Outside a spherically symmetric charge distribution of net charge Q, Gauss's law can be used to show that the electric field at a given distance:___________.
A) must be directed inward.
B) acts like it originated in a point charge Q at the center of the distribution.
C) must be directed outward.
D) must be greater than zero.
E) must be zero.

Answers

Answer 1

Answer:

Q at the center of the distribution.

Explanation:

The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.

Related Questions

The pan flute is a musical instrument consisting of a number of closed-end tubes of different lengths. When the musician blows over the open ends, each tube plays a different note. The longest pipe is 0.31 m long.
What is the frequency of the note it plays? Assume room temperature of 20∘C.

Answers

Answer:

  f = 276.6 Hz

Explanation:

This musical instrument can be approximated to a tube system where each tube has one end open and the other closed.

In the closed part there is a node and in the open part a belly or antinode. Therefore the wavelength is

          L = λ/ 4

speed is related to wavelength and frequency

          v = λ f

          λ = v / f

we substitute

          L = v / 4f

          f = v / 4L

the speed of sound at 20ºC is

          v = 343 m / s

let's calculate

          f = [tex]\frac{343 }{4 \ 0.31}[/tex]

          f = 276.6 Hz

Wind instruments like trumpets and saxophones work on the same principle as the "tube closed on one end" that we examined in our last experiment. What effect would it have on the pitch of a saxophone if you take it from inside your house (at 76 degrees F) to the outside on a cold day when the outside temperature is 45 degrees F ?

Answers

Answer:

The correct answer would be - Low pitch.

Explanation:

As it is known that if frequency increases then pitch will be increase as well as pitch depends on frequency, Now for the question it is mentioned that the tube closed on one end frequency is:

f = v/2l

Where,

l = length of the tube

v = velocity of longitudinal wave of gas filled in the tube

Now increase with the temperature the density of the gas decreases and velocity v is inversely proportional to density of gas so velocity increases. So if there is an increase in frequency so pitch also increases. As the temperature inside the house is at 750 F more than outsideat 450 Fso pitch is more inside and the pitch is low outside.

How much work does the electric field do in moving a proton from a point with a potential of 170 V to a point where it is -50 V

Answers

a) A charged particle accelerates as it moves from location A to location B. If V A = 170 V and V B = 210 V, what is the sign of the charged particle? positive negative (b) A proton gains electric potential energy as it moves from point 1 to point 2.
Physics
Two identical point charges are fixed to diagonally opposite corners of a square that is 1.5 m on a side. Each charge is +2.0 µC. How much work is done by the electric force as one of the charges moves to an empty corner? I have W(fe)= -EPE=-q[V(f)-V(i)].
physics
Two point charges are placed on the x axis. (Figure 1) The first charge, q1 = 8.00nC , is placed a distance 16.0m from the origin along the positive x axis; the second charge, q2 = 6.00nC , is placed a distance 9.00m from the origin along the negative x

A 34-m length of wire is stretched horizontally between two vertical posts. The wire carries a current of 68 A and experiences a magnetic force of 0.16 N. Find the magnitude of the earth's magnetic field at the location of the wire, assuming the field makes an angle of 72.0° with respect to the wire.

Answers

Answer:

7.28×10⁻⁵ T

Explanation:

Applying,

F = BILsin∅............. Equation 1

Where F = magnetic force, B = earth's magnetic field, I = current flowing through the wire, L = Length of the wire, ∅ = angle between the field and the wire.

make B the subject of the equation

B = F/ILsin∅.................. Equation 2

From the question,

Given: F = 0.16 N, I = 68 A, L = 34 m, ∅ = 72°

Substitute these values into equation 2

B = 0.16/(68×34×sin72°)

B = 0.16/(68×34×0.95)

B = 0.16/2196.4

B = 7.28×10⁻⁵ T

A wire carrying a 23.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's field, and there is a 2.45 N force on the 3.00 cm of wire in the field. What is the average field strength (in T) between the poles of the magnet?

