This question is incomplete, the complete question is;
(Laminar flow) A fluid flows through two horizontal pipes of equal length which are connected together to form a pipe of length 2[tex]l[/tex]. The flow is laminar and fully developed. The pressure drop for the first pipe is 1.657 times greater than it is for the second pipe. If the diameter of the first pipe is D, determine the diameter of the second pipe.
D₃ = _____D.
{ the tolerance is +/-3% }
Answer:
the diameter of the second pipe D₃ is 1.13D
Explanation:
Given the data in the question;
Length = 2[tex]l[/tex]
pressure drop in the first pipe is 1.657 times greater than it is for the second pipe.
Now, we know that for Laminar Flow;
V' = πD⁴ΔP / 128μL
where V'₁ = V'₂ and ΔP₁₋₂ = 1.657 ΔP₂₋₃
Hence,
V'₁ = πD⁴ΔP₁₋₂ / 128μL = V'₃ = πD₃⁴ΔP₂₋₃ / 128μL
so
D₃ = D[tex]([/tex] ΔP₁₋₂ / ΔP₂₋₃ [tex])^{\frac{1}{4}[/tex]
we substitute
D₃ = D[tex]([/tex] 1.657 [tex])^{\frac{1}{4}[/tex]
D₃ = D( 1.134568 )
D₃ = 1.13D
Therefore, the diameter of the second pipe D₃ is 1.13D
Compute the minimum length of vertical curve that will provide 220 m stopping sight distance for a design speed of 110 km/h at the intersection of a -3.50% grade and a +2.70% grade.
i have made notes and saved it as a pdf u can take it to answer question and make ur concept good
The minimum length of vertical curve that will provide 220 m stopping sight distance is; 458.8 m
We are given;
Stopping sight distance; S = 220 m
Design Speed; V = 110 km/h
Intersection grade 1; G1 = +2.7
Intersection Grade 2; G2 = -3.5
From the AASHTO Table attached, we can trace the value of the radius of vertical curvature for the given stopping sight distance and design speed.From the table, at S = 220 m and V = 110 km/h, we can see that;
Radius of vertical curvature; K = 74
Now, the difference in grade given is;A = G1 - G2
A = 2.7 - (-3.5)
A = 2.7 + 3.5
A = 6.2
Formula for the minimum length of vertical curve is;L = KA
Thus;
L = 74 × 6.2
L = 458.8 m
Read more about stopping sight distance at; https://brainly.com/question/2087168
Block A hangs by a cord from spring balance D and is submerged in a liquid C contained in beaker B. The mass of the beaker is 1.20 kg; the mass of the liquid is 1.85 kg. Balance D reads 3.10 kg and balance E reads 7.50 kg. The volume of block A is 4.15 × 10−3 m3.
a) What is the density of the liquid?
b) What will the balance D read if block A is pulled up out of the liquid?
c) What will the balance E read if block A is pulled up out of the liquid?
Answer:
a) [tex]m_e= 3.05 Kg[/tex]
b) [tex]\rho=1072.3kg/m^3[/tex]
c) [tex]m_e= 3.05 Kg[/tex]
Explanation:
From the question we are told that:
Beaker Mass [tex]m_b=1.20[/tex]
Liquid Mass [tex]m_l=1.85[/tex]
Balance D:
Mass [tex]m_d=3.10[/tex]
Balance E:
Mass [tex]m_e=7.50[/tex]
Volume [tex]v=4.15*10^{-3}m^3[/tex]
a)
Generally the equation for Liquid's density is mathematically given by
[tex]m_e=m_b+m_l+(\rho*v)[/tex]
[tex]\rho=\frac{7.50-(1.2+1.85)}{4.15*10^{-3}}[/tex]
[tex]\rho=1072.3kg/m^3[/tex]
b)
Generally the equation for D's Reading at A pulled is mathematically given by
m_d = mass of block - mass of liquid displaced
[tex]m_d=m- (\rho *v )[/tex]
[tex]m=3.10+ (1072.30 *4.15*10^{-3}m^3 )[/tex]
[tex]m=18.10kg[/tex]
c)
Generally the equation for E's Reading at A pulled is mathematically given by
[tex]m_e=m_b+m_l[/tex]
[tex]m_e = 1.20 + 1.85[/tex]
[tex]m_e= 3.05 Kg[/tex]
Why water parameters of Buriganga river vary between wet and dry seasons?
