drive to lake.
Let [tex]t_2[/tex] be the time taken to drive back from lake.
[tex]t_2-t_1 = 2[/tex] hrs ..... (1)
To find:
Total time taken = ?
[tex]t_1+t_2 = ?[/tex]
Solution:
Let D be the distance to lake.
Formula for time is given as:
[tex]Time =\dfrac{Distance}{Speed }[/tex]
[tex]t_1 = \dfrac{D}{60}\ hrs[/tex]
[tex]t_2 = \dfrac{D}{36}\ hrs[/tex]
Putting in equation (1):
[tex]\dfrac{D}{36}-\dfrac{D}{60} = 2\\\Rightarrow \dfrac{5D-3D}{180} = 2\\\Rightarrow \dfrac{2D}{180} = 2\\\Rightarrow D = 180\ miles[/tex]
So,
[tex]t_1 = \dfrac{180}{60}\ hrs = 3 \ hrs[/tex]
[tex]t_2 = \dfrac{180}{36}\ hrs = 5\ hrs[/tex]
So, the answer is:
[tex]t_1+t_2 = \bold{8\ hrs}[/tex]
Please solve (will make brainiest)
Answer:
1a) 1/64
1b) 1/169
1c) 1/9
Step-by-step explanation:
You have to apply Indices Law :
[tex] {a}^{ - n} = \frac{1}{ {a}^{n} } [/tex]
Question A,
[tex] {4}^{ - 3} = \frac{1}{ {4}^{3} } = \frac{1}{64} [/tex]
Question B,
[tex] {13}^{ - 2} = \frac{1}{ {13}^{2} } = \frac{1}{169} [/tex]
Question C,
[tex] {( - 3)}^{ - 2} = {( - \frac{1}{3}) }^{2} = \frac{1}{9} [/tex]
|3x–1|=8 please help!!!!!
Answer: -3
Add 1 to both sides
[tex]3x-1+1=8+1[/tex]
[tex]3x=9[/tex]
Divide both sides by 3
[tex]3x/3=9/3\\x=3[/tex]
Solve for X answer asap thanks
Answer:
Step-by-step explanation:
The formula we need for this is
4(4 + x) = 5(5 + 3) and
16 + 4x = 5(8) and
16 + 4x = 40 and
4x = 24 so
x = 6, choice C.
Find the missing probability. P(A)=1120,P(B|A)=1320,P(A∩B)=?
Explanation:
Assuming you meant to say
P(A) = 11/20
P(B|A) = 13/20
then,
P(A∩B) = P(A)*P(B|A)
P(A∩B) = (11/20)*(13/20)
P(A∩B) = (11*13)/(20*20)
P(A∩B) = 143/400
31. Each day, Talisa exercises by first
stretching and then swimming
some laps, as shown in the table.
Make a scatter plot of the total
time she exercises as a function
of the number of laps she swims.
Draw a trend line.
Answer:
Step-by-step explanation:
Given the following :
Laps - - - - - - - - 5 - - - 6 - - - 7 - - - 8 - - - 9
Total time - - - 25 - - 28 - - 29 - - 30 - - 32
Using online graphing tool:
The y - axis named dependent variable represents the total time taken.
The x-axis, represents the number of laps.
The equation of the trend line attached to the plot is in the form :
y = mx + c
y = 1.6x + 17.6
Where y = total time taken
x = number of laps
m = 1.6 = gradient of the line (change in y / change in x)
C = 17.6 = intercept (whee the trndline intersects the y-axis).
Evaluate a + b for a= 34 and b= -6
Answer:
Hey there!
a+b
34+(-6)
34-6
28
Let me know if this helps :)