Answers

Answer:

3.55 T

Explanation:

Applying,

F = BILsin∅.............. Equation 1

Where F = Force, B = magnetic Field, I = current, L = Length of the wire, ∅ = Angle between the wire and the magnetic field

make B the subject of the equation

B = F/ILsin∅.................. Equation 2

From the question,

Given: F = 2.45 N, L = 3.00 cm = 0.03 m, I = 23.0 A, ∅ = 90° (Perpendicular)

Substitute these values into equation 2

B = 2.45/(0.03×23×sin90)

B = 2.45/0.69

B = 3.55 T

In a similar rolling race (no slipping), the two objects are a solid cylinder and hollow cylinder of the same radius and mass. Which reaches the bottom first

Answers

Answer:

solid cylinder

Explanation:

the object that arrives first is the object that has more speed, let's use the concepts of energy

starting point. Highest point

         Em₀ = U = m g h

final point. Lowest point

         Em_f = K = ½ mv² + ½ I w²

since the body has rotational and translational movement

how energy is conserved

         m g h = ½ mv² + ½ I w²

linear and angular velocity are related

          v = w r

          w = v / r

we substitute

          m g h = ½ mv² + ½ I (v/r) ²

          mg h = ½ v² (m + I /r²)

          v = [tex]\sqrt{2gh \ \frac{m}{m + \frac{I}{r^2} } }[/tex]

           

the tabulated moments of inertia for the bodies are

solid cylinder     I = ½ m r²

hollow cylinder  I = m r²

we look for the speed for each body

solid cylinder

          v₁ = [tex]\sqrt {2gh} \ \sqrt{\frac{m}{m + m/2} }[/tex]

          v₁ = [tex]\sqrt{2gh} \ \sqrt{2/3}[/tex]

let's call    v₀ = [tex]\sqrt{2gh}[/tex]

         v₁ = 0.816 v₀

hollow cylinder

          v₂ = [tex]\sqrt{2gh } \ \sqrt{\frac{m}{m+ m} }[/tex]

          v₂ = v₀ √½

          v₂ = 0.707 v₀

Therefore, the body that has the highest speed is the solid cylinder and since time is the inverse of speed, this is the body that spends less time to reach the bottom, that is, it is the first to arrive

derive expression for pressure exerted by gas ​

Answers

From kinetic theory of gases, the pressure exerted by a gas is given by velocity of gas molecules. m = Mass of each molecule of a gas. But by assumptions of the kinetic theory of gases the average kinetic energy of a molecule is constant at a constant temperature.

Write a short note of the following
a) Reflection
b) Refraction
c) Diffraction​

Answers

Answer:

a) Light that passes through the floor to reveal yourself (not shadow).

b) 2 rays of light that bounce between 2 transparent media.

c) I don't know what is Diffraction?

An ideal parallel plate capacitor with a cross-sectional area of 0.4 cm2 contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2 x 108 V/m. The separation between the plates of the capacitor is 5 mm. What is the maximum electric charge (in nC) that can be stored in the capacitor before dielectric breakdown

Answers

Answer: [tex]283.2\times 10^{-9}\ nC[/tex]

Explanation:

Given

Cross-sectional area [tex]A=0.4\ cm^2[/tex]

Dielectric constant [tex]k=4[/tex]

Dielectric strength [tex]E=2\times 10^8\ V/m[/tex]

Distance between capacitors [tex]d=5\ mm[/tex]

Maximum charge that can be stored before dielectric breakdown is given by

[tex]\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC[/tex]

Answer:

The maximum charge is 7.08 x 10^-8 C.

Explanation:

Area, A = 0.4 cm^2

K = 4

Electric field, E = 2 x 10^8 V/m

separation, d = 5 mm = 0.005 m

Let the capacitance is C and the charge is q.