Explain.
Tech A says that proper footwear may include both leather and steel-toed shoes. Tech B says that when working in the shop, you only need to wear safety glasses if you are doing something dangerous. Who is correct?
Answer:
Tech A is correct.
Explanation:
If a person is doing something dangerous in a shop, he should wear safety glasses to protect his eyes from danger and also wear leather shoes to protect himself from any electric shock. Leather boots will disconnect a person with direct earth and therefore he can save himself if he gets a electric shock.
A rod that was originally 100-cm-long experiences a strain of 82%. What is the new length of the rod?
122 cm
182 cm
82 cm
22 cm
108.2 cm
Answer: (b)
Explanation:
Given
Original length of the rod is [tex]L=100\ cm[/tex]
Strain experienced is [tex]\epsilon=82\%=0.82[/tex]
Strain is the ratio of the change in length to the original length
[tex]\Rightarrow \epsilon =\dfrac{\Delta L}{L}\\\\\Rightarrow 0.82=\dfrac{\Delta L}{100}\\\\\Rightarrow \Delta L=82\ cm[/tex]
Therefore, new length is given by (Considering the load is tensile in nature)
[tex]\Rightarrow L'=\Delta L+L\\\Rightarrow L'=82+100=182\ cm[/tex]
Thus, option (b) is correct.
Two engineers are to solve an actual heat transfer problem in a manufacturing facility. Engineer A makes the necessary simplifying assumptions and solves the problem analytically, while engineer B solves it numerically using a powerful software package. Engineer A claims he solved the problem exactly and, thus, his results are better, while engineer B claims that he used a more realistic model and, thus, his results are better. Will the experiments prove engineer B right
Answer:
Engineer A results will be more accurate
Explanation:
Analytical method is better than numerical method. Engineer A has used analytical method and therefore his results will be more accurate because he used simplified method. Engineer B has used software to solve the problem related to heat transfer his results will be approximate.
Wave flow of an incompressible fluid into a solid surface follows a sinusoidal pattern. Flow is two-dimensional with the x-axis normal to the surface and y axis along the wall. The x component of the flow follows the pattern
u = Ax sin (2πt/T)
Determine the y-component of flow (v) and the convective and local components of the acceleration vector.
Answer:
sorry , for my point
Explanation:
An unconstrained 10mm thick plate of steel 100mm on a side with a 25mm diameter hole in the center is heated from 20 degrees C to 120 degrees C. The linear CTE is 12x10-6/⁰C. What is the final diameter of the hole
Answer:
The correct answer is "25.03 mm".
Explanation:
Given:
Thickness of plate,
= 10 mm
On a side,
= 100 mm
Diameter hole,
= 25 mm
Coefficient of thermal expansion,
CTE = [tex]12\times 10^{-6} /^{\circ} C[/tex]
Now,
⇒ [tex]D_i\times (12\times 10^{-6}) \Delta \theta = \Delta D[/tex]
= [tex]25\times 12\times 10^{-6} \Delta \theta[/tex]
= [tex]3\times 10^{-4} \Delta \theta[/tex]
= [tex]3\times 10^{-2}[/tex]
hence,
The final diameter of hole will be:
[tex]D_f=25.03 \ mm[/tex]
Which of the following is not a part sympathetic activation during the fight or flight response?
Answer:
Digestion functions become more active
Explanation:
I just took the text!
A network has three independent file servers, each with 90 percent reliability. The probability that the network will be functioning correctly (at least one server is working) at a given time is:
Answer:
The correct answer is "99.9%".
Explanation:
According to the information given in the question,
[tex]P(1 \ fail) = 0.1[/tex]
The probability of all fail will be:
[tex]P(all \ fail) = (0.1)^3[/tex]
[tex]=0.001[/tex]
hence,
[tex]P(not \ all \ fail)= 1-P(all \ fail)[/tex]
[tex]=0.999[/tex]
[tex]=99.9[/tex] (%)
Thus the above is the right answer.
