Answer:
set notation _ A set is denoted or represented by a capital letter and enclosed in a curly bracket For example {A,B,P,Q}.
3. Find F(3).
F(x)=-x^3+4x^2-2x
Answer:
To Find F(3) you just have to replace x=3 so:
F(3)= -3^3 + 4×3^2 -2×3 = -27 +4×9 - 6 = -33 + 36 = 3
Solve the equation by factoring: 5x^2 - x = 0
Answer:
Step-by-step explanation:
x = 0, 1/5
John and mike got paid $40.00 for washing
car. John work one hour, mike worked 1.5 hrs.
How much do they get paid for time worked?
help whats the volume of this
Answer:
93.6
Step-by-step explanation:
The easiest way for me to complete this was to break it up into parts. I Separated the small triangle and the big triangle. I turned them both into squares and multiplied the dimensions. I then divided those by two and added them together.
slope of (30, 600) (75, 1050)
Answer:
y2-y1/x2-x1
y2: 1050
y1:600
x2:75
x1:30
1050-600=450
75-30=45
450/45=10
slope is 10
Answer:
let:
A(30, 600)=(x1,y1)
B((75, 1050)=(x2,y2)
now,
[tex]slope(m) = \frac{y2 - y1}{x2 - x1} [/tex]
[tex] = \frac{1050 - 600}{75 - 30} [/tex]
[tex] = \frac{450}{ 45} [/tex]
[tex] = \frac{10}{1} [/tex]
Find the missing segment in the image below
Answer:
The missing segment length is 20.
Step-by-step explanation:
2 is multiplied by 4 to get to 8, so 5 must be multiplied by 4 to get to 20.
Based on what we have learned, how can we ensure that we choose a sample of students that is representative of all 8:00 AM classes that take place on a given morning
Sampling technique is a way of selecting a sample from a given population. The best way to get a sample of students that represents all 8:00 AM classes is by using a stratified sampling technique.
From the complete question, we can summarize the given data as follows:
[tex]Buildings = 3[/tex] ----3 buildings in the college
[tex]Lecture\ Halls =2[/tex] ---- 2 lecture halls in each building
[tex]Capacity = 100[/tex] --- 100 students in each lecture hall
Because the students' lecture halls are not in the same building, the best way to get a sample is as follows:
Divide the students into groups (In this case, the students will be grouped by the buildings of their lecture halls)The number of students in each building is:
[tex]Students = Capacity \times Lecture\ Halls[/tex]
[tex]Students = 100 \times 2[/tex]
[tex]Students = 200[/tex]
There are 200 students in each building
Then select at random an equal proportion of student from each building (say 30 students in each building)The above method is referred to as a stratified sampling technique because the population of the students are divided into groups, before being randomly selected.
Read more about sampling techniques at:
https://brainly.com/question/9612230
In which direction does the parabola x=2y2+1 open?
A up
B down
C Right
D left
Answer and Step-by-step explanation:
First, we need to set this equation equal to y, which means we need to get y by itself, and all other terms equal to y.
x = [tex]2y^2 + 1[/tex]
Subtract 1, then divide by 2 on both sides.
[tex]x - 1 = 2y^2\\\\\frac{x-1}{2} = y^2[/tex]
Now, take the square root of both sides.
[tex]y=\sqrt{\frac{x-1}{2}}[/tex]
We see that the value with the x (1) is positive, and that we have a square root function, which means the parabola would open to the right.
(If the x value was negative, the square root function's parabola would open to the left)
So, C (Right) is the correct answer.
#teamtrees #PAW (Plant And Water)
I hope this helps!
find the range of the function f (x) = 2x + 5 for the domain 2,5,7
Answer:
The range is {9,15,19}
Step-by-step explanation:
f (x) = 2x + 5
Let x = 2
f (2) = 2*2 + 5 = 4+5 = 9
Let x = 5
f (5) = 2*5 + 5 = 10+5 = 15
Let x = 7
f (7) = 2*7 + 5=14+5 = 19
The domain is {2,5,7}
The range is {9,15,19}
Answer:
i think what you wrote is that the domain is 2 to 5.7.
so you plug in these two numbers inside the equation cause domain means the distance in the x axis so this is how it goes.
2(2) + 5 = 9
2(5.7) +5= 16.4
so the range is 9 to 16.4
hope that answers your question...