[tex]q = CV\\\\q=\frac{\varepsilon o A}{d}\times E d\\\\q = \varepsilon o A E\\\\q = 8.85\times 10^{-12}\times0.4\times 10^{-4}\times 2\times 10^8\\\\q = 7.08\times 10^{-8}C[/tex]

I REALLY NEED HELP WITH PHYSICS ASAP!!!
Vf^2 = v0^2 + 2a (xf - x0)


Solve for a

Answers

Answer:

a. solve for a

[tex]vf ^{2} = vo ^{2} + 2a(xf - xo) \\ 2a(xf - xo) = vf^{2} - vo ^{2} \\ a = \frac{vf^{2} - vo^{2} }{2(xf - xo)} \\ a = \frac{vf ^{2} - vo ^{2} }{2xf - 2xo} [/tex]

I hope I helped you ^_^

Why must scientists be careful when studying
nanotechnology?

Answers

Answer:

When studying nanotechnology, scientists must be aware that their ideas may not work out. Their work could be very time consuming and cost a lot of money. Finally, scientists do not yet know all of the effects of nanotechnology on human health.

Hope it helps u:)

At what angle torque is half of the max

Answers

At what angle torque is half of max

The paper dielectric in a paper-and-foil capacitor is 0.0785 mm thick. Its dielectric constant is 2.35, and its dielectric strength is 49.5 MV/m. Assume that the geometry is that of a parallel-plate capacitor, with the metal foil serving as the plates.

Required:
a. What area of each plate is required for for a 0.300 uF capacitor?
b. If the electric field in the paper is not to exceed one-half the dielectric strength, what is the maximum potential difference that can be applied across the compactor?

Answers

Answer:

a) required area is 1.1318 m²

b) the maximum potential difference that can be applied across the compactor is 1931.1 V

Explanation:

Given the data in the question;

dielectric constant εr = 2.35

distance between plates ( thickness ) d = 0.0785 mm = 7.85 × 10⁻⁵ m

dielectric strength = 49.5 MV/m

a)

given that capacity capacitor C = 0.3 uF = 0.3 × 10⁻⁶ F

To find the Area, we use the following the expression.

C = ε₀εrA / d

we know that The permittivity of free space, ε₀ = 8.854 x 10⁻¹²  (F/m)

we substitute

0.3 × 10⁻⁶ = [ (8.854 x 10⁻¹²) × 2.35 × A  ] /  7.85 × 10⁻⁵

A = [ (0.3 × 10⁻⁶) × (7.85 × 10⁻⁵) ] / [ 2.35 × (8.854 x 10⁻¹²) ]

A = 2.355 × 10⁻¹¹ / 2.08069 × 10⁻¹¹

A = 1.1318 m²

Therefore, required area is 1.1318 m²

b)

the maximum potential difference that can be applied across the compactor.

We use the following expression;

⇒ 1/2 × dielectric strength × thickness d

we substitute

⇒ 1/2 × ( 49.5 × 10⁶ V/m ) × ( 7.85 × 10⁻⁵ m )

1931.1 V

Therefore, the maximum potential difference that can be applied across the compactor is 1931.1 V

Two identical cars, each traveling at 16 m>s, slam into a concrete wall and come to rest. In car A the air bag does not deploy and the driver hits the steering wheel; in car B the driver contacts the deployed air bag. (a) Is the impulse delivered by the steering wheel to driver A greater than, less than, or equal to the impulse delivered by the air bag to driver B

Answers

Answer:

 I = - m 16  the two impulses are the same,

Explanation:

The impulse is given by the relationship

         I = Δp

         I = p_f - p₀

in this case the final velocity is zero therefore p_f = 0

        I = -p₀

For driver A the steering wheel impulse is

        I = - m v₀

        I = - m 16

For driver B, the airbag gives an impulse

        I = - m 16

We can see that the two impulses are the same, the difference is that in the air bag more time is used to give this impulse therefore the force on the driver is less

A car travelling at 14.0 m/s approaches a traffic light. The driver applies the brakes and is able to come to halt in 5.6 s. Determine the average acceleration of the car during this time interval.

