Answer: Movies Average around 1 hour to 2 hours long. 1:30 to 2:30 so id say somewhere around 4-5 pm. Which leaves time for dinner after
Step-by-step explanation:
On Monday, 27 adults visited an amusement park. On Tuesday, 23 adults visited the amusement park. The enterance fee for the adults is Rs. 100. How much amount is collected from the adults in these two days?
PLEASE TELL FULL SOLUTION.
Answer:
5000
Step-by-step explanation:
Add the number of adults first: 27+23=50
Then multiply the number of adults by 100 for the fee.
50*100 = 5000
Answer:
within the two days a total of 5000$ where collected in the two days
Solution:
R= 100 per adult
1 adult = 100
27(R)+ 23(R) = 27(100)+ 23(100)
27(100)+23(100) =5000
or add both 27 and 23 and multiple by 100
50•100 = 5000
For a particular species of wolf, 55% are female, 20% hunt in medium-sized packs, and 15% are both female and hunt in medium-sized packs. What is the percent of wolves that are female but do not hunt in medium-sized packs?
from the given illustration at the right the law of sines cannot be used since
Answer:
D. No angle opposite the sides is given
Step-by-step explanation:
Given
See attachment for triangle
Required
Why the law of sines cannot be used
From the attached image of a triangle, we can see that all sides are given while none of the angles are given.
Since none of the angles are given, then law of sines doesn't apply
pls answer fast I need to submit in 5 mins !!
What is the volume of the prism?
Enter your answer, as a mixed number in simplest form, in the box.
Need help with this really fast
Answer:
6
Step-by-step explanation:
You can apply the proportion of 9/6 to 4 to get 6:
6*(9/6)= 9
So
4*(9/6) = Length LA
6= Length LA
Answer:
Option C, or [tex]2\frac{2}{3}[/tex]
Explanation:
We can see that the Line FM in the smaller triangle dialates to Line LK in the bigger triangle by the scale factor of:
FM/LK
6/9 or 2/3
So we would know that to find out the value of LA in the bigger triangle we would have to dialate it’s corresponding side FI in the smaller triangle by the same scale factor:
4 * 2/3
=> [tex]2\frac{2}{3}[/tex] = LA
Hope this helps!
Where does the graph of f(x)=2√-x+2 start?
A. (−2,0)
B. (2,0)
C. (0,2)
D. (0,−2)
Create a circle such that its center is point A and B is a point on the circle.
Answer:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
is y=3x^2-x-1 a function
Answer: Yes it is a function.
This is because any x input leads to exactly one y output.
The graph passes the vertical line test. It is impossible to draw a single vertical line through more than one point on the parabolic curve.
Many fast-food restaurants have soft drink dispensers with preset amounts, so that when the operator merely pushes a button for the desired rink the cup is automatically filled. This method apparently saves time and seems to increase worker productivity. A researcher randomly selects 9 workers from a restaurant with automatic dispensers and 9 works from a restaurant with manual dispensers. At a 1% significance level, use the Mann-Whitney U Test to test whether workers with automatic dispensers are significantly more productive.
Automatic (Group 1): 153, 128, 143, 110, 152, 168, 144, 137, 118
Manual (Group 2): 105, 118, 129, 114, 125, 117, 106, 92, 126
1. What is the alternative hypothesis for this study?
i. Worker productivity is higher with automatic dispensers.
ii. Automatic dispensers fill cups faster than manual dispensers.
iii. Worker productivity is lower with automatic dispensers.
iv. There is no difference in worker productivity between restaurants with automatic and manual dispensers.
2. What rank will be given to the observation value, 118 that is in both the automatic and manual groups? (Round answer to 1 decimal).
3. When rounding the U test statistic up to the next value, what is the p-value from the Mann Whitney Table of p-values? (Round to 4 decimal places)
4. What can be concluded from this study at a 1% significance level?
Answer:
ii
Step-by-step explanation:
you have to look and read it it comes simple
I need help with this, please.