(-72)(-15)= explain
Using the formula D = s:t where D equals distance traveled, r equals the average rate of
speed, and t equals the time traveled, choose the expression or equation that correctly
represents this information.
Mary drove 150 miles in three hours. What was her average rate of speed?
=
150 = 3
r = 3 = 150
O p + 150 · 3
Answer: r = 50 miles/h
Step-by-step explanation:
Let r be the rate of average speed.
Then
r = D/t
r = 150/3
r = 50 miles/h
please click thanks and mark brainliest if you like :)
[tex] \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = what[/tex]
Answer I'll make and mark as brainlist.
Answer Fast.
Post on - 2 Aug 2021
[tex]f(x)=e^{3x} .sinx[/tex] . tính [tex]d^{2} f(0)[/tex]
Answer:
6
Step-by-step explanation:
đạo hàm cấp 2 của f(x) rồi thế 0 vào
Oh Brian~
I need help again
Answer:
18c^3d^9
Step-by-step explanation:
2c^3 d^2 * 9d^7
We know that we add the exponents when the base is the same
2*9 c^3 d^(2+7)
18c^3d^9
A basketball player made 5 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
If we decrease a dimension on a figure, how is the figure’s area affected?
The area decreases.
The area increases.
The area becomes 0.
The area remains the same.
Answer:
A) area decreases
Step-by-step explanation:
Example: we have a 2 by 3 rectangle with area of 2*3 = 6. If we cut the first dimension in half, then we have a 1 by 3 rectangle that has area 1*3 = 3. The area has decreased. To keep the area the same, we would have to increase the other dimension some specific amount.
HOPE THIS HELPS
HAVE A GOOD DAY :)
ITS RASPUTIN002
The graph of the function f(x) = (x + 2)(x + 6) is shown below.
On a coordinate plane, a parabola opens up. It goes through (negative 6, 0), has a vertex at (negative 4, negative 4), and goes through (negative 2, 0).
Which statement about the function is true?
The function is positive for all real values of x where
x > –4.
The function is negative for all real values of x where
–6 < x < –2.
The function is positive for all real values of x where
x < –6 or x > –3.
The function is negative for all real values of x where
x < –2.
Answer:
2nd option,
The function is negative for all read values of x where -6<x<-2
The function f(x) = (x + 2)(x + 6) is a quadratic function, and the function is negative for all real values of x where –6 < x < –2.
What are quadratic functions?Quadratic functions are functions that have an exponent or degree of 2
The function is given as:
f(x) = (x + 2)(x + 6)
From the graph of the function, the vertex is at (-4,-4) and the x-intercepts are at x = -6 and x = -2
Since the vertex is minimum, then the function is negative for all real values of x where –6 < x < –2.
Read more about x-intercepts at:
https://brainly.com/question/3951754
which one of these points lies on the line described by the equation below y - 5 = 6 ( x - 7 )
Answer:
the answer would be (7,5)
Plz help me find x and y on the triangle big thanks
Answer:
This is a 30-60-90 right triangle.
The ratio of sides:
a : b : c = 1 : √3 : 2Compare with the given values:
a = 3√3, b = y, c = xy = 3√3*√3 = 9x = 2*3√3 = 6√3in the given circle the radius is 9 cm what is its diameter?
Answer:
18
Step-by-step explanation:
The diameter is equal to twice the length of the radius
So if the radius is 9 then the diameter is 9 * 2 = 18
The sum of two consecutive even integers is 54. What are the two integers?
Answer:
26 and 2
Step-by-step explanation:
Given,
Sum of two even numbers = 54
let one number be x
another number be x +2
x + x +2 = 54
2x + 2 = 54
2x = 54 - 2
2x = 52
x = 52/2
x = 26
Therefore, the numbers are 26 and 26 + 2 = 28..
The LARGEST angle has a measure of ______degrees
Answer:
90 i think
Step-by-step explanation:
Find the average rate of change of g(x) = 2x^3 - 5 from x= -4 to x= 2
Step-by-step explanation:
the average change rate is the change of the functional values from the beginning to the end of the interval, and then that divided by the length of the interval.
like with every average or mean value calculation.
g(-4) = 2×(-4)³ - 5 = -128 - 5 = -133
g(2) = 2×2³ - 5 = 16 - 5 = 11
so, on an interval of x values of 2- -4 = 6 units the function changes its values by 11 - -133 = 144 units.
the average charge rate for this x interval is therefore
144 / 6 = 24 = 24/1
for 1 unit change of x, g(x) changes in the average by 24 units.