Answers

Answer:

[tex]a=2.5\ m/s^2[/tex]

Explanation:

Given that,

Initial speed of the car, u = 14 m/s

Finally, it comes to rest, v = 0

Time, t = 5.6 s

We need to find the average acceleration of the car during this time interval. We know that,

[tex]a=\dfrac{v-u}{t}\\\\a=\dfrac{0-14}{5.6}\\\\a=-2.5\ m/s^2[/tex]

So, the acceleration of the car is [tex]2.5\ m/s^2[/tex] in the opposite direction of motion.

What is the meant of by renewable energy and non-renewrable with example of each.​

Answers

Answer:

Renewable energy is a type of energy that can be renewed easily, such as sunlight. By using Solar panels to collect the suns energy, we are not depleting it, so this source is renewable.

Non-renewable  energy is something that cannot easily be replenished. An example would be oil because oil takes millions of years to form and cannot be renewed easily.

Calculate the minimum area moment of inertia for a rectangular cross-section with side lengths 6 cm and 4 cm.


52 cm4


72 cm4


32 cm4


24 cm4


2 cm4

Answers

Answer:

Minimum Area of rectangle = 24 centimeter²

Explanation:

Given:

Length of rectangle = 6 centimeter

Width of rectangle = 4 centimeter

Find:

Minimum Area of rectangle

Computation:

Minimum Area of rectangle = Length of rectangle x Width of rectangle

Minimum Area of rectangle = 6 x 4

Minimum Area of rectangle = 24 centimeter²

A mass of 240 grams oscillates on a horizontal frictionless surface at a frequency of 2.5 Hz and with amplitude of 4.5 cm.
a. What is the effective spring constant for this motion?
b. How much energy is involved in this motion?

Answers

Answer:

(a) The spring constant is 59.23 N/m

(b) The total energy involved in the motion is 0.06 J

Explanation:

Given;

mass, m = 240 g = 0.24 kg

frequency, f = 2.5 Hz

amplitude of the oscillation, A = 4.5 cm = 0.045 m

The  angular speed is calculated as;

ω = 2πf

ω = 2 x π x 2.5

ω = 15.71 rad/s

(a) The spring constant is calculated as;

[tex]\omega = \sqrt{\frac{k}{m} } \\\\\omega ^2 = \frac{k}{m} \\\\k = m\omega ^2\\\\where;\\\\k \ is \ the \ spring \ constant\\\\k = (0.24) \times (15.71)^2\\\\k = 59.23 \ N/m[/tex]

(b) The total energy involved in the motion;

E = ¹/₂kA²

E = (0.5) x (59.23) x (0.045)²

E = 0.06 J

Calculate the buoyant force due to the surrounding air on a man weighing 600 N . Assume his average density is the same as that of water. Suppose that the density of air is 1.20 kg/m3.

Answers

Answer:

[tex]F_b= 0.720 N[/tex]

Explanation:

From the question we are told that:

Weight [tex]W=600N[/tex]

Average density [tex]\rho=1.20kg/m^3[/tex]

Mass

[tex]m=\frac{W}{g}[/tex]

[tex]m=\frac{600}{9.81}[/tex]

[tex]m=61.22kg[/tex]

Generally the equation for Volume is mathematically given by

[tex]V =\frac{ mass}{density}[/tex]

[tex]V= \frac{61.22}{1000}[/tex]

[tex]V=0.06122 m^3[/tex]

Therefore

Buoyant force [tex]F_b[/tex]

[tex]F_b=\rho*V*g[/tex]

[tex]F_b= rho_air*V*g[/tex]

[tex]F_b= 0.720 N[/tex]

1. A turtle and a rabbit are to have a race. The turtle’s average speed is 0.9 m/s. The rabbit’s average speed is 9 m/s. The distance from the starting line to the finish line is 1500 m. The rabbit decides to let the turtle run before he starts running to give the turtle a head start. If the rabbit started to run 30 minutes after the turtle started, can he win the race? Explain.

