Let f: (a,b)—> R. If f'(x) exists for each x, a

Answers

Answer 1

If a function f(x) is defined on an open interval (a, b) and the derivative f'(x) exists for each x in that interval, then f(x) is said to be differentiable on (a, b). The existence of the derivative at each point implies that the function has a well-defined tangent line at every point in the interval.

The derivative of a function represents the rate at which the function changes at a specific point. When f'(x) exists for each x in the interval (a, b), it indicates that the function has a well-defined tangent line at every point in that interval. This implies that the function does not have any sharp corners, cusps, or vertical asymptotes within the interval.

Differentiability allows us to analyze various properties of the function. For example, the derivative can provide information about the function's increasing or decreasing behavior, concavity, and local extrema. It enables us to calculate slopes of tangent lines, determine critical points, and find the equation of the tangent line at a given point.

The concept of differentiability plays a crucial role in calculus, optimization, differential equations, and many other areas of mathematics. It allows for the precise study of functions and their behavior, facilitating the understanding and application of fundamental principles in various mathematical and scientific contexts.

know more about open interval :brainly.com/question/30191971

#spj11


Related Questions

Points Consider the equation for a' (t) = (a(t))2 + 4a(t) - 4. How many solutions to this equation are constant for all t? O There is not enough information to determine this. 0 3 01 02 OO

Answers

Answer:

3

Step-by-step explanation:

i drtermine that rhe anser is 3 not because i like the number 3 but becuse i do not know how in the wold i am spost to do this very sorry i can not help you with finding your sulution

In the diagram below, how many different paths from A to B are possible if you can only move forward and down? A 4 B 3. A band consisting of 3 musicians must include at least 2 guitar players. If 7 pianists and 5 guitar players are trying out for the band, then the maximum number of ways that the band can be selected is 50₂ +503 C₂ 7C1+5C3 C₂ 7C15C17C2+7C3 D5C₂+50₁ +5Co

Answers

There are 35 different paths from A to B in the diagram. This can be calculated using the multinomial rule, which states that the number of possible arrangements of n objects, where there are r1 objects of type A, r2 objects of type B, and so on, is given by:

n! / r1! * r2! * ...

In this case, we have n = 7 objects (the 4 horizontal moves and the 3 vertical moves), r1 = 4 objects of type A (the horizontal moves), and r2 = 3 objects of type B (the vertical moves). So, the number of paths is:

7! / 4! * 3! = 35

The multinomial rule can be used to calculate the number of possible arrangements of any number of objects. In this case, we have 7 objects, which we can arrange in 7! ways. However, some of these arrangements are the same, since we can move the objects around without changing the path. For example, the path AABB is the same as the path BABA. So, we need to divide 7! by the number of ways that we can arrange the objects without changing the path.

The number of ways that we can arrange 4 objects of type A and 3 objects of type B is 7! / 4! * 3!. This gives us 35 possible paths from A to B.

To learn more about multinomial rule click here : brainly.com/question/32616196

#SPJ11

: A charity organization orders shirts from a shirt design company to create custom shirts for charity events. The price for creating and printing & many shirts is given by the following function: P(n)= 50+ 7.5s if 0≤ $ ≤ 90 140 +6.58 if 90 < 8 Q1.1 Part a) 5 Points How much is the cost for the charity to order 150 shirts? Enter your answer here Save Answer Q1.2 Part b) 5 Points How much is the cost for the charity to order 90 shirts? Enter your answer here Save Answer

Answers

The cost for the charity to order 150 shirts is $1,127, and for the charity to order 90 shirts is $146.58.

a) Given function is:

P(n)= 50+ 7.5s if

0≤ $ ≤ 90 140 +6.58

if 90 < 8

The cost for the charity to order 150 shirts will be calculated using the given function,

P(n)= 50+ 7.5s when n > 90. Thus, P(n)= 140 +6.58 is used when the number of shirts exceeds 90.

P(150) = 140 +6.58(150)

= 140 + 987

= $1,127 (rounded to the nearest dollar)

Therefore, the cost for the charity to order 150 shirts is $1,127.

In the given problem, a charity organization orders shirts from a shirt design company to create custom shirts for charity events. The function gives the price for creating and printing many shirts.

P(n)= 50+ 7.5s if 0 ≤ $ ≤ 90 and 140 +6.58 if 90 < 8. It can be noted that

P(n)= 50+ 7.5s if 0 ≤ $ ≤ 90 is the price per shirt for orders less than or equal to 90.

P(n)= 140 +6.58 if 90 < 8 is the price per shirt for orders over 90.

Thus, we use the second part of the given function.

P(150) = 140 +6.58(150)

= 140 + 987

= $1,127 (rounded to the nearest dollar).

Therefore, the cost for the charity to order 150 shirts is $1,127.

To know more about the cost, visit:

brainly.com/question/29027167

#SPJ11

Transcribed image text: ← M1OL1 Question 18 of 20 < > Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist. (9 — t²) y' + 2ty = 8t², y(−8) = 1

Answers

The solution of the given initial value problem, (9 — t²) y' + 2ty = 8t², y(−8) = 1, is certain to exist in the interval (-∞, 3) ∪ (-3, ∞), excluding the values t = -3 and t = 3 where the coefficient becomes zero.

The given initial value problem is a first-order linear ordinary differential equation with an initial condition.

To determine the interval in which the solution is certain to exist, we need to check for any potential issues that might cause the solution to become undefined or discontinuous.

The equation can be rewritten in the standard form as (9 - [tex]t^2[/tex]) y' + 2ty = 8[tex]t^2[/tex].

Here, the coefficient (9 - t^2) should not be equal to zero to avoid division by zero.

Therefore, we need to find the values of t for which 9 - t^2 ≠ 0.

The expression 9 - [tex]t^2[/tex] can be factored as (3 + t)(3 - t).

So, the values of t for which the coefficient becomes zero are t = -3 and t = 3.

Therefore, we should avoid these values of t in our solution.

Now, let's consider the initial condition y(-8) = 1.

To ensure the existence of a solution, we need to check if the interval of t values includes the initial point -8.

Since the coefficient 9 - [tex]t^2[/tex] is defined for all t, except -3 and 3, and the initial condition is given at t = -8, we can conclude that the solution of the given initial value problem is certain to exist in the interval (-∞, 3) ∪ (-3, ∞).

In summary, the solution of the given initial value problem is certain to exist in the interval (-∞, 3) ∪ (-3, ∞), excluding the values t = -3 and t = 3 where the coefficient becomes zero.

Learn more about Equation here:

https://brainly.com/question/29018878

#SPJ11

ind the arc length of the given curve on the specified interval. This problem may make use of the formula from the table of integrals in the back of the book. (7 cos(t), 7 sin(t), t), for 0 ≤ t ≤ 2π √ √x² + a² dx = 1²2 [x√x² + a² + a² log(x + √x² + a²)] + C

Answers

the arc length of the curve on the specified interval is 2π√50.

