Answer:
[tex]y = \frac{1}{8}(x + 4)^2 + 4[/tex]
Step-by-step explanation:
Given:
Focus of parabola: (-4, 6)
Directrix: y = 2
Required:
Equation for the parabola
SOLUTION:Using the formula, [tex] y = \frac{1}{2(b - k)}(x - a)^2 + \frac{1}{2}(b + k) [/tex] , the equation for the parabola can be derived.
Where,
a = -4
b = 6
k = 2
Plug these values into the equation formula
[tex] y = \frac{1}{2(6 - 2)}(x - (-4))^2 + \frac{1}{2}(6 + 2) [/tex]
[tex]y = \frac{1}{2(4)}(x + 4)^2 + \frac{1}{2}(8)[/tex]
[tex]y = \frac{1}{8}(x + 4)^2 + \frac{8}{2}[/tex]
[tex]y = \frac{1}{8}(x + 4)^2 + 4[/tex]
This table represents a quadratic function.
y
x
0
14
1
10.5
2
8
3
6.5
4
5
6.5
What is the value of a in the function's equation?
A.2
B.1/2
C.-1/2
D.1
Answer:
B. 1/2
Step-by-step explanation:
y = ax^2 + bx + c
14 = a(0)^2 + b(0) + c
c = 14
10.5 = a(1)^2 + b(1) + 14
10.5 = a + b + 14 ____(i)
8 = a(2)^2 + b(2) + 14
8 = 4a + 2b + 14
4 = 2a + b + 7 ___ (ii)
i - ii
10.5 - 4 = -a + 7
6.5 = -a + 7
a = 7- 6.5
a = 0.5
Value of a in the quadratic function is 0.5
What is Quadratic function?In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree
Given,
Quadratic function
y = [tex]ax^{2}+bx+c[/tex]
Consider values in the table x= 0 and y =14
[tex]14=a(0)^{2}+b(0)+c\\ c=14[/tex]
Consider x=1 and y = 10.5
[tex]10.5=a(1^{2})+b(1)+c\\ a+b=10.5-14\\a+b=-3.5[/tex]
Consider x=2 and y =8
[tex]8=a(2^{2})+b(2)+c\\ a\\8=4a+2b+14\\4a+2b=-6\\2a+b=-3[/tex]
Subtract a + b= -3.5 from 2a + b= -3
a=-3--3.5=0.5
Hence, the Value of a in the quadratic function is 0.5
Learn more about Quadratic function here
https://brainly.com/question/5975436
#SPJ2
What is the difference between sin^-1 and sin?
Answer:
Step-by-step explanation:
sin of angle x is the trig ratio sine of x.
sin-1 x is the angle whose sine is x.
sin-1 x can also be written as arcsin x.
1782/3 = and why the answer
Answer:
594
Step-by-step explanation:
1782/3 = 594.
To if the answer is correct, you do this:
594 × 3 = 1782.
How many solutions are there for the absolute value equation, |16 + t| = – 3
Answer:
no solutions
Step-by-step explanation:
|16 + t| = – 3
Absolute values are greater than or equal to zero
They cannot be negative so there are no solutions
Answer:
no solutions
Step-by-step explanation:
|16 + t| = – 3
Absolute values are greater than or equal to zero
They cannot be negative so there are no solutions
When solving the system of equations by graphing, what is the solution of 3x + 2y = 2 and 2x – y=6?
A (-2,2)
B. (2.-2)
C. (-2,-2)
D. (2, 2)
Answer:
answer B: (2,-2)
Step-by-step explanation:
First, write the equations on top of each other:
[tex]3x+2y=2\\2x-y=6[/tex]
Then, multiply the the second equation by 2 so that we can use elimination of the y-variable:
[tex]3x+2y=2\\2(2x-y)=2(6)\\\\3x+2y=2\\4x-2y=12[/tex]
Next, use elimination to find the value of "x":
[tex]3x+2y=2\\+(4x-2y=12)\\\\7x+0=14\\7x=14\\\frac{7x}{7}=\frac{14}{7}\\x=2[/tex]
So, your x-value is 2.
Now, substitute your x-value into one of your equations, let's take the second equation, 2x-y=6:
[tex]2x-y=6\\2(2)-y=6\\4-y=6\\4-4-y=6-4\\-y=2\\\frac{-y}{1}=\frac{2}{-1}\\y=-2[/tex]
Your y-value is -2.