Answers

Answer:no

Explanation:because 0.9*(30*60)=0.9*1800=1620

The turtle has already won the race

Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours

What will be the speed of the rabbit and the turtle?

It is given

[tex]V_{t} = 0.9 \frac{m}{s}[/tex]

[tex]V_{r} = 9 \frac{m}{s}[/tex]

[tex]D=1500 m[/tex]

Time taken by turtle  

 [tex]T= \dfrac{D}{V_{t} }=\dfrac{1500}{0.9_{} }[/tex]

[tex]T=1666 minutes= 27 hours[/tex]

Time taken by  rabbit

[tex]T= \dfrac{D}{V_{r} }=\dfrac{1500}{9_{} }[/tex]

[tex]T=166 minutes[/tex]

since rabbit started 30 minutes after turtle then

[tex]T= 136+30=196 minutes[/tex]

[tex]T= 3.2 hours[/tex]

Hence Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours

To know more about average velocity follow

https://brainly.com/question/6504879

What is the feature known as the "Great Dark Spot" of Neptune? It is an apparently permanent feature about five times the size of Earth, similar to the Great Red Spot of Jupiter, near Neptune's south pole. It was a dark hole in the upper atmosphere left by the collision of the comet Shoemaker-Levy 9. It was an apparently temporary feature about the size of Earth, similar to the Great Red Spot of Jupiter, but disappeared within a few years. It is a dark surface feature on the surface snow layers caused by radiation discoloration of the older layers. It is a permanent discoloration of the north polar region of Neptune caused by locally prevailing lower surface temperatures there.

Answers

Answer:

It was an apparently temporary feature about the size of Earth, similar to the Great Red Spot of Jupiter, but disappeared within a few years.

Explanation:

The Great Dark Spot of Neptune was an immense spinning storm in the southern atmosphere of Neptune. The size of the entire Earth, it had the strongest winds ever recorded on any planet in the solar system. It was discovered by the Voyager 2 spacecraft in 1989, but by 1994 the Hubble Space Telescope saw it was gone.

The Great Red Spot is a storm found in Jupiter's southern hemisphere, with similar characteristics to the Great Dark Spot.

Urgent please help me

Answers

1433 km

Explanation:

Let g' = the gravitational field strength at an altitude h

[tex]g' = G\dfrac{M_E}{(R_E + h)^2}[/tex]

We also know that g at the earth's surface is

[tex]g = G\dfrac{M_E}{R_E^2}[/tex]

Since g' = (2/3)g, we can write

[tex]G\dfrac{M_E}{(R_E + h)^2} = \dfrac{2}{3}\left(G\dfrac{M_E}{R_E^2} \right)[/tex]

Simplifying the above expression by cancelling out common factors, we get

[tex](R_E + h)^2 = \dfrac{3}{2} R_E^2[/tex]

Taking the square root of both sides, this becomes

[tex]R_E + h = \left(\!\sqrt{\dfrac{3}{2}}\right) R_E[/tex]

Solving for h, we get

[tex]h = \left(\!\sqrt{\dfrac{3}{2}} - 1\right) R_E= 0.225(6.371×10^2\:\text{km})[/tex]

[tex]\:\:\:\:\:= 1433\:\text{km}[/tex]

A bird has a kinetic energy of 3 J and a potential energy of 25 J. What is the mechanical energy of the bird?

Answers

Answer:

28 j

Explanation:

because when you add you get 28

What is the name of the invisible line that runs
down the center of the axial region?

Answers

Answer:

An axis is an invisible line around which an object rotates, or spins. The points where an axis intersects with an object's surface are the object's North and South Poles.

Explanation:

The Earth's axis is represented by the red line. The white circle represents axial precission, the slow "wobble" of the axis.