Answer:
it can not cleared clear but it can not cleared
In a family of 3 children, what is the probability that there will be exactly 2 boys assuming that the sexes are equally likely to occur in each birth
Answer:
There is a 60.00 percent probability of a particular outcome and 40.00 percent probability of another outcome.
The club will use the majority criterion method to determine the final winner. However, while finalizing the votes, a member of the club discovers that Mason did not meet the original criteria to be considered for the vacation package, because he is a county deputy, not a city police person, so Mason is eliminated from the votes. Who actually will win the tickets? Is the irrelevant alternative criterion supported in this case?
Answer and Explanation:
The irrelevant alternative criterion states that if two candidates A and B contest for an election and candidate B is preferred to candidate A then any other candidate X should not cause candidate A to win the election.
In this case if Mason was candidate A, then candidate B should still win by the majority criterion method and the irrelevant alternative criterion would still be supported. However if he is candidate B then the irrelevant alternative criterion is not supported.
Please answer & number. Thank you! <33
Answer:
2)=2
4)=3
5)=5
8)=-1
Step-by-step explanation:
just divide the number by the number with variable
Find the domain.
p(x) = x^2+ 2
Answer:
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
( − ∞ , ∞ )
Set-Builder Notation:
{ x | x ∈ R }
Step-by-step explanation:
hope that helps bigger terms
The amount of snowfall falling in a certain mountain range is normally distributed with a average of 170 inches, and a standard deviation of 20 inches. What is the probability a randomly selected year will have an average snofall above 200 inches
Answer:
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a average of 170 inches, and a standard deviation of 20 inches.
This means that [tex]\mu = 170, \sigma = 20[/tex]
What is the probability a randomly selected year will have an average snowfall above 200 inches?
This is 1 subtracted by the p-value of Z when X = 200. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{200 - 170}{20}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
F(x) =-2x-4 find x if f(x)=14
Answer:
14=-2x-4
18=-2x
x=-9
Hope This Helps!!!
I didn't understand this to be honest I thought I had to find what jm and lm were together and then subtract from the whole total...but ended up being wrong. whats the correct answer?
Answer:
The correct answer is 3x-2
Step-by-step explanation:
It gives you the expression for JM and LM, and it asks for JL. Therefore, if you take away LM from JM, you are left with JL. You must subtract 2x-6 from 5x-8.
∴5x-8-(2x-6)
Do not forget to distribute the negative since you are subtracting, so instead of subtracting 6 from 8, you will be adding 6 to 8 because two negatives make a positive.
Given: triangle ABC with side lengths a, b, and c, and height h
Prove: Area = 1/2absin C
Answer:
Step-by-step explanation:
Statements Reasons
1). ΔABC with side lengths a, b, c, and h 1). Given
2). Area = [tex]\frac{1}{2}bh[/tex] 2). Triangle area formula
3). [tex]\text{sin}C=\frac{h}{a}[/tex] 3). Definition of sine
4). asin(C) = h 4). Multiplication property of
equality.
5). Area = [tex]\frac{1}{2}ba\text{sin}C[/tex] 5). Substitution property
6). Area = [tex]\frac{1}{2}ab\text{sin}C[/tex] 6). Commutative property of
multiplication.
Hence, proved.
By converting to an exponential expression, solve log2 (x + 5) = 4
Step-by-step explanation:
just insert a base of two at on both sides and solve.
The solution of the logarithmic equation ㏒ (x + 5) / ㏒ 2 = 4 will be 11.
What is the solution to the equation?The allocation of weights to the important variables that produce the calculation's optimum is referred to as a direct consequence.
The logarithmic equation is given below.
㏒₂(x + 5) = 4
Simplify the equation, then we have
㏒ (x + 5) / ㏒ 2 = 4
㏒ (x + 5) = 4 × ㏒ 2
㏒ (x + 5) = ㏒ 2⁴
Take antilog on both sides, then we have
(x + 5) = 2⁴
(x + 5) = 16
x = 11
The solution of the logarithmic equation ㏒ (x + 5) / ㏒ 2 = 4 will be 11.