With all your information gathered, you find that the solution to this system of equation is (2,-2).
How many cubes with side lengths of \dfrac12 \text{ cm} 2 1 cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text does it take to fill the prism? Cubes
Answer:
24
Step-by-step explanation:
Answer
24!
Step-by-step explanation:
Person above me is correct :)
how many are 1 raised to 2 ???
Answer:
1
Step-by-step explanation:
1^2
Means 1 multiplied by itself 2 times
1*1
1
PLEASE HELP ME WILL MARK BRAINLIEST! Town planners are planning a 500 foot by 700 foot parking lot by making a scale drawing that is 90 inches by 126 inches. What is the scale of inches in the drawing to inches in the actual object?
Answer:
The approximate value of the scale is 1:67
or the actual value without approximation is 1: 66 2/3 ( 66 while number , two over three)
Step-by-step explanation:
Here, we want to figure out the scale in inches of the drawing to the actual object.
The actual object is 500 ft by 700 ft
while the drawing is 90 inches by 126 inches
Mathematically, we know that 12 inches = 1 foot
So the actual object will be;
500(12) by 700(12)
= 6000 inches by 8400 inches
Now let’s make a division to get the scale;
6000/90 by 8400/126
we get 66.67 as answers on both ends
This is approximately equal to 67
So the scale we have here is 1:67
Please answer question now
Answer:
3
Step-by-step explanation:
2 tangents of a circle drawn from an external point are said to be congruent, according to the two-tangents theorem. Thus:
MN = ML (both tangents from external point M)
ML = 6 - KL
KL = KJ (tangents from point K)
PQ = QJ = 1 (tangents from point Q)
Therefore, KJ = 4 - 1 = 3
Since kJ = KL = 3,
ML = 6 - KL = 6 - 3
ML = MN = 3
PLEASE HELP ILL LOVE U FOREVER
In Exercise 4, find the surface area of the solid
formed by the net.
Round the approximate value however you need to
Units are in square centimeters.
===================================================
Work Shown:
You have the 160 portions correct since 20*8 = 160.
The other pieces are equilateral triangles, in which we use the formula
[tex]A = \frac{\sqrt{3}}{4}x^2[/tex]
where x is the side length of the triangle. Plug in x = 8 to get
[tex]A = \frac{\sqrt{3}}{4}x^2\\\\A = \frac{\sqrt{3}}{4}8^2\\\\A = \sqrt{3}*\frac{1}{4}*64\\\\A = \sqrt{3}*16\\\\A = 16\sqrt{3}\\\\[/tex]
That's the exact area of one triangle, but we have two of them. Double the result to get [tex]2*16*\sqrt{3} = 32\sqrt{3}[/tex]
The total surface area is the sum of all the smaller areas
[tex]160+160+160+32\sqrt{3} = 480+32\sqrt{3}[/tex]
--------------------------
The exact surface area is [tex]480+32\sqrt{3}[/tex] square cm.
Using a calculator, you should get [tex]480+32\sqrt{3} \approx 535.425625842204[/tex]
Round this however you need to.
Brad invests $3700 in an account paying 3% compounded monthly. How much is in the account after 8 months?
Answer:
Amount after 8 month (A) = $3775 (Approx)
Step-by-step explanation:
Given:
Amount invested (P) = $3,700
Rate of interest (r) = 3% = 0.03 / 12 = 0.0025 monthly
Number of month (n) = 8 month
Find:
Amount after 8 month (A)
Computation:
[tex]A=P(1+r)^n\\\\ A=3700(1+0.0025)^8\\\\A=3700(1.02017588)\\\\ A = 3774.650676[/tex]
Amount after 8 month (A) = $3775 (Approx)
Form a group of 17 women and 11 men, a researcher wants to randomly
select 5 women and 5 men for a study. In how many ways can the study
group be selected.
Answer:
17C5+11C5
Step-by-step explanation:
Well there are 17 and chooses 5 that's 17C5
there are 11 men abd chooses 5 that's 11C5
so add them up
17C5+11C5
The combination helps us to know the number of ways an object can be selected without a particular manner. The number of ways in which 5 men and 5 women can be selected is 2,858,856.
What is Permutation and Combination?Permutation helps us to know the number of ways an object can be arranged in a particular manner. A permutation is denoted by 'P'.