If a full wave rectifier circuit is operating from 50 Hz mains, the fundamental frequency in the ripple will be
Hz 50
Hz 70.7
Hz 100
Hz 25

Answers

Answer:

100Hz

Explanation:

In a full wave rectifier, the fundamental frequency of the ripple is twice that of input frequency. Given the input frequency of 50 Hz, the fundamental frequency will be 2 × 50 = 100Hz

Answer:

HZ 100 is the right answer hope you like it

1) Consider an electric power transmission line that carries a constant electric current of i = 500 A. The cylindrical copper cable used to transmit this current has a diameter o = 2.00 cm and a length L = 150 km. If there are 8.43x10^28 free electrons per cubic meter (m^3 ) in the cable, calculate how long it would take for an electron to cross the entire length of the transmitter line.

Answers

Answer:  

t = 1.27 x 10⁹ s  

Explanation:  

First, we will find the volume of the wire:

Volume = V = AL  

where,  

A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²  

L = Length of wire = 150 km = 150000 m  

Therefore,    

V = 47.12 m³

 

Now, we will find the number of electrons in the wire:  

No. of electrons = n = (Electrons per unit Volume)(V)  

n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)  

n = 3.97 x 10³⁰ electrons  

Now, we will use the formula of current to find out the time taken by each electron to cross the wire:

[tex]I =\frac{q}{t}[/tex]  

where,  

t = time = ?  

I = current = 500 A  

q = total charge = (n)(chareg on one electron)  

q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)  

q = 6.36 x 10¹¹ C  

[tex]500\ A = \frac{6.36\ x\ 10^{11}\ C}{t}\\\\t = \frac{6.36\ x\ 10^{11}\ C}{500\ A}[/tex]

Therefore,

t = 1.27 x 10⁹ s

A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy … (use g = 10 m/s 2)

A) at the moment of impact.
B) 2 seconds after the stone is released.
C) after the stone has fallen 40 m.
D) when the stone is moving at 20 m/s.

At the moment of impact both Kinetic Energy and Potential Energy should be 0, right? So it can't be A), right? Or is this wrong? Is it indeed A)? Please show work and explain it well.

Answers

Answer:

Explanation:

The answer is C because the building is 80 meters high. Before the stone is dropped, it has ONLY potential energy since kinetic energy involves velocity and a still stone has no velocity. At impact, there is no potential energy because potential energy involves the height of the stone relative to the ground and a stone ON the ground has no height; here there is ONLY kinetic.

From the First Law of Thermodynamics, we know that energy cannot be created or destroyed, it can only change form. Therefore, that means that at the halfway point of 40 meters, half of the stone's potential energy has been lost, and it has been lost to kinetic energy. Here, at 40 meters, there is an equality between PE and KE. It only last for however long the stone is AT 40 meters, which is probably a millisecond of time, but that's where they are equal.

a model car moves round a circular path of radius 0.3m at 2 revolutions per secs what is its angular speed, the period of the car and the speed of the car

Answers

Answer:

a) T = 0.5 s

b) v = 1.2π m/s ≈ 3.77 m/s

Explanation:

It makes two revolutions in one second so makes one revolution in ½ second

circumference of the circle is

C = 2πr = 0.6π m

which it traverses in one time period

0.6π m / 0.5 s = 1.2π m/s

To solve this, we must be knowing each and every concept related to speed and its calculations. Therefore, the angular speed of a model car moves round a circular path of radius 0.3m at 2 revolutions per secs is 3.77 m/.

What is speed?

Speed may be defined as the distance traveled by an item in the amount of time it requires to travel that distance. In other words, it measures how rapidly an item travels but does not provide direction.

Speed may be calculated in Science. The speed equation is a scientific formula that is used to calculate various types of speed.

Mathematically, the formula for speed can be given as

speed= distance/time

Values that are given

Time period= 0.5 s

Circumference = 2πr = 0.6π m

substituting all the given values in the above equation, we get

speed     =0.6π m / 0.5 s

On calculations, we get

              = 1.2π m/s

              =3.77 m/s

Therefore, the angular speed of a model car moves round a circular path of radius 0.3m at 2 revolutions per secs is 3.77 m/.