The arc length of the curve given by (7 cos(t), 7 sin(t), t) on the interval 0 ≤ t ≤ 2π can be found using the integration formula:

∫ √(dx/dt)² + (dy/dt)² + (dz/dt)² dt

In this case, dx/dt = -7 sin(t), dy/dt = 7 cos(t), and dz/dt = 1. Substituting these values into the formula, we get:

∫ √((-7 sin(t))² + (7 cos(t))² + 1²) dt

Simplifying the expression inside the square root:

∫ √(49 sin²(t) + 49 cos²(t) + 1) dt

∫ √(49 (sin²(t) + cos²(t)) + 1) dt

∫ √(49 + 1) dt

∫ √50 dt

Integrating, we get:

∫ √50 dt = √50t + C

Evaluating this expression on the interval 0 ≤ t ≤ 2π:

√50(2π) - √50(0) = 2π√50

Therefore, the arc length of the curve on the specified interval is 2π√50.

learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

You will begin with a relatively standard calculation Consider a concave spherical mirror with a radius of curvature equal to 60.0 centimeters. An object 6 00 centimeters tall is placed along the axis of the mirror, 45.0 centimeters from the mirror. You are to find the location and height of the image. Part G What is the magnification n?. Part J What is the value of s' obtained from this new equation? Express your answer in terms of s.

Answers

The magnification n can be found by using the formula n = -s'/s, where s' is the image distance and s is the object distance. The value of s' obtained from this new equation can be found by rearranging the formula to s' = -ns.


To find the magnification n, we can use the formula n = -s'/s, where s' is the image distance and s is the object distance. In this case, the object is placed 45.0 centimeters from the mirror, so s = 45.0 cm. The magnification can be found by calculating the ratio of the image distance to the object distance. By rearranging the formula, we get n = -s'/s.

To find the value of s' obtained from this new equation, we can rearrange the formula n = -s'/s to solve for s'. This gives us s' = -ns. By substituting the value of n calculated earlier, we can find the value of s'. The negative sign indicates that the image is inverted.

Using the given values, we can now calculate the magnification and the value of s'. Plugging in s = 45.0 cm, we find that s' = -ns = -(2/3)(45.0 cm) = -30.0 cm. This means that the image is located 30.0 centimeters from the mirror and is inverted compared to the object.

To know more about Image visit.

https://brainly.com/question/30725545

#SPJ11

Determine the correct classification for each number or expression.

Answers

The numbers in this problem are classified as follows:

π/3 -> Irrational.Square root of 54 -> Irrational.5 x (-0.3) -> Rational.4.3(3 repeating) + 7 -> Rational.

What are rational and irrational numbers?

Rational numbers are defined as numbers that can be represented by a ratio of two integers, which is in fact a fraction, and examples are numbers that have no decimal parts, or numbers in which the decimal parts are terminating or repeating. Examples are integers, fractions and mixed numbers.Irrational numbers are defined as numbers that cannot be represented by a ratio of two integers, meaning that they cannot be represented by fractions. They are non-terminating and non-repeating decimals, such as non-exact square roots.

More can be learned about rational and irrational numbers at brainly.com/question/5186493

#SPJ1

f(x) = x^2+3x+2/ x^2 - x - 2 Find the asymptotes and intercepts for the graph of f, and then use this information and a sign chart for f(x) to sketch the graph of f.

Answers

To sketch the graph of f(x) = (x^2 + 3x + 2)/(x^2 - x - 2), we need to determine the asymptotes, intercepts, and create a sign chart for f(x).

To begin, let's find the asymptotes and intercepts:

1. Vertical Asymptotes:

Vertical asymptotes occur when the denominator of the fraction is equal to zero. So, we set the denominator x^2 - x - 2 = 0 and solve for x:

(x - 2)(x + 1) = 0

x = 2 or x = -1

Therefore, we have two vertical asymptotes at x = 2 and x = -1.

2. Horizontal Asymptote:

To find the horizontal asymptote, we examine the degrees of the numerator and denominator. Since both have the same degree (2), we divide the leading coefficients. The horizontal asymptote is given by the ratio of the leading coefficients:

y = 1/1 = 1

So, we have a horizontal asymptote at y = 1.

3. x-intercepts:

To find the x-intercepts, we set the numerator equal to zero and solve for x:

x^2 + 3x + 2 = 0

(x + 2)(x + 1) = 0

x = -2 or x = -1

Hence, the x-intercepts are at x = -2 and x = -1.

Now, let's create a sign chart for f(x):

We consider three intervals based on the vertical asymptotes (-∞, -1), (-1, 2), and (2, ∞). We choose test points within each interval and evaluate the function's sign.

For example, if we choose x = -2 (in the interval (-∞, -1)):

f(-2) = (-2^2 + 3(-2) + 2)/(-2^2 - (-2) - 2) = (-2 - 6 + 2)/(-4 + 2 - 2) = (-6)/(-4) = 3/2 > 0

By evaluating the function at other test points within each interval, we can complete the sign chart.

To learn more about  asymptotes Click Here: brainly.com/question/32503997

#SPJ11

.

Someone help please!

Answers

The graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].

What is the end behavior of a function?

The end behavior of a function refers to how the function behaves as the input variable approaches positive or negative infinity.

The function in this problem is given as follows:

[tex]f(x) = -x^4 + 9[/tex]

It has a negative leading coefficient with an even root, meaning that the function will approach negative infinity both to the left and to the right of the graph.

Hence the graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].

More can be learned about the end behavior of a function at brainly.com/question/1365136

#SPJ1

A オー E Bookwork code: H34 Calculator not allowed Choose which opton SHOWS. I) the perpendicular bisector of line XY. Ii) the bisector of angle YXZ. Iii) the perpendicular from point Z to line XY. -Y Y B X< F オー -Y -2 X- Z C Y G オー Watch video -Y D H X Y -Z Z Y An​

Answers

Therefore, option iii) "the perpendicular from point Z to line XY" shows the perpendicular bisector of line XY.

The option that shows the perpendicular bisector of line XY is "iii) the perpendicular from point Z to line XY."

To find the perpendicular bisector, we need to draw a line that is perpendicular to line XY and passes through the midpoint of line XY.

In the given diagram, point Z is located above line XY. By drawing a line from point Z that is perpendicular to line XY, we can create a right angle with line XY.

The line from point Z intersects line XY at a right angle, dividing line XY into two equal segments. This line serves as the perpendicular bisector of line XY because it intersects XY at a 90-degree angle and divides XY into two equal parts.