If an elevator repairer observes that cables begin to fray after 15 years, what process might he or she use to create a maintenance schedule for their replacement? fallacious reasoning reductive reasoning inductive reasoning deductive reasoning
Answer:
inductive reasoning
Explanation:
Inductive reasoning is one of the type of reasoning method in which generalized consequences are derived from limited observations. By observing few data, general conclusions are drawn. The conclusions drawn are false in inductive reasoning. In the given situation, the conclusion drawn by the elevator repairer has been drawn by inductive reasoning. His observation of some cables led him to draw the conclusion about all the cables. The result of the reasoning is false.
In heavy traffic areas you should wave pedestrians across the street if there is no crosswalk
In heavy traffic areas, you should wave pedestrians across the street if there is no crosswalk: False.
What is a crosswalk?A crosswalk can be defined as the marked or specially paved part of a road that is characterized by heavy traffic, so as to enable pedestrians have right of way to cross the street because drivers are required by traffic law to stop for them.
However, a driver or other road users in heavy traffic areas shouldn't wave pedestrians across the street if there is no crosswalk
Read more on traffic laws here: https://brainly.com/question/22768531
What are the assumptions made for air standard cycle analysis?
a.The working medium is prefect gas throughout i.e. it follows PV=mRT
b.The working medium does not undergo any chemical change throughout the cycle
c.The compression and expansion processes are reversible adiabatic i.e. there is no loss or gain in entropy.
d.All of above
A shunt regulator utilizing a zener diode with an incremental resistance of 8 ohm is fed through an 82-Ohm resistor. If the raw supply changes by 1.0 V, what is the correspondig change in the regulated outut voltage?
Answer:
[tex]\triangle V_0=0.08V[/tex]
Explanation:
From the question we are told that:
Incremental resistance [tex]R=8ohms[/tex]
Resistor Feed [tex]R_f=82ohms[/tex]
Supply Change [tex]\triangle V=1[/tex]
Generally the equation for voltage rate of change is mathematically given by
[tex]\frac{dV_0}{dV}=\frca{R}{R_1r_3}[/tex]
Therefore
[tex]\triangle V_0=\triangle V*\frac{R}{R_fR}[/tex]
[tex]\triangle V_0=1*\frac{8}{8*82}[/tex]
[tex]\triangle V_0=0.08V[/tex]
An ideal gas within a piston-cylinder assembly undergoes a Carnot refrigeration cycle. The isothermal compression occurs at 325 K from 2 bar to 4 bar. The isothermal expansion occurs at 250 K. Determine:
a. the coefficient of performance
b. the heat transfer to the gas during the isothermal expansion, in kj per kmol of gas
c. the magintude of the net work input, in kj per kmol of gas.
Answer:
a) [tex]\mu=3.3[/tex]
b) [tex]Q=1440.7KJ/Kmol[/tex]
c) [tex]W=1872.9KJ/Kmol[/tex]
Explanation:
From the question we are told that:
Initial Temperature [tex]T_1=325k[/tex]
initial Pressure [tex]P_1=2 bar[/tex]
Final Pressure [tex]P_2=4 bar[/tex]
iso-thermal expansion [tex]T_2=250k[/tex]
a)
Generally the equation for Coefficient of performance is mathematically given by
[tex]\mu=\frac{T_2}{T_1-T_2}[/tex]
[tex]\mu=\frac{250}{325-250}[/tex]
[tex]\mu=3.3[/tex]
b)
Generally the equation for Heat Expansion is mathematically given by
[tex]Q=RT_2 In(\frac{P_2}{P_1})[/tex]
Where
R=Gas constant
[tex]R=8.314462618[/tex]
Therefore
[tex]Q=8.314462618*250 In(\frac{4}{2})[/tex]
[tex]Q=1440.7KJ/Kmol[/tex]
c)
Generally the equation for work input is mathematically given by
[tex]W=RT_1 In(\frac{P_2}{P_1})[/tex]
[tex]W=8.314462618*250 In(\frac{4}{2})[/tex]
[tex]W=1872.9KJ/Kmol[/tex]
The coefficient of performance is 3.33, the heat transfer in the isothermal expansion is 1440.71kJ/K.mol and the work input is calculated as 1872.92kJ/K.mol
Given Data:
T1 = 325KP1 = 2 barP2 = 4 barT2 = 250KIsothermal expansion occurs at 250K.