The combination helps us to know the number of ways an object can be selected without a particular manner. A combination is denoted by 'C'.
[tex]^nC_r = \dfrac{n!}{(n-r)!r!}\ , \ \ ^nP_r = \dfrac{n!}{(n-r)!}[/tex]
where,
n is the number of choices available,
r is the choices to be made.
Given that from a group of 17 women and 11 men, a researcher wants to randomly select 5 women and 5 men for a study.
Now, the number of ways for selection can be written as,
Number of ways in which men can be selected = ¹¹C₅ = 462
Number of ways in which women can be selected = ¹⁷C₅ = 6188
Further, the number of ways for selection can be written as,
Number of ways = Number of ways in which men can be selected × Number of ways in which women can be selected
Number of ways = 462 × 6188
Number of ways = 2,858,856
Hence, the number of ways in which 5 men and 5 women can be selected is 2,858,856.
Learn more about Permutation and Combination here:
https://brainly.com/question/11732255
#SPJ2
Find the range of f(x) = –x + 4 for the domain {–3, –2, –1, 1}.
Answer:
[tex]\boxed{ \{7, 6, 5, 3 \} }[/tex]
Step-by-step explanation:
The domain is all possible values for x.
The range is all possible values for f(x) or y.
The domain given is {-3, -2, -1, 1}.
Plug x as {-3, -2, -1, 1} and find the f(x) or y values.
[tex]f(-3)=-(-3)+4=7\\f(-2)=-(-2)+4=6\\f(-1)=-(-1)+4=5\\f(1)=-(1)+4=3[/tex]
The range is {7, 6, 5, 3}, when the domain is {-3, -2, -1, 1}.
Plz Help I Will Mark Brainliest If Right!!!!!!!!!!!!!!!!!!!!!!!
Determine the domain of the function.
f as a function of x is equal to the square root of one minus x.
A). All real numbers
B). x > 1
C). x ≤ 1
D). All real numbers except 1
Hey There!!~
Your best answer choice is B). x > 1.
Good Luck!!
What is g(x)?
Please help
Answer:
g(x) = -x²
Step-by-step explanation:
Answer:
-x^2
Step-by-step explanation:
The parent equation of a parabola is x^2.
Because the parabola is upside down, the equation becomes negative.
If Paul and Steve are the same height and they are both correct, write an equation to represent this relationship. Put Paul's expression on the left side of the equal sign and Steve's expression on the right.
Answer:
Theresa's height=60 inches
Paul's height= Steve's height=74 inches
Step-by-step explanation:
Theresa has two brothers,Paul and Steve, who are both the same height. Paul says he is 16 inches shorter than 1 1/2 times Theresa's height. Steve says he's 6 inches shorter than 1 1/3 times Theresa's height. If they're both right, how tall is Theresa ?
Let
p=paul's height
s=steve's height
t=theresa's height
Paul's height = Steve's height
p=s
Paul says he is 16 inches shorter than 1 1/2 times Theresa's height
1 1/2 * t -16
=3/2t -16
Steve says he is 6 inches shorter than 1 1/3 times Theresa's height
1 1/3 * t - 6
=4/3t - 6
P=S
3/2t -16 = 4/3t - 6
Collect like terms
3/2t-4/3t= -6+16
9t-8t/6 =10
t/6=10
Cross product
t=60
Theresa's height=60 inches
P=3/2t -16
=3/2(60) -16
=180/2 -16
=90-16
=74 inches
p=s
Paul's height=74 inches
Prime factors of 2601
Answer:
The prime factors are: 3 x 3 x 17 x 17. or also written as { 3, 3, 17, 17 }
Step-by-step explanation:
Person above agrees
Pls help, I don’t know how to fo
frustum of a cone is: = pi * l(R + r)
(l) = slant height of the frustum.
from 2929.645714 - 506.1257143
= 2423.52
= 2423.5cm
Answer:
from 2929.645714 - 506.1257143
= 2423.52
= 2423.5cm
In the diagram, TC represents a vertical building. The points, A and B, are on the same level as the foot C of the building such that ATC = 40° and BTC = 56°. If BT is 29 m longer than AT, find
(a) the height of the building,
(b) the distance AB.