For such more question on perpendicular

https://brainly.com/question/1202004

#SPJ8

Finance. Suppose that $3,900 is invested at 4.2% annual interest rate, compounded monthly. How much money will be in the account in (A) 11 months? (B) 14 years

Answers

a. the amount in the account after 11 months is $4,056.45.

b. the amount in the account after 14 years is $7,089.88.

Given data:

Principal amount (P) = $3,900

Annual interest rate (r) = 4.2% per annum

Number of times the interest is compounded in a year (n) = 12 (since the interest is compounded monthly)

Let's first solve for (A)

How much money will be in the account in 11 months?

Time period (t) = 11/12 year (since the interest is compounded monthly)

We need to calculate the amount (A) after 11 months.

To find:

Amount (A) after 11 months using the formula A = [tex]P(1 + r/n)^{(n*t)}[/tex]

where P = Principal amount, r = annual interest rate, n = number of times the interest is compounded in a year, and t = time period.

A = [tex]3900(1 + 0.042/12)^{(12*(11/12))}[/tex]

A = [tex]3900(1.0035)^{11}[/tex]

A = $4,056.45

Next, let's solve for (B)

How much money will be in the account in 14 years?

Time period (t) = 14 years

We need to calculate the amount (A) after 14 years.

To find:

Amount (A) after 14 years using the formula A = [tex]P(1 + r/n)^{(n*t)}[/tex]

where P = Principal amount, r = annual interest rate, n = number of times the interest is compounded in a year, and t = time period.

A = [tex]3900(1 + 0.042/12)^{(12*14)}[/tex]

A =[tex]3900(1.0035)^{168}[/tex]

A = $7,089.88

To learn more about Principal amount, refer:-

https://brainly.com/question/11566183

#SPJ11

Evaluate the integral: S dz z√/121+z² If you are using tables to complete-write down the number of the rule and the rule in your work.

Answers

Evaluating the integral using power rule and substitution gives:

[tex](121 + z^{2}) ^{\frac{1}{2} } + C[/tex]

How to evaluate Integrals?

We want to evaluate the integral given as:

[tex]\int\limits {\frac{z}{\sqrt{121 + z^{2} } } } \, dz[/tex]

We can use a substitution.

Let's set u = 121 + z²

Thus:

du = 2z dz

Thus:

z*dz = ¹/₂du

Now, let's substitute these expressions into the integral:

[tex]\int\limits {\frac{z}{\sqrt{121 + z^{2} } } } \, dz = \int\limits {\frac{1}{2} } \, \frac{du}{\sqrt{u} }[/tex]

To simplify the expression further, we can rewrite as:

[tex]\int\limits {\frac{1}{2} } \, u^{-\frac{1}{2}} {du}[/tex]

Using the power rule for integration, we finally have:

[tex]u^{\frac{1}{2}} + C[/tex]

Plugging in 121 + z² for u gives:

[tex](121 + z^{2}) ^{\frac{1}{2} } + C[/tex]

Read more about Evaluating Integrals at: https://brainly.com/question/22008756

#SPJ4

Let f(x) be a function of one real variable, such that limo- f(x)= a, lim„→o+ f(x)=b, ƒ(0)=c, for some real numbers a, b, c. Which one of the following statements is true? f is continuous at 0 if a = c or b = c. f is continuous at 0 if a = b. None of the other items are true. f is continuous at 0 if a, b, and c are finite. 0/1 pts 0/1 pts Question 3 You are given that a sixth order polynomial f(z) with real coefficients has six distinct roots. You are also given that z 2 + 3i, z = 1 - i, and z = 1 are solutions of f(z)= 0. How many real solutions to the equation f(z)= 0 are there? d One Three er Two There is not enough information to be able to decide. 3 er Question 17 The volume of the solid formed when the area enclosed by the x -axis, the line y the line x = 5 is rotated about the y -axis is: 250TT 125T 125T 3 250T 3 0/1 pts = x and

Answers

The correct answer is option (B) f is continuous at 0 if a = b. Thus, option (B) is the true statement among the given options for volume.

We have been given that[tex]limo- f(x)= a, lim„→o+ f(x)=b, ƒ(0)=c[/tex], for some real numbers a, b, c. We need to determine the true statement among the following:A) f is continuous at 0 if a = c or b = c.

The amount of three-dimensional space filled by a solid is described by its volume. The solid's shape and properties are taken into consideration while calculating the volume. There are precise formulas to calculate the volumes of regular geometric solids, such as cubes, rectangular prisms, cylinders, cones, and spheres, depending on their parameters, such as side lengths, radii, or heights.

These equations frequently require pi, exponentiation, or multiplication. Finding the volume, however, may call for more sophisticated methods like integration, slicing, or decomposition into simpler shapes for irregular or complex patterns. These techniques make it possible to calculate the volume of a wide variety of objects found in physics, engineering, mathematics, and other disciplines.

B) f is continuous at 0 if a = b.C) None of the other items are true.D) f is continuous at 0 if a, b, and c are finite.Solution: We know that if[tex]limo- f(x)= a, lim„→o+ f(x)=b, and ƒ(0)=c[/tex], then the function f(x) is continuous at x = 0 if and only if a = b = c.

Therefore, the correct answer is option (B) f is continuous at 0 if a = b. Thus, option (B) is the true statement among the given options.

Learn more about volume here:

https://brainly.com/question/23705404


#SPJ11

b) V = (y² – x, z² + y, x − 3z) Compute F(V) S(0,3)

Answers

To compute F(V) at the point S(0,3), where V = (y² – x, z² + y, x − 3z), we substitute the values x = 0, y = 3, and z = 0 into the components of V. This yields the vector F(V) at the given point.

Given V = (y² – x, z² + y, x − 3z) and the point S(0,3), we need to compute F(V) at that point.

Substituting x = 0, y = 3, and z = 0 into the components of V, we have:

V = ((3)² - 0, (0)² + 3, 0 - 3(0))

  = (9, 3, 0)

This means that the vector V evaluates to (9, 3, 0) at the point S(0,3).

Now, to compute F(V), we need to apply the transformation F to the vector V. The specific definition of F is not provided in the question. Therefore, without further information about the transformation F, we cannot determine the exact computation of F(V) at the point S(0,3).

In summary, at the point S(0,3), the vector V evaluates to (9, 3, 0). However, the computation of F(V) cannot be determined without the explicit definition of the transformation F.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Consider the function f(x) = 4x + 8x¯¹. For this function there are four important open intervals: ( — [infinity], A), (A, B), (B, C), and (C, [infinity]) where A, and C are the critical numbers and the function is not defined at B. Find A and B and C For each of the following open intervals, tell whether f(x) is increasing or decreasing. (− [infinity], A): [Select an answer ✓ (A, B): [Select an answer ✓ (B, C): [Select an answer ✓ (C, [infinity]): [Select an answer ✓

Answers

For the given function, the open intervals are (−∞, A): f(x) is increasing; (A, B): Cannot determine; (B, C): f(x) is increasing; (C, ∞): f(x) is increasing

To find the critical numbers of the function f(x) = 4x + 8/x, we need to determine where its derivative is equal to zero or undefined.