a) The coefficient of performanceThis is calculated as
COP =[tex]\frac{T_2}{T_1-T_2}=\frac{250}{325-250} =3.33[/tex]
b) Heat Transfer in isothermal expansion[tex]Q = RT_2In(\frac{p_2}{p_1})[/tex]
Therefore; In isothermal process du = 0
R = 8.314 AkJ/K.mol
Q = 8.314 * 250 In(4/2)
Q = 1440.71kJ/K.mol
c) Work InputW[tex]_i_n[/tex]=[tex]RT_1In(\frac{p_2}{p_1})\\W_i_n=8.314*325In(4/2)\\W_i_n=1872.92kJ/K.mol[/tex]
The work input is 1872.92kJ/K.mol
Learn more on Carnot cycle here:
https://brainly.com/question/14983940
https://brainly.com/question/13170743
a video inspection snake is use
Answer:
very good thx
Explanation:
A pinion and gear pair is used to transmit a power of 5000 W. The teeth numbers of pinion
and gear are 20 and 50. The module is 5 mm, the pressure angle is 20o
and the face width is 45 mm. The
rotational speed of pinion is 300 rev/min. Both the pinion and the gear material are Nitralloy 135 Grade2 with a hardness of 277 Brinell. The quality standard number Qv is 5 and installation is open gearing
quality. Find the AGMA bending and contact stresses and the corresponding factors of safety for a
pinion life of 109
cycles and a reliability of 0.98
Answer:
mark me as a brainleast
Explanation:
209781
The maximum tensile force a solid, cylindrical wire can withstand increases as the thickness of the wire increases.
True
False
A force measuring instrument comes with a certificate of calibration that identifies two instrument errors and assigns each an uncertainty at 95% confidence over its range. Provide an estimate of the instrument design-stage uncertainty.
Resolution: 0.25 N
Range: 0 to 100 N
Linearity error: within 0.20 N over range
Hysteresis error: within 0.30 N over range
Answer:
[tex]U=\pm 0.382N[/tex]
Explanation:
From the question we are told that:
Resolution: 0.25 N
Range: 0 to 100 N
Linearity error: within 0.20 N over range
Hysteresis error: within 0.30 N over range
Generally the equation for Stage Uncertainty is mathematically given by
[tex]U=\sqrt{u_0^2+u_T^2}[/tex]
Where
[tex]u_0=Zero\ order\ uncertainty[/tex]
[tex]u_0=\pm 0.5*0.25[/tex]
[tex]u_0=\pm=0.125[/tex]
And
u_T=Total instrumental Uncertainty
[tex]u_T=\sqrt{l_e^2+h_e^2}[/tex]
Where
l_e=Error of linearity
h_e=Error due to hysteresis
Hence
[tex]u_T=\sqrt{0.20^2+0.30^2}[/tex]
[tex]u_T=\pm 0.36[/tex]
Therefore
[tex]U=\sqrt{(0.125)^2+0.36^2}[/tex]
[tex]U=\pm 0.382N[/tex]
Unfiltered full wave rectifier with a 120 V 60 Hz input produces an output with a peak of 15V. When a capacitor-input filter and a 1k ohm load are connected the DC output voltage is 14V. What is... The value of the capacitor? The value of the peak to peak ripple voltage?
