Answer:
See below.
Step-by-step explanation:
Call the sum of the first n terms S.
S = a + ar + ar^2 + ar^3 + ... + ar^(n -1)
Multiply both sides by r.
Sr = ar + ar^2 + ar^3 + ar^4 + ... + ar^n
No subtract S - Sr.
S = a + ar + ar^2 + ar^3 + ar^4 + ... + ar^(n -1)
(-) Sr = ar + ar^2 + ar^3 + ar^4 + ... + ar^(n - 1) + ar^n
-------------------------------------------------------------------
S - Sr = a - ar^n
S(1 - r) = a(1 - r^n)
S = a(1 - r^n)/(1 - r)
S = a(r^n - 1)/(r - 1)
a + ar + ar^2 + ar^3 + ... + ar^(n -1) = a(r^n - 1)/(r - 1)
The zeros of polynomial function g are -5, -1, and 7. Complete the factors to write an equation for function g. Assume that g has only three zeros and three factors.
Answer:
g(x) = (x + 5)(x + 1)(x - 7)
Step-by-step explanation:
i know for a fact im right
The complete equation of function whose zeros are given;
f(x) = (x+5)(x+1)(x-7)
What is Polynomial?
A polynomial is a type of algebraic expression in which the exponents of all variables should be a whole number.
Here, given zeros are;
-5, -1, 7
then we can write;
x = -5, x = -1; x = 7
x +5 = 0 ; x + 1 = 0 ; x - 7 = 0
On multiplying all the terms we get;
(x+5)(x+1)(x-7) = 0
Thus, The complete equation of function whose zeros are given;
f(x) = (x+5)(x+1)(x-7)
Learn more about Polynomial from:
https://brainly.com/question/17822016
#SPJ2
solve: 5y +12 - 3y + 12 = 18
Answer:
5y-3y+12+12=18
2y = 18 - 24
y = -6/2
y = -3
[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{5y + 12 - 3y + 12 = 18}\\\\\large\text{COMBINE the LIKE TERMS}\\\\\large\textsf{(5y - 3y) + (12 + 12) = 18}\\\\\large\text{NEW EQUATION: \textsf{2y + 24 = 18}}\\\\\large\text{SUBTRACT 24 to BOTH SIDES}\\\\\large\textsf{2y + 24 - 24 = 18 + 24}\\\\\large\text{Cancel out: \textsf{24 - 24} because it gives you 0}\\\\\large\text{Keep: \textsf{18 - 24} because it helps solve it helps solve for y}\\\\\large\textsf{18 - 24 = \bf -6}[/tex]
[tex]\large\text{NEW EQUATION: \textsf{2y = -6}}\\\\\large\text{DIVIDE 2 to BOTH SIDES}\\\\\mathsf{\dfrac{2y}{2y}=\dfrac{-6}{2}}\\\\\large\text{Cancel out: }\mathsf{\dfrac{2}{2}}\large\text{ because it gives you 1}\\\\\large\text{KEEP: }\mathsf{\dfrac{-6}{2}}\large\text{ because it gives you the y-value}\\\\\large\textsf{y = }\mathsf{\dfrac{-6}{2}}\\\\\mathsf{\dfrac{-6}{2}= \bf -3}\\\\\\\\\\\boxed{\boxed{\huge\textsf{Answer: y = \bf -3}}}\huge\checkmark[/tex]
[tex]\huge\textsf{Good luck on your assignment \& enjoy your day!}\\\\\\\\\\\\\\\\\frak{Amphitrite1040:)}[/tex]
Ross walked 3 m east and 6 m north. How far is he from the starting point
Answer:
3 sqrt(5) meters
Step-by-step explanation:
This is a right triangle so we can use the Pythagorean theorem.
a^2 +b^2 = c^2 where a and b are the legs and c is the hypotenuse
3^