First, let's find the derivative of f(x):

f'(x) = 4 - 8/x²

To find the critical numbers, we set the derivative equal to zero and solve for x:

4 - 8/x² = 0

Adding 8/x² to both sides:

4 = 8/x²

Multiplying both sides by x²:

4x² = 8

Dividing both sides by 4:

x² = 2

Taking the square root of both sides:

x = ±√2

So the critical numbers are A = -√2 and C = √2.

Next, we need to find where the function is undefined. We can see that the function f(x) = 4x + 8/x is not defined when the denominator is zero. Therefore, B is the value where the denominator x becomes zero:

x = 0

Now let's determine whether f(x) is increasing or decreasing in each open interval:

(−∞, A):

For x < -√2, f'(x) = 4 - 8/x^2 > 0 since x² > 0.

Hence, f(x) is increasing in the interval (−∞, A).

(A, B):

Since the function is not defined at B (x = 0), we cannot determine whether f(x) is increasing or decreasing in this interval.

(B, C):

For -√2 < x < √2, f'(x) = 4 - 8/x² > 0 since x² > 0.

Therefore, f(x) is increasing in the interval (B, C).

(C, ∞):

For x > √2, f'(x) = 4 - 8/x² > 0 since x² > 0.

Thus, f(x) is increasing in the interval (C, ∞).

To summarize:

(−∞, A): f(x) is increasing

(A, B): Cannot determine

(B, C): f(x) is increasing

(C, ∞): f(x) is increasing

To learn more about critical numbers visit:

brainly.com/question/32931115

#SPJ11

The graph of the rational function f(x) is shown below. Using the graph, determine which of the following local and end behaviors are correct. 1 -14 Ņ 0 Select all correct answers. Select all that apply: Asx - 3*, f(x) → [infinity] As x co, f(x) → -2 Asx oo, f(x) → 2 Asx-00, f(x) --2 As x 37. f(x) → -[infinity] As x → -[infinity]o, f(x) → 2

Answers

As x → ∞, the graph is approaching the horizontal asymptote y = 2. So, as x → ∞ and as x → -∞, f(x) → 2.

From the given graph of the rational function f(x), the correct local and end behaviors are:

1. As x → 3⁺, f(x) → ∞.

2. As x → ∞, f(x) → 2.

3. As x → -∞, f(x) → 2.The correct answers are:

As x → 3⁺, f(x) → ∞As x → ∞, f(x) → 2As x → -∞, f(x) → 2

Explanation:

Local behavior refers to the behavior of the graph of a function around a particular point (or points) of the domain.

End behavior refers to the behavior of the graph as x approaches positive or negative infinity.

We need to determine the local and end behaviors of the given rational function f(x) from its graph.

Local behavior: At x = 3, the graph has a vertical asymptote (a vertical line which the graph approaches but never touches).

On the left side of the vertical asymptote, the graph is approaching -∞.

On the right side of the vertical asymptote, the graph is approaching ∞.

So, as x → 3⁺, f(x) → ∞ and as x → 3⁻, f(x) → -∞.

End behavior: As x → -∞, the graph is approaching the horizontal asymptote y = 2.

As x → ∞, the graph is approaching the horizontal asymptote y = 2.

So, as x → ∞ and as x → -∞, f(x) → 2.

To know more about rational function visit:

https://brainly.com/question/27914791

#SPJ11

A pair of shoes has been discounted by 12%. If the sale price is $120, what was the original price of the shoes? [2] (b) The mass of the proton is 1.6726 x 10-27 kg and the mass of the electron is 9.1095 x 10-31 kg. Calculate the ratio of the mass of the proton to the mass of the electron. Write your answer in scientific notation correct to 3 significant figures. [2] (c) Gavin has 50-cent, one-dollar and two-dollar coins in the ratio of 8:1:2, respectively. If 30 of Gavin's coins are two-dollar, how many 50-cent and one-dollar coins does Gavin have? [2] (d) A model city has a scale ratio of 1: 1000. Find the actual height in meters of a building that has a scaled height of 8 cm. [2] (e) A house rent is divided among Akhil, Bob and Carlos in the ratio of 3:7:6. If Akhil's [2] share is $150, calculate the other shares.

Answers

The correct answer is Bob's share is approximately $350 and Carlos's share is approximately $300.

(a) To find the original price of the shoes, we can use the fact that the sale price is 88% of the original price (100% - 12% discount).

Let's denote the original price as x.

The equation can be set up as:

0.88x = $120

To find x, we divide both sides of the equation by 0.88:

x = $120 / 0.88

Using a calculator, we find:

x ≈ $136.36

Therefore, the original price of the shoes was approximately $136.36.

(b) To calculate the ratio of the mass of the proton to the mass of theelectron, we divide the mass of the proton by the mass of the electron.

Mass of proton: 1.6726 x 10^(-27) kg

Mass of electron: 9.1095 x 10^(-31) kg

Ratio = Mass of proton / Mass of electron

Ratio = (1.6726 x 10^(-27)) / (9.1095 x 10^(-31))

Performing the division, we get:

Ratio ≈ 1837.58

Therefore, the ratio of the mass of the proton to the mass of the electron is approximately 1837.58.

(c) Let's assume the common ratio of the coins is x. Then, we can set up the equation:

8x + x + 2x = 30

Combining like terms:11x = 30

Dividing both sides by 11:x = 30 / 11

Since the ratio of 50-cent, one-dollar, and two-dollar coins is 8:1:2, we can multiply the value of x by the respective ratios to find the number of each coin:

50-cent coins: 8x = 8 * (30 / 11)

one-dollar coins: 1x = 1 * (30 / 11)

Calculating the values:

50-cent coins ≈ 21.82

one-dollar coins ≈ 2.73

Since we cannot have fractional coins, we round the values:

50-cent coins ≈ 22

one-dollar coins ≈ 3

Therefore, Gavin has approximately 22 fifty-cent coins and 3 one-dollar coins.

(d) The scale ratio of the model city is 1:1000. This means that 1 cm on the model represents 1000 cm (or 10 meters) in actuality.

Given that the scaled height of the building is 8 cm, we can multiply it by the scale ratio to find the actual height:

Actual height = Scaled height * Scale ratio

Actual height = 8 cm * 10 meters/cm

Calculating the value:

Actual height = 80 meters

Therefore, the actual height of the building is 80 meters.