Answer:
(a) The height of the building is 60.06 m
(b) The distance AB is 139.43 m
Step-by-step explanation:
The given parameters are
Given that segment BT = segment AT + 29
By trigonometric ratios, we have;
cos∠ATC = CT/AT
cos∠BTC = CT/BT
Therefore, we have;
cos(40°) = CT/AT.................................(1)
cos(56°) = CT/BT = CT/(AT + 29).....(2)
cos(56°) = CT/(AT + 29)......................(3)
From equation (1)
CT = AT×cos(40°)
From equation (3)
AT×cos(56°) + 29 × cos(56°) = CT
Therefore;
AT×cos(40°) = AT×cos(56°) + 29 × cos(56°)
AT×cos(40°) - AT×cos(56°) = 29 × cos(56°)
AT×(cos(40°) - cos(56°)) = 29 × cos(56°)
AT = 29 × cos(56°)/(cos(40°) - cos(56°)) = 78.4 m
TC = CT = AT×cos(40°) = 78.4×cos(40°) = 60.06 m
The height of the building = 60.06 m
(b) BT = AT + 29 = 78.4 m + 29 m= 107.4 m
AB = AT×sin(∠ATC ) + BT×sin(∠BTC) = 78.4×sin(40°) + 107.4×sin(56°) = 139.43 m
The distance AB = 139.43 m.
the vertex form of a function is g(x)=(x-3)^2+9
Answer:
(3,9) is the answer.
Step-by-step explanation:
How can I divide decimals and fin the correct quotient and remainder.?
Answer:
Add a zero to the remainder and a decimal point in the quotient. Then we can continue to divide decimals. We divide 64 by 5 and obtain 12 as a quotient and 4 as a remainder. Since the remainder is not zero, we can continue to get a decimal answer by adding a decimal point in the quotient and a zero to the remainder
Step-by-step explanation:
Which of the following statements best describes the value of the expression 9x – 3 when x = 7?A.The result is a fraction.B.The result is a prime number.C.The result is a composite number.D.The result is a whole number that is neither prime nor composite.
pz help
Answer: C.The result is a composite number.
Step-by-step explanation:
A prime number has only 2 factors ( '1' and itself). For example : 2,3,5,..
A composite number has more than 2 factors. For example : 4, 6, 8...
The given expression: [tex]9x-3[/tex]
When x= 7 , the value of the expression will be
[tex]9(7)-3= 63-3=60[/tex]
Since 60 is a composite number [ it is divisible by 2,3,4,5,6,10,12,30,60]
Hence, the correct statement is C.The result is a composite number.
Answer:
C. The result is a composite number.
Sorry! I'm in a rush but I hope you do well on your quiz! Stay brainly :)
\large 6\cdot\frac{6+2^2}{6+2-6}
Answer:
30Step-by-step explanation:
Given the expression [tex]\large 6\cdot\frac{6+2^2}{6+2-6}[/tex], on simplification we have;
[tex]= \large 6\cdot\frac{6+2^2}{6+2-6}\\\\= \large 6\cdot\frac{6+4}{8-6}\\\\= \large 6\cdot\frac{10}{2}\\\\= 6* 5\\\\= 30[/tex]
Hence the equivalent value of the expression is 30
Please Help! Select the correct systems of equations. Which systems of equations intersect at point A in this graph?
Answer:
The systems of equation satisfying the problem are
Y= 4x+9
Y= -3x-5
Y= 2x+5.
Y= 5x+11
Y= 3x+7
Y= -x-1
Step-by-step explanation:
From the graph in the figure
The point A ; x= -2,y=1
So the equations that will interest at point A are the equations that both pass through the point A.
To know the equations that pass through the point A we solve them simultaneously.
For
Y = 10x-1
Y= -3x-5
0= 13x +4
X= -4/13..... definitely not this one
For
Y= 4x+9
Y= -3x-5
0= 7x +14
-14= 7x
-2= x
Substituting the value of x into Y= 4x+9
Y= 4x+9
Y= 4(-2)+9
Y = -8+9
Y= 1
So it's definitely this one
Let's check to know if there is any more
Y = 2x+5
Y= x-1
0= x +6
Definitely not this one
For
Y= 2x+5.
Y= 5x+11
0 = 3x+6
-6= 3x
-2= x
Y= 2x+5.