To learn more about speed, here:

https://brainly.com/question/13263542

#SPJ2

A 1030 kg car has four 12.0 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles

Answers

Answer:

The required fraction is 0.023.

Explanation:

Given that

Mass of a car, m = 1030 kg

Mass of 4 wheels = 12 kg

We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.

The rotational kinetic energy due to four wheel is

[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]

Linear kinetic Energy of the car is:

[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]

Fraction,

[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]

So, the required fraction is 0.023.

distance of distinct vision.
is placed at a distance less than the distance of near point, its image o
will be blurred. Hence human eye can not see such object clearly.
ADDITIONAL INFORMATION
distance of distinct vision for a normal eye of different age groups
Babies = 7 cm
Adults = 25 cm
erson of age 55 years and above = 100 cm
ever, in our discussion we are concerned with a normal eye of an adult so least
The foulart position of an ahiect from a human eve so that the sh​

Answers

The least distance up to which we can see the objects clearly without any strain is called least distance of distinct vision. Least distance of distinct vision for a normal human being is 25cm. For young people, the least distance of distant vision will be within 25cm which however it varies with age.

Answer:

25 you said ? thats incorecct

Explanation:

Other Questions
(Q020) Diamonds a. are brought from the mantle to the surface in magma that hardens into kimberlite. b. are found in carrot-shaped structures called pegmatites. c. of industrial quality (non-gem quality) have no use and are usually discarded. d. are exceedingly rare, which is why their price is so high. Can someone do #4 and #5 A new machine requires an investment of $630,000 and will generate $100,000 in cash inflows for 7 years, at which time the salvage value of the machine will be $130,000. Using a discount rate of 10%, the net present value of the machine is $_________ 9 in.13 in.10 inDrawing not to scaleb. 90 in?45 in?d. 292.5 in.c. 32 in?a. What is the difference between-5 and 2 To remember details when reading you should ______ .1. scan2. outline3. skim4. read slowly In this activity, you will record a few sentences in Spanish describing some of the chores and responsibilities you have at home or at school. Use any audio recording software. Submit that audio file to your teacher.In your response, use frequency words and phrases to describe how often you do each chore.Can someone write a paragraph example. Mt cc th ca mt loi sinh vt khi gim phn to giao t. Trong s giao t c sinh ra ngi ta nhn thy s loi giao t mang 2 NST c ngun gc t m l 6. Qu trnh gim phn din ra bnh thng, khng xy ra trao i cho.a. Xc nh b NST 2n ca loi v tn loi.b. Tnh t l loi giao t ni trn?Cho rng t l th tinh ca giao t c v ci u l 100%. Ton b cc hp t u pht trin thnh c th con. Labor productivity is? Can someone PLEASE answer the Algebra Question CORRECTLY BELOW!Thank you, I will mark brainiest! describe your management experience , including a time you effectively resolved a difficult situation from a management capacity what is 13.5/10 simplified At the beginning of the period, the Cutting Department budgeted direct labor of $125,000, direct materials of $151,000 and fixed factory overhead of $11,800 for 8,000 hours of production. The department actually completed 10,600 hours of production. What is the appropriate total budget for the department, assuming it uses flexible budgeting? Round hourly rates to two decimal places. Round interim calculations to two decimal places. Round your final answer to the nearest dollar. a.$381,335 b.$377,606 c.$291,635 d.$287,800 Which person is considered part of a market?A. Jeremiah, who is completing his homeworkB. Liz, who is drawing a picture of her catC. Matt, who is paying for guitar lessonsD. Erin, who is resting before going for a jog HELP ME PLS ITS PYTHAGOREAN THEOREM Can someone please help me with my maths question According to this diagram, what is tan 62?6217182809015O A.817OB.O c. 1815D.158OE.1715F.1517 5 A machine puts tar on a road at the rate of 4 metres in 5 minutes.a) How long does it take to cover 1 km of road b) How many metres of road does it cover in 8 hours? if x =2 y =3 find the value of x^2-xy^2+y^2 Which two shapes make up the digital camera below?