(e) The ratio of Akhil's share to the total share is 3:16 (3 + 7 + 6 = 16).

Since Akhil's share is $150, we can calculate the total share using the ratio:

Total share = (Total amount / Akhil's share) * Akhil's share

Total share = (16 / 3) * $150

Calculating the value:

Total share ≈ $800

To find Bob's share, we can calculate it using the ratio:

Bob's share = (Bob's ratio / Total ratio) * Total share

Bob's share = (7 / 16) * $800

Calculating the value:

Bob's share ≈ $350

To find Carlos's share, we can calculate it using the ratio:

Carlos's share = (Carlos's ratio / Total ratio) * Total share

Carlos's share = (6 / 16) * $800

Calculating the value:

Carlos's share ≈ $300

Therefore, Bob's share is approximately $350 and Carlos's share is approximately $300.

Learn more about profit and loss here:

https://brainly.com/question/26483369

#SPJ11

Abankintay contains 50 gal of pure water. Brine containing 4 lb of salt per gation enters the tank at 2 galmin, and the (perfectly mixed) solution leaves the tank at 3 galimin. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes (b) What is the maximum amount of sall ever in the tank? (a) The amount of sats in the tank after t minutes is xa (b) The maximum amount of salt in the tank was about (Type an integer or decimal rounded to two decinal places as needed)

Answers

(a) To find the amount of salt in the tank after t minutes, we need to consider the rate at which salt enters and leaves the tank.

Salt enters the tank at a rate of 4 lb/gal * 2 gal/min = 8 lb/min.

Let x(t) represent the amount of salt in the tank at time t. Since the solution is perfectly mixed, the concentration of salt remains constant throughout the tank.

The rate of change of salt in the tank can be expressed as:

d(x(t))/dt = 8 - (3/50)*x(t)

This equation represents the rate at which salt enters the tank minus the rate at which salt leaves the tank. The term (3/50)*x(t) represents the rate of salt leaving the tank, as the tank is emptied in 50 minutes.

To solve this differential equation, we can separate variables and integrate:dx=∫dt

Simplifying the integral, we have:​ ln∣8−(3/50)∗x(t)∣=t+C

Solving for x(t), we get:

Therefore, the amount of salt in the tank after t minutes is given by x(t) = (8/3) - (50/3)[tex]e^(-3/50t).[/tex]

(b) The maximum amount of salt ever in the tank can be found by taking the limit as t approaches infinity of the equation found in part (a):

≈2.67Therefore, the maximum amount of salt ever in the tank is approximately 2.67 pounds.

Learn more about trigonometry here:

https://brainly.com/question/13729598

#SPJ11

Use the algorithm for curve sketching to analyze the key features of each of the following functions (no need to provide a sketch) f(x) = (2-1) (216) (x−1)(x+6) Reminder - Here is the algorithm for your reference: 1. Determine any restrictions in the domain. State any horizontal and vertical asymptotes or holes in the graph. 2. Determine the intercepts of the graph 3. Determine the critical numbers of the function (where is f'(x)=0 or undefined) 4. Determine the possible points of inflection (where is f"(x)=0 or undefined) 5. Create a sign chart that uses the critical numbers and possible points of inflection as dividing points 6. Use sign chart to find intervals of increase/decrease and the intervals of concavity. Use all critical numbers, possible points of inflection, and vertical asymptotes as dividing points 7. Identify local extrema and points of inflection

Answers

The given function is f(x) = (2-1) (216) (x−1)(x+6). Let's analyze its key features using the algorithm for curve sketching.

Restrictions and Asymptotes: There are no restrictions on the domain of the function. The vertical asymptotes can be determined by setting the denominator equal to zero, but in this case, there are no denominators or rational expressions involved, so there are no vertical asymptotes or holes in the graph.

Intercepts: To find the x-intercepts, set f(x) = 0 and solve for x. In this case, setting (2-1) (216) (x−1)(x+6) = 0 gives us two x-intercepts at x = 1 and x = -6. To find the y-intercept, evaluate f(0), which gives us the value of f at x = 0.

Critical Numbers: Find the derivative f'(x) and solve f'(x) = 0 to find the critical numbers. Since the given function is a product of linear factors, the derivative will be a polynomial.

Points of Inflection: Find the second derivative f''(x) and solve f''(x) = 0 to find the possible points of inflection.

Sign Chart: Create a sign chart using the critical numbers and points of inflection as dividing points. Determine the sign of the function in each interval.

Intervals of Increase/Decrease and Concavity: Use the sign chart to identify the intervals of increase/decrease and the intervals of concavity.

Local Extrema and Points of Inflection: Identify the local extrema by examining the intervals of increase/decrease, and identify the points of inflection using the intervals of concavity.

By following this algorithm, we can analyze the key features of the given function f(x).

Learn more about Intercepts here:

https://brainly.com/question/14180189

#SPJ11

Consider this function.

f(x) = |x – 4| + 6

If the domain is restricted to the portion of the graph with a positive slope, how are the domain and range of the function and its inverse related?

Answers

The domain of the inverse function will be y ≥ 6, and the range of the inverse function will be x > 4.

When the domain is restricted to the portion of the graph with a positive slope, it means that only the values of x that result in a positive slope will be considered.

In the given function, f(x) = |x – 4| + 6, the portion of the graph with a positive slope occurs when x > 4. Therefore, the domain of the function is x > 4.

The range of the function can be determined by analyzing the behavior of the absolute value function. Since the expression inside the absolute value is x - 4, the minimum value the absolute value can be is 0 when x = 4.

As x increases, the value of the absolute value function increases as well. Thus, the range of the function is y ≥ 6, because the lowest value the function can take is 6 when x = 4.

Now, let's consider the inverse function. The inverse of the function swaps the roles of x and y. Therefore, the domain and range of the inverse function will be the range and domain of the original function, respectively.

For more such questions on domain,click on

https://brainly.com/question/2264373

#SPJ8  

A trader buys some goods for Rs 150. if the overhead expenses be 12% of the cost price, then at what price should it be sold to earn 10% profit?​

Answers

Answer:

Rs.184.80

Step-by-step explanation:

Total cp =(cp + overhead,expenses)

Total cp =150 + 12% of 150

Total,cp = 150 + 12/100 × 150 = Rs 168

Given that , gain = 10%

Therefore, Sp = 110/100 × 168 = Rs 184.80

HELP... I need this for a math exam

Answers

The tangent of angle R is given as follows:

[tex]\tan{R} = \frac{\sqrt{47}}{17}[/tex]

What are the trigonometric ratios?