More about the solution of the equation link is given below.
https://brainly.com/question/545403
#SPJ2
if cosA=3√2/5,then show that cos2A=11/25
Answer:
Step-by-step explanation:
Cos 2A = 2Cos² A - 1
[tex]= 2*(\frac{3\sqrt{2}}{5})^{2}-1\\\\=2*(\frac{3^{2}*(\sqrt{2})^{2}}{5^{2}})-1\\\\=2*\frac{9*2}{25} - 1\\\\=\frac{36}{25}-1\\\\=\frac{36}{25}-\frac{25}{25}\\\\=\frac{11}{25}[/tex]
Translate the following into an algebraic expression: If it would take Mark m hours to clean the house alone and with his brother Sam they can clean the house together in t hours. How many hours would it have taken Sam if he was working alone
M H To determine the number of deer in a game preserve, a conservationist catches 412 deer, tags them and lets them loose. Later, 316 deer are caught, 158 of them are tagged. How many deer are in the preserve?
Answer:
There are 824 deer in the preserve.
Step-by-step explanation:
Since to determine the number of deer in a game preserve, a conservationist catches 412 deer, tags them and lets them loose, and later, 316 deer are caught, 158 of them are tagged, to determine how many deer are in the preserve you must perform the following calculation:
316 = 100
158 = X
158 x 100/316 = X
50 = X
50 = 412
100 = X
824 = X
Therefore, there are 824 deer in the preserve.
Write an expression for the sequence of operations described below.
divide s by q, add r to the result, then triple what you have
Do not simplify any part of the expression.
Answer:
3( [tex]\frac{s}{q}[/tex] + r)
when a number is added to 1/5 of itself, the result is 24. the equation that models this problem is n+1/5n=24. what is the value of n?
divide 64.050÷0.12. need whole process
Answer:
533.75
Step-by-step explanation:
Given the expression;
64.050÷0.12
Express first as a fraction
64.050 = 64050/1000
0.12 = 12/100
Divide both fractions
= 64050/1000÷12/100
= 64050/1000 *100/12
= 64050/10 * 1/12
= 64050/120
= 533.75
Hence the required answer is 533.75
Solve the equation 2sin^2(x) = 1 for x ∈ [-π,π], expressing all solutions as exact values. please help its urgent !!
Answer:
2sin.2(x) sd s
Step-by-step explanation:
Jamie left home on a bike traveling at 24 mph. Five hours later her brother realized Jamie had forgotten her wallet and decided to take it to her. He took his car and traveled at 64 mph. How many hours must the brother drive to catch Jamie?
Answer:
3 hrs
Step-by-step explanation:
5 * 24 = 120 miles
64x = 120 + 24x
40x = 120
x = 3 hrs
In a test of a heat-seeking rocket, a first rocket is launched at 2000 fts and the heat-seeking rocket is launched along the same flight path 20 s later at a speed of 3000 fts. Find
the timest, and t, of flight of the rockets until the heat-seeking rocket destroys the first rocket
What are the times of the flight?
Answer:
Time of flight of first rocket = 60 seconds
Time of flight of second rocket = 40 seconds
Step-by-step explanation:
Let the time of flight of first rocket be t1.
Since the second rocket is launched 20 seconds later, then it means that;
t1 = t2 + 20
Where t2 is the time of flight of the second rocket.
When destruction has occurred, it means that both of the rockets would have covered the same distance.
We know that;
Distance = speed × time
Thus;
2000t1 = 3000t2
We know that t1 = t2 + 20
Thus;
2000(t2 + 20) = 3000t2
2000t2 + 40000 = 3000t2
3000t2 - 2000t2 = 40000
1000t2 = 40000
t2 = 40000/1000
t2 = 40 seconds
Thus;
t1 = 40 + 20
t1 = 60 seconds
When P(x) is divided by (x - 1) and (x + 3), the remainders are 4 and 104 respectively. When P(x) is divided by x² - x + 1 the quotient is x² + x + 3 and the remainder is of the form ax + b. Find the remainder.
Answer:
The remainder is 3x - 4
Step-by-step explanation:
[Remember] [tex]\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}[/tex]
So, [tex]Dividend = (Quotient)(Divisor) + Remainder[/tex]
In this case our dividend is always P(x).