Answer:
[tex]V_{pp}=2V[/tex]
Explanation:
Source Voltage [tex]V= 120V[/tex]
Frequency [tex]f=60Hz[/tex]
Peak output voltage [tex]Vp=15V[/tex]
Peak Output Voltage with filter [tex]V_p'=14V[/tex]
Generally the equation for Peak to peak voltage is mathematically given by
[tex]V_p'=V_p-\frac{V_{pp}}{2}[/tex]
Therefore
[tex]V_{pp}=2(V_p-v_p')[/tex]
[tex]V_{pp}=2(15-14)[/tex]
[tex]V_{pp}=2V[/tex]
Elliptic curve cryptography is considered as the latest and probably the one with a future. Having seen RSA in earlier modules, in which ways do YOU think elliptic cryptography is more advanced than RSA. You may read other material or get this information from the internet to answer this question. But make sure to provide necessary references when you do cite others.
Answer:
The answer is below.
Explanation:
Some of the ways, how I think elliptic cryptography is more advanced than RSA are the following:
1. ECC - Elliptic Curve Cryptography uses smaller keys for the same level of security, particularly at greater levels of security.
2. ECC can work well and at a faster rate on a small-capacity device compared to RSA
3. It uses offer speedier SSL handshakes that enhance security
4. It offers fast signatures
5. It allows signatures to be computed in two stages, which enables lower latency than inverse throughput.
6. Relatively quick encryption and decryption
A investor will invest in mutual fundwith a probability of 0.6, will invest in government fundwith a probability of 0.3, and will invest in both fundswith a probability of 0.15. Find the probability that the investor will invest in either mutual fundor government fund.
Answer:
0.75
Explanation:
From this question above we have the following information
A = probability of investment in mutual fund= 0.6
B = probability of investment in government fund = 0.3
C = probability of investing in both the mutual fund and the government= 0.15
Where to find the probability of this investor investing in either of these two
= Prob(a) + prob(b) - prob(c)
= 0.6 + 0.3 - 0.15
= 0.9 - 0.15
= 0.75
If a cylindrical part with a length of 20 mm and a diameter of 20 mm is to be machined to a cylindrical part with 18 mm in diameter with the same length. The machine has a mechanical efficiency of 50% and a power of 80 kW. If the cutting rake angle is 0 degrees and the cutting tool is made of uncoated carbides and the cutting speed is 10 m/s. What material can we choose for the cylinder
Answer:
Titanium Alloy
Explanation:
Length ( L ) = 20 mm
D1 = 20 mm
d2 = 18 mm
l = 20 mm
Mechanical efficiency = 50%
power = 80 kW
cutting rake angle = 0°
cutting speed ( v ) = 10 m/s
Determine the material to be for the cylinder
In order to choose a material for the cylinder we have to calculate the cutting force
P = Fc * V
80 = Fc * 10 m/s
therefore Fc = 80 / 10 = 8 N
Hence the material we can use is Titanium Alloy due to low cutting force value
A gas tank is known to have a thickness of 0.5 inches and an internal pressure of 2.2 ksi. Assuming that the maximum allowable shear stress in the tank wall is 12 ksi, determine the necessary outer diameter for the tank. Assume that the tank is made of a cold drawn steel whose elastic modulus is 35000 ksi and whose Poisson ratio is 0.292. If y
Answer:
[tex]D_o=11.9inch[/tex]
Explanation:
From the question we are told that:
Thickness [tex]T=0.5[/tex]
Internal Pressure[tex]P=2.2Ksi[/tex]
Shear stress [tex]\sigma=12ksi[/tex]
Elastic modulus [tex]\gamma= 35000[/tex]
Generally the equation for shear stress is mathematically given by
[tex]\sigma=\frac{P*r_1}{2*t}[/tex]
Where
r_i=internal Radius
Therefore
[tex]12=\frac{2.2*r_1}{2*0.5}[/tex]
[tex]r_i=5.45[/tex]
Generally
[tex]r_o=r_1+t[/tex]
[tex]r_o=5.45+0.5[/tex]
[tex]r_o=5.95[/tex]
Generally the equation for outer diameter is mathematically given by
[tex]D_o=2r_o[/tex]
[tex]D_o=11.9inch[/tex]
Therefore
Assuming that the thin cylinder is subjected to integral Pressure
Outer Diameter is
[tex]D_o=11.9inch[/tex]
Explain ROLAP, and list the reasons you would recommend its use in the relational database environment.