Y=2(-2)+5
Y= 1
Definitely this one
For
Y= 3x+7
Y= -x-1
0 = 4x +8
-8= 4x
-2= x
Y= -x-1
Y= -(-2)-1
Y= +2-1
Y= 1
Definitely this one too
The correct options are system of equations shown by options (B)[tex]Y= 4x+9 \ and \ y = -3x-5[/tex]
(D) [tex]y= 2x+5 and \ y= 5x+11[/tex]
and (E) [tex]y= 3x+7 \ and\ y= -x-1[/tex].
Given, Coordinates of point A is (-2,1).
We have to find which systems of equations intersect at point A in this graph.
The system of equation which satisfy the point A(-2,1) will intersect at point A.
On putting the value of x=-2 and y= 1, in 1st pair
the equation doesn't satisfy.
similarly checking all the options, we find that the below system equations intersect at point A.
[tex]Y= 4x+9 \ and y = -3x-5 \\y= 2x+5 and \ y= 5x+11\\y= 3x+7 \ and y= -x-1[/tex]
Hence the correct options are system of equations shown by options (B), (D) and (E).
For more details follow the link:
https://brainly.com/question/1680887
A Food Marketing Institute found that 31% of households spend more than $125 a week on groceries. Assume the population proportion is 0.31 and a simple random sample of 373 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.33
Answer:
0.7967
Step-by-step explanation:
We know that population proportion p=0.31.
We have to find P(phat<0.33).
Mean=p=0.31
[tex]Standard deviation=\sqrt{\frac{p(1-p)}{n} }[/tex]
[tex]Standard deviation=\sqrt{\frac{0.31(0.69)}{373} }[/tex]
standard deviation=0.024 (rounded to three decimal places)
[tex]P(phat<0.33)=P(Z<\frac{0.33-0.31}{0.024})[/tex]
[tex]P(phat<0.33)=P(Z<\frac{0.02}{0.024})[/tex]
[tex]P(phat<0.33)=P(Z<0.83)[/tex]
[tex]P(phat<0.33)=0.5+0.2967[/tex]
[tex]P(phat<0.33)=0.7967[/tex]
Thus, the required probability that sample proportion of households spending more than $125 a week is less than 0.33 is 79.67%
The table shows ordered pairs of the function. What is the value of y when? A 2-column table with 6 rows. The first column is labeled x with entries negative 3, negative 1, 1, 4, 8, 10. The second column is labeled y with entries 14, 10, 6, 0, question mark, negative 12. –20 –8 8 48
I need this quick;-;
Answer:
-8
Step-by-step explanation:
i checked it out on ... and it was negative eight
Answer:
B: -8
Step-by-step explanation:
edg2021
Just plug 8 into the equation.
Simplify 7^ -5/6 x 7^-7/6
Answer:
1/49
Step-by-step explanation:
If you add this is the calculator, I think it will come out.
━━━━━━━☆☆━━━━━━━
▹ Answer
1/49
▹ Step-by-Step Explanation
7^-5/6 * 7^-7/6
= 1/7²
= 1/49
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Determine the standard form of the equation of the line that passes through (-8, -6) and (-4, 9)
Answer:
15/4 x-y=-24
Step-by-step explanation:
the standard form is ax+by=c
two points (x1,x2) , (y2,y1)
x1=-8 x2=-6
y1=-4 y2=9
find slope m: y2-y1/x2-x1
m=9-(-6)/-4-(-8)
m=15/4
find b: take any point(-8,-6)
y=mx+b
-6=15/4 (-8)+b
-6=-30+b
b=-6+30
b=24
y=15/4 x+24
standard form: y-15/4x=24
OR : 15/4 x-y=-24
PLEASE HELP!!!
10. Write the formula of the function f(x) whose graph is shown.
A
f(x) = 4 - 4
х
B
f(x)=
1
= - +4
X
с
f(x) = 24
D
1
f(x) =
X +4
Step-by-step explanation:
c
If the cost of fencing a rectangular garden per meter is rupees 5 . Find the amount needed to do the fencing of the garden with length 400 m and breadth 150 m .
Answer:
6500 rupees
Step-by-step explanation:
We are given a rectangular garden is the dimensions of:
Length = 400 m
Breadth = 150 m
Perimeter of a rectangle = 2(L + B)
= 2(400 + 150)
= 2(650)
= 1300m
We are told that the cost of fencing a rectangular garden per meter is rupees 5
1 m = 5 rupees
1300m =
Hence, the cost to fence the entire garden = 1300 × 5 rupees
= 6500rupees