Part 1
When the divisor is [tex](x - 1)[/tex], the remainder is [tex]4[/tex], so we can say [tex]P(x) = (Quotient)(x - 1) + 4[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x - 1) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x - 1 = 0\\x - 1 + 1 = 0 + 1\\x = 1[/tex]
When [tex]x = 1[/tex],
[tex]P(x) = (Quotient)(x - 1) + 4\\P(1) = (Quotient)(1 - 1) + 4\\P(1) = (Quotient)(0) + 4\\P(1) = 0 + 4\\P(1) = 4[/tex]
--------------------------------------------------------------------------------------------------------------
Part 2
When the divisor is [tex](x + 3)[/tex], the remainder is [tex]104[/tex], so we can say [tex]P(x) = (Quotient)(x + 3) + 104[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x + 3) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x + 3 = 0\\x + 3 - 3 = 0 - 3\\x = -3[/tex]
When [tex]x = -3[/tex],
[tex]P(x) = (Quotient)(x + 3) + 104\\P(-3) = (Quotient)(-3 + 3) + 104\\P(-3) = (Quotient)(0) + 104\\P(-3) = 0 + 104\\P(-3) = 104[/tex]
--------------------------------------------------------------------------------------------------------------
Part 3
When the divisor is [tex](x^2 - x + 1)[/tex], the quotient is [tex](x^2 + x + 3)[/tex], and the remainder is [tex](ax + b)[/tex], so we can say [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
From Part 1, we know that [tex]P(1) = 4[/tex] , so we can substitute [tex]x = 1[/tex] and [tex]P(x) = 4[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]4 = (1^2 + 1 + 3)(1^2 - 1 + 1) + a(1) + b\\4 = (1 + 1 + 3)(1 - 1 + 1) + a + b\\4 = (5)(1) + a + b\\4 = 5 + a + b\\4 - 5 = 5 - 5 + a + b\\-1 = a + b\\a + b = -1[/tex]
We will call [tex]a + b = -1[/tex] equation 1
From Part 2, we know that [tex]P(-3) = 104[/tex], so we can substitute [tex]x = -3[/tex] and [tex]P(x) = 104[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]104 = ((-3)^2 + (-3) + 3)((-3)^2 - (-3) + 1) + a(-3) + b\\104 = (9 - 3 + 3)(9 + 3 + 1) - 3a + b\\104 = (9)(13) - 3a + b\\104 = 117 - 3a + b\\104 - 117 = 117 - 117 - 3a + b\\-13 = -3a + b\\(-13)(-1) = (-3a + b)(-1)\\13 = 3a - b\\3a - b = 13[/tex]
We will call [tex]3a - b = 13[/tex] equation 2
Now we can create a system of equations using equation 1 and equation 2
[tex]\left \{ {{a + b = -1} \atop {3a - b = 13}} \right.[/tex]
By adding both equations' right-hand sides together and both equations' left-hand sides together, we can eliminate [tex]b[/tex] and solve for [tex]a[/tex]
So equation 1 + equation 2:
[tex](a + b) + (3a - b) = -1 + 13\\a + b + 3a - b = -1 + 13\\a + 3a + b - b = -1 + 13\\4a = 12\\a = 3[/tex]
Now we can substitute [tex]a = 3[/tex] into either one of the equations, however, since equation 1 has less operations to deal with, we will use equation 1.
So substituting [tex]a = 3[/tex] into equation 1:
[tex]3 + b = -1\\3 - 3 + b = -1 - 3\\b = -4[/tex]
Now that we have both of the values for [tex]a[/tex] and [tex]b[/tex], we can substitute them into the expression for the remainder.
So substituting [tex]a = 3[/tex] and [tex]b = -4[/tex] into [tex]ax + b[/tex]:
[tex]ax + b\\= (3)x + (-4)\\= 3x - 4[/tex]
Therefore, the remainder is [tex]3x - 4[/tex].
if side of square is 4.05 find its area
Answer:
A
≈
16.4
please give brain list