The three trigonometric ratios are the sine, the cosine and the tangent of an angle, and they are obtained according to the formulas presented as follows:

Sine = length of opposite side to the angle/length of hypotenuse of the triangle.Cosine = length of adjacent side to the angle/length of hypotenuse of the triangle.Tangent = length of opposite side to the angle/length of adjacent side to the angle = sine/cosine.

For the angle R, we have that:

The opposite side is of [tex]\sqrt{47}[/tex].The adjacent side is of 17.

Hence the tangent is given as follows:

[tex]\tan{R} = \frac{\sqrt{47}}{17}[/tex]

A similar problem, also about trigonometric ratios, is given at brainly.com/question/24349828

#SPJ1

Which of the following is an eigenvector of A = 1 -2 1 1-2 0 1 ܘ ܝܕ ܐ ܝܕ 1 ܗ ܕ 0 1-2 1 0 1

Answers

The eigenvectors of matrix A are as follows:x1 = [2, 0, 1]Tx2 = [-3, -2, 1]Tx3 = [5, -1, 1]TWe can see that all three eigenvectors are the possible solutions and it satisfies the equation Ax = λx. Therefore, all three eigenvectors are correct.

We have been given a matrix A that is as follows: A = 1 -2 1 1 -2 0 1 0 1The general formula for eigenvector: Ax = λxWhere A is the matrix, x is a non-zero vector, and λ is a scalar (which may be either real or complex).

We can easily find eigenvectors by calculating the eigenvectors for the given matrix A. For that, we need to find the eigenvalues. For this matrix, the eigenvalues are as follows: 0, -1, and -2.So, we will put these eigenvalues into the formula: (A − λI)x = 0. Now we will solve this equation for each eigenvalue (λ).

By solving these equations, we get the eigenvectors of matrix A.1st Eigenvalue (λ1 = 0) (A - λ1I)x = (A - 0I)x = Ax = 0To solve this equation, we put the matrix as follows: 1 -2 1 1 -2 0 1 0 1 ۞۞۞ ۞۞۞ ۞۞۞We perform row operations and get the matrix in row-echelon form as follows:1 -2 0 0 1 0 0 0 0Now, we can write this equation as follows:x1 - 2x2 = 0x2 = 0x1 = 2x2 = 2So, the eigenvector for λ1 is as follows: x = [2, 0, 1]T2nd Eigenvalue (λ2 = -1) (A - λ2I)x = (A + I)x = 0To solve this equation, we put the matrix as follows: 2 -2 1 1 -1 0 1 0 2 ۞۞۞ ۞۞۞ ۞۞۞

We perform row operations and get the matrix in row-echelon form as follows:1 0 3 0 1 2 0 0 0Now, we can write this equation as follows:x1 + 3x3 = 0x2 + 2x3 = 0x3 = 1x3 = 1x2 = -2x1 = -3So, the eigenvector for λ2 is as follows: x  = [-3, -2, 1]T3rd Eigenvalue (λ3 = -2) (A - λ3I)x = (A + 2I)x = 0To solve this equation, we put the matrix as follows: 3 -2 1 1 -4 0 1 0 3 ۞۞۞ ۞۞۞ ۞۞۞We perform row operations and get the matrix in row-echelon form as follows:1 0 -5 0 1 1 0 0 0Now, we can write this equation as follows:x1 - 5x3 = 0x2 + x3 = 0x3 = 1x3 = 1x2 = -1x1 = 5So, the eigenvector for λ3 is as follows: x = [5, -1, 1]T

So, the eigenvectors of matrix A are as follows:x1 = [2, 0, 1]Tx2 = [-3, -2, 1]Tx3 = [5, -1, 1]TWe can see that all three eigenvectors are the possible solutions and it satisfies the equation Ax = λx. Therefore, all three eigenvectors are correct.

to know more about eigenvectors visit :

https://brainly.com/question/31043286

#SPJ11

The eigenvector corresponding to eigenvalue 1 is given by,

[tex]$\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]

In order to find the eigenvector of the given matrix A, we need to find the eigenvalues of A first.

Let λ be the eigenvalue of matrix A.

Then, we solve the equation (A - λI)x = 0

where I is the identity matrix and x is the eigenvector corresponding to λ.

Now,

A = [tex]$\begin{pmatrix}1&-2&1\\1&-2&0\\1&0&1\end{pmatrix}$[/tex]

Therefore, (A - λI)x = 0 will be

[tex]$\begin{pmatrix}1&-2&1\\1&-2&0\\1&0&1\end{pmatrix}$ - $\begin{pmatrix}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}1-\lambda&-2&1\\1&-2-\lambda&0\\1&0&1-\lambda\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]

The determinant of (A - λI) will be

[tex]$(1 - \lambda)(\lambda^2 + 4\lambda + 3) = 0$[/tex]

Therefore, eigenvalues of matrix A are λ1 = 1,

λ2 = -1,

λ3 = -3.

To find the eigenvector corresponding to each eigenvalue, substitute the value of λ in (A - λI)x = 0 and solve for x.

Let's find the eigenvector corresponding to eigenvalue 1. Hence,

λ = 1.

[tex]$\begin{pmatrix}0&-2&1\\1&-3&0\\1&0&0\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]

The above equation can be rewritten as,

-2y+z=0 ----------(1)

x-3y=0 --------- (2)

x=0 ----------- (3)

From equation (3), we get the value of x = 0.

Using this value in equation (2), we get y = 0.

Substituting x = 0 and y = 0 in equation (1), we get z = 0.

Therefore, the eigenvector corresponding to eigenvalue 1 is given by

[tex]$\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]

To know more about eigenvector, visit:

https://brainly.com/question/32593196

#SPJ11

Write out the form of the partial fraction expansion of the function. Do not determine the numerical values of the coefficients. 7x (a) (x + 2)(3x + 4) X 10 (b) x3 + 10x² + 25x Need Help? Watch It

Answers

Partial fraction expansion as:

(x³+ 10x²+ 25x) = A / x + B / (x + 5) + C / (x + 5)²

Again, A, B, and C are constants that we need to determine.

Let's break down the partial fraction expansions for the given functions:

(a) 7x / [(x + 2)(3x + 4)]

To find the partial fraction expansion of this expression, we need to factor the denominator first:

(x + 2)(3x + 4)

Next, we express the expression as a sum of partial fractions:

7x / [(x + 2)(3x + 4)] = A / (x + 2) + B / (3x + 4)

Here, A and B are constants that we need to determine.

(b) (x³ + 10x² + 25x)

Since this expression is a polynomial, we don't need to factor anything. We can directly write its partial fraction expansion as:

(x³+ 10x²+ 25x) = A / x + B / (x + 5) + C / (x + 5)²

Again, A, B, and C are constants that we need to determine.

Remember that the coefficients A, B, and C are specific values that need to be determined by solving a system of equations.