2012
Descriptive Answer Questions
Attempt FIVE questions.
11.
Show the Fisher's ideal index number satisfies both time reversal test and factor
reversal test from the following information
Commodities
2010
Price Expenditure
Price
Expenditure
5
4
32
72
х
6
50
5
28
Y
4
3
18
40
Z
8
40
50
3 XN
10
Multiply (2x-5)(x+3)
Answer:
2x^2+x-15
Step-by-step explanation:
foil
Answer:
2x^2 + x - 15
Step-by-step explanation:
using FOIL
(2x - 5)(x + 3)
[(2x ⋅ x) + (2x ⋅ 3) + (-5 ⋅ x) + (-5 ⋅ 3)]
[2x^2 + 6x - 5x - 15]
2x^2 + x - 15
What is the slope? Please Help
Answer:
-1
Step-by-step explanation:
Pick two points on the line
(0,2) and (2,0)
Using the slope formula
m = ( y2-y1)/(x2-x1)
= ( 0-2)/(2-0)
= -2/2
= -1
Answer:
-1
Step-by-step explanation:
Use two points on the line to find the slope, using rise over run.
We can use the points (0, 2) and (2, 0).
From the first point to the other, the y value decreases by 2 and the x value increases by 2.
Use rise (change in y value) over run (change in x value):
-2 / 2
= -1
So, the slope is -1.
If 8 bags of chips cost 10.32;how much will you pay for 20 bags?
Answer:
$25.80
Step-by-step explanation:
First, let's find the cost of one bag of chip:
10.32/8 = 1.29
If one bag costs $1.29, simply multiply the number of bags (20) by 1.29
1.29 x 20 = 25.80
= $25.80
Answer:
25.80
Step-by-step explanation:
We can use a ratio to solve
8 bags 20 bags
------------- = ----------------
10.32 x dollars
Using cross products
8x = 10.32 * 20
8x =206.40
Divide each side by 8
8x/7 = 206.40/8
x =25.80
Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.)
(x − 1)y'' − xy' + y = 0, y(0) = −7, y'(0) = 3
You're looking for a solution of the form
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]
Differentiating twice yields
[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]
[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]
Substitute these series into the DE:
[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:
[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]
which indicates that the coefficients in the series solution are governed by the recurrence,
[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]
Use the recurrence to get the first few coefficients:
[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]
You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,
-7 = -7/0!
-7/2 = -7/2!
-7/6 = -7/3!
and so on, with only the coefficient in the n = 1 position being the odd one out. So we have
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]
which looks a lot like the power series expansion for -7eˣ.
Fortunately, we can rewrite the linear term as
3x = 10x - 7x = 10x - 7/1! x
and in doing so, we can condense this solution to
[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]
Just to confirm this solution is valid: we have
y = 10x - 7eˣ ==> y (0) = 0 - 7 = -7
y' = 10 - 7eˣ ==> y' (0) = 10 - 7 = 3
y'' = -7eˣ
and substituting into the DE gives
-7eˣ (x - 1) - x (10 - 7eˣ ) + (10x - 7eˣ ) = 0
as required.
Which expression is equivalent to the given expression?
Answer:
a³b
Step-by-step explanation:
(ab²)³/b⁵
= a³b⁶/b⁵
= a³b
If two numbers differ by 9 the same of their squares is 653. What are the numbers?
Answer:
Two numbers differ by 9 and the sum of their square is 653. What are the numbers?
Well,that's a mathematical question from algebra and it's quite difficult to answer such questions by writing through the circumstances offered by apps like quora.
However,I have tried to answer your question in an understandable way.Hope you may not find it difficult to analyze.
Let the numbers be x and (9+x)
Therefore,according to given,
x^2 + (9+x)^2 =653
=>x^2 + (9)^2 + x^2 + 2×(9)×(x)=653 (Applying the formula of (a+b)^2)
=>x^2 + 81 + x^2 + 18x =653
=>2x^2 + 18x + (81-653)=0
=>2x^2 + 18x - 572=0
=>2x^2 + (44x - 26x) - 572=0
=>2x^2 + 44x - 26x - 572=0
=>2x(x + 22) - 26(x + 22)=0
=>(x + 22)(2x - 26)=0
But since the number can't be negative
Therefore, x=13
Hence,the required numbers are 13 and 22.
Step-by-step explanation:
in first hope you like it