Answer:
ROLAP is a branch of OLAP that is used to contain Relational database ( RDB ). which is a very fast database ( quick process of queries )
Very fast to access and also fast in processing queries provides multidimensional view of data / supports multidimensional database schema with RDBMssupports large databasesExplanation:
ROLAP ( Relational On-line Analytical processing ) is a branch of OLAP that is used to contain Relational database ( RDB ).
Advantages of ROLAP ( reasons for the use of ROLAP )
Very fast to access ( fast in processing queries )provides multidimensional view of data / supports multidimensional database schema with RDBMssupports large databasesGiven : x² + 200x = 166400 The current park is a square, and the addition will increase the width by 200 meters to give the expanded park a total area of 166,400 square meters To Find : the side length of the current square park. Solution: x² + 200x = 166400 => x(x + 200) = 166400 166400 = 320 * 520 => (320)(320 + 200) = 166400 => x = 320 side length of the current square park. = 320 m Learn More: Which expression is a possible leading term for the polynomial ... brainly.In/question/13233517
Answer:
320 m
Explanation:
To find the side length of the current park, x, we solve the quadratic equation for the area of the park
x² + 200x = 166400
x² + 200x - 166400 = 0
We multiply -166400 by x² to get -166400x². We now find the factors of 166400x² that will add up to 200x. These factors are -320x and 520x
So, we re-write the expression as
x² + 200x - 166400 = 0
x² + 520x - 320x - 166400 = 0
We write out the factors of the expression,
x² + 520x - 320x - 320 × 520 = 0
Factorizing the expression, we have
x(x + 520) - 320(x + 520) = 0
(x + 520)(x - 320) = 0
x + 520 = 0 or x - 320 = 0
x = -520 or x = 320
Since x is not negative, we take the positive answer.
So, x = 320 m
In the construction of a large reactor pressure vessel, a new steel alloy with a plane strain fracture toughness of 55 MPa-m1/2 and a Y value of 1.0. An in-service stress level of 200 MPa has been calculated. What is the length of a surface crack (in mm) that will lead to fracture
Answer:
[tex]l=24mm[/tex]
Explanation:
From the question we are told that:
Plane strain fracture toughness of [tex]T=55 MPa-m1/2[/tex]
Y value [tex]Y=1.0[/tex]
Stress level of[tex]\sigma =200 MPa[/tex]
Generally the equation for length of a surface crack is mathematically given by
[tex]l=\frac{1}{\pi}(\frac{T}{Y*\sigma})^2[/tex]
[tex]l=\frac{1}{3.142}(\frac{55}{1*200})^2[/tex]
[tex]l=0.024m[/tex]
Therefore
in mm
[tex]l=24mm[/tex]
Doubling the diameter of a solid, cylindrical wire doubles its strength in tension.
True
False
Answer:
True ❤️
-Solid by solid can make Cylindrical wire doubles Strengths in tension
La iluminación de la superficie de un patio amplio es 1600 lx cuando el ángulo de elevación del sol 53°. Calcular la iluminación cuando el ángulo de elevación del Sol sea 37°
Answer:
I = 1205.69 Lx
Explanation:
The irradiation or intensity of the solar radiation on the earth is maximum for the vertical fire, with a value I₀
I = I₀ sin θ
in this case with the initial data we can calculate the initial irradiance
I₀ = [tex]\frac{I}{sin \ \theta }[/tex]
I₀ = 1600 /sin 53
I₀ = 2003.42 lx
for when the angle is θ = 37º
I = 2003.42 sin 37
I = 1205.69 Lx
Transients (surges) on a line can cause spikes or surges of energy that can damage delicate electronic components. A SPD device contains one or more ________________ than bypass and absorb the energy of the transient.
Answer:
I think ( MOV Metal oxide varistors )
Transients (surges) on a line can cause spikes or surges of energy that can damage delicate electronic components. A SPD device contains one or more MOV Metal oxide varistors than bypass and absorb the energy of the transient.