Learn more about partial fraction expansions here:

https://brainly.com/question/31707489

#SPJ11

A rumor spreads in a college dormitory according to the model dR R = 0.5R (1- - dt 120 where t is time in hours. Only 2 people knew the rumor to start with. Using the Improved Euler's method approximate how many people in the dormitory have heard the rumor after 3 hours using a step size of 1?

Answers

The number of people who have heard the rumor after 3 hours of using Improved Euler's method with a step size of 1 is R(3).  

The Improved Euler's method is a numerical approximation technique used to solve differential equations. It involves taking small steps and updating the solution at each step based on the slope at that point.

To approximate the number of people who have heard the rumor after 3 hours, we start with the initial condition R(0) = 2 (since only 2 people knew the rumor to start with) and use the Improved Euler's method with a step size of 1.

Let's perform the calculation step by step:

At t = 0, R(0) = 2 (given initial condition)

Using the Improved Euler's method:

k1 = 0.5 * R(0) * (1 - R(0)/120) = 0.5 * 2 * (1 - 2/120) = 0.0167

k2 = 0.5 * (R(0) + 1 * k1) * (1 - (R(0) + 1 * k1)/120) = 0.5 * (2 + 1 * 0.0167) * (1 - (2 + 1 * 0.0167)/120) = 0.0166

Approximate value of R(1) = R(0) + 1 * k2 = 2 + 1 * 0.0166 = 2.0166

Similarly, we can continue this process for t = 2, 3, and so on.

For t = 3, the approximate value of R(3) represents the number of people who have heard the rumor after 3 hours.

Learn more about Improved Euler's method here:

https://brainly.com/question/30860703

#SPJ11

Differentiate the following function. y = O (x-3)* > O (x-3)e* +8 O(x-3)x4 ex None of the above answers D Question 2 Differentiate the following function. y = x³ex O y'= (x³ + 3x²)e* Oy' = (x³ + 3x²)e²x O y'= (2x³ + 3x²)ex None of the above answers. Question 3 Differentiate the following function. y = √√x³ + 4 O 3x² 2(x + 4)¹/3 o'y' = 2x³ 2(x+4)¹/2 3x² 2(x³ + 4)¹/2 O None of the above answers Question 4 Find the derivative of the following function." y = 24x O y' = 24x+2 In2 Oy² = 4x+² In 2 Oy' = 24x+2 en 2 None of the above answers.

Answers

The first three questions involve differentiating given functions.  Question 1 - None of the above answers; Question 2 - y' = (x³ + 3x²)e*; Question 3 - None of the above answers. Question 4 asks for the derivative of y = 24x, and the correct answer is y' = 24.

Question 1: The given function is y = O (x-3)* > O (x-3)e* +8 O(x-3)x4 ex. The notation used is unclear, so it is difficult to determine the correct differentiation. However, none of the provided options seem to match the given function, so the answer is "None of the above answers."

Question 2: The given function is y = x³ex. To find its derivative, we apply the product rule and the chain rule. Using the product rule, we differentiate the terms separately and combine them. The derivative of x³ is 3x², and the derivative of ex is ex. Thus, the derivative of the given function is y' = (x³ + 3x²)e*.

Question 3: The given function is y = √√x³ + 4. To differentiate this function, we apply the chain rule. The derivative of √√x³ + 4 can be found by differentiating the inner function, which is x³ + 4. The derivative of x³ + 4 is 3x², and applying the chain rule, the derivative of √√x³ + 4 becomes 3x² * 2(x + 4)¹/2. Thus, the correct answer is "3x² * 2(x + 4)¹/2."

Question 4: The given function is y = 24x. To find its derivative, we differentiate it with respect to x. The derivative of 24x is simply 24, as the derivative of a constant multiplied by x is the constant. Therefore, the correct answer is y' = 24.

Learn more about derivative here: https://brainly.com/question/32963989

#SPJ11

Solve the linear system of equations. In addition, graph the two lines corresponding to the two equations in a single coordinate system and use your graph to explain your solution. x - y = 4 X- - 2y = 0 ... Select the correct choice below and, if necessary, fill in any answer boxes to complete your answer. A. There is one solution, x = 8 and y = 4. (Type integers or simplified fractions.) OB. The solution is {(x,y): x= and y=t, tER}. (Type an expression using t as the variable.) OC. There is no solution. Use the graphing tool to graph the system. Click to enlarge graph

Answers

The linear system of equations is inconsistent, meaning there is no solution. This can be determined by graphing the two lines corresponding to the equations and observing that they do not intersect. The correct choice is OC: There is no solution.

To solve the linear system of equations, we can rewrite them in the form of y = mx + b, where m is the slope and b is the y-intercept. The given equations are:

x - y = 4 ---> y = x - 4

x - 2y = 0 ---> y = (1/2)x

By comparing the slopes and y-intercepts, we can see that the lines have different slopes and different y-intercepts. This means they are not parallel but rather they are non-parallel lines.

To further analyze the system, we can graph the two lines on a coordinate system. By plotting the points (0, -4) and (4, 0) for the first equation, and the points (0, 0) and (2, 1) for the second equation, we can observe that the lines are parallel and will never intersect.

Therefore, there is no common point (x, y) that satisfies both equations simultaneously, indicating that the system is inconsistent. Hence, the correct choice is OC: There is no solution.

Learn more about linear system of equations here:

https://brainly.com/question/20379472

#SPJ11

In calculating the Laplace transform L{(t+2) H(t-5)} using the formula L{f(t-a)H(t-a)} = e "L{f(t)} on the Laplace sheet you calculated that the f(t) referred to in this formula is f(1) = **1 +93

Answers

The absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) is 4.

We can show that the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) has an absolute maximum by using differentiation. Differentiation of this function can be done easily as:
f'(x) = 2x((x+1)² + x²)

Solving for the critical points, we get:
2x(x²+2x+1) = 0
x² + 2x + 1 = 0
(x + 1) (x + 1) = 0

Therefore, the critical point at which the derivative of the function f(x) equals zero, is given by x = -1. As x can have only positive values on the given interval and the expression is an even-powered polynomial, it is evident that the absolute maximum is obtained at x = -1.

Part (ii):

Therefore, we can find the absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) by plugging in x = -1. This yields:

f(-1) = (-1)² ( (-1) + 1)² = 4

Hence, the absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) is 4.

To know more about function click-
http://brainly.com/question/25841119
#SPJ11

Find the point of intersection of the plane 3x - 2y + 7z = 31 with the line that passes through the origin and is perpendicular to the plane.

Answers

The point of intersection of the plane 3x - 2y + 7z = 31 with the line passing through the origin and perpendicular to the plane is (3, -2, 7).

Given the equation of the plane, 3x - 2y + 7z = 31, and the requirement to find the point of intersection with the line intersects through the origin and perpendicular to the plane, we can follow these steps:

1. Determine the normal vector of the plane by considering the coefficients of x, y, and z. In this case, the normal vector is <3, -2, 7>.

2. Since the line passing through the origin is perpendicular to the plane, the direction vector of the line is parallel to the normal vector of the plane. Therefore, the direction vector of the line is also <3, -2, 7>.

3. Express the equation of the line in parametric form using the direction vector. This yields: x = 3t, y = -2t, and z = 7t.

4. To find the point of intersection, we substitute the parametric equations of the line into the equation of the plane: 3(3t) - 2(-2t) + 7(7t) = 31.

5. Simplify the equation: 62t = 31.

6. Solve for t: t = 1.

7. Substitute t = 1 into the parametric equations of the line to obtain the coordinates of the point of intersection: x = 3(1) = 3, y = -2(1) = -2, z = 7(1) = 7.

Learn more about line intersects

https://brainly.com/question/11297403

#SPJ11

The line AB passes through the points A(2, -1) and (6, k). The gradient of AB is 5. Work out the value of k.​

Answers

Answer:

Step-by-step explanation:

gradient = 5 = [k-(-1)]/[6-2]

[k+1]/4 = 5

k+1=20

k=19

Final answer:

The value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5 is found to be 19 by using the formula for gradient and solving the resulting equation for k.

Explanation:

To find the value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5, we'll use the formula for gradient, which is (y2 - y1) / (x2 - x1).

The given points can be substituted into the formula as follows: The gradient (m) is 5. The point A(2, -1) will be x1 and y1, and point B(6, k) will be x2 and y2. Now, we set up the formula as follows: 5 = (k - (-1)) / (6 - 2).

By simplifying, the equation becomes 5 = (k + 1) / 4. To find the value of k, we just need to solve this equation for k, which is done by multiplying both sides of the equation by 4 (to get rid of the denominator on the right side) and then subtracting 1 from both sides to isolate k. So, the equation becomes: k = 5 * 4 - 1. After carrying out the multiplication and subtraction, we find that k = 20 - 1 = 19.

Learn more about Line Gradient here:

https://brainly.com/question/30249498

#SPJ2

Other Questions
show CAD$ quoted directly and indirectly from Israel currency asof this month, and of this year ago. Which direction do you thinkit will go in. why? What is the dominant character of the four outer planets? how does soil erosion affect living things The average rate at which energy is conducted outward through the ground surface in North America is 54.0 mW/m, and the average thermal conductivity of the near-surface rocks is 2.50 W/m.K. Assuming a surface temperature of 10.0C, find the temperature at a depth of 35.0 km (near the base of the crust). Ignore the heat generated by the presence of radioactive elements. Explain in your own words which sources of the law willcompanies have to approach in order to have such a law pass andwhy. Explain what recourse will employees have if any. preconventional moral reasoning is to conventional moral reasoning as _____ is to _____. In 1953, Stanley Miller and Harold Urey built a model of Earth's earlyatmosphere by mixing gases that were thought to have been there. Theyexposed the gases to an electric current to simulate lightning. The liquid thatcondensed during the experiment contained amino acids.What was the significance of their results?A. Miller and Urey showed that lightning was necessary for life toform on Earth.B. Miller and Urey showed that spontaneous generation waspossible.C. Miller and Urey showed that all life evolved from a single commonancestor.D. Miller and Urey showed that biological molecules could haveformed from the atoms present in the early atmosphere. Solve the differential equation +y +5y = xe using both 1. the annihilator method, 2. and the variation of parameters method. dynamics determine the ________ at which music is played. Desiree, Inc. is considering adding a new product with a start-up cost of $600,000. This cost will be depreciated straight-line to zero over 3 years, which is the estimated life of the product. Desiree has a 34% tax rate. The net income for each of the three years is estimated at $15,000, $45,000, and $80,000. What is the average accounting return for the new product?8.64%25.93%15.56%17.28%21.00%If T0 = -$85,000, T1 = $30,000, T2 = $20,000, T3 = $15,000, and T4 = $10,000, what is the payback period for this investment?1 Year2 Years4 Years3 YearsThe Investment doesn't pay backIf T0 = -$40,000, T1 = $20,000, T2 = $25,000, T3 = $10,000, T4 = $10,000, and T5 = $5,000, what is the payback period for this investment?2.00 Years4.25 Years1.80 Years3.50 Years5.00 Years an acute or chronic inflammation of the uterine cervix is known as _____. For the following exercise, use the pair of functions to find f(g(0)) and g(f(0)). f(x)=3x-1, g(x)=4-72 f(g(0)) = g(f(0)) = Question 25. Points possible: 2 This is attempt 1 of 3. For the following exercise, use the functions f(z) 32 +4 and g(z) = 5x + 2 to evaluate or find the composition function as indicated. - 9(f(-3)) = TIP Enter your answer as an integer or decimal number. Examples: 3, 4, 5,5172 Enter DNB for Does Not Exist, oo for Infinity Question 26. Points possible: 2 This is attempt 1 of 3. Let f(x) = 4x + 3x + 3 and g(x) = 2x + 3. After simplifying. (f-9)(x) = Preview 18. Much of the recent growth in income inequality was caused by O a. decreasing returns to experience. O b. increases in the number of part-time workers. O. C. increasing returns to education. O d. increases in real earnings of high school graduates. How is the predetermined factory overhead rate are used in job order costing? How is the rate computed and how is it applied?Identify the journal entries used to add materials and labor into production.What kind of company would use a job order cost system? How are costs accumulated by job as they move through production? In the short run:A. existing firms do NOT face limits imposed by a fixed inputB. all firms have costs that they must bear regardless of their outputC. new firms can enter an industryD. existing firms can exit an industry Suppose a monopolist has the following cost function C(Q) = %4 Q (with marginal cost MC(Q) = 12 Q). Suppose they face demand is P = 100 - Q. Sketch the market demand, marginal costs, and marginal revenues. What is the monopolist's optimal level of output and profits? Confirm that demand is elastic at the optimal output. Calculate the firm's markup. What is the DWL associated with the monopoly output? Suppose the government offered a $10 production subsidy to the monopolist. What is their new optimal output? Does the DWL fall or rise? im looking for the volume of this prism Find the value of a such that: 10 10 a) 0 1620-2i 520 i Question 2 Not yet answered Marked out of 10.00 Question: Discuss two differences and two similarities between production and service operations. BI 22 + 13 a) Draw a long-run average cost curve and show the area of economy of scale, constant retum to scale, and negative return to scale. (5 Marks) b) Explain THREE (3) firms experienced in long-run production. (10 Mark) c) Differentiate between short-run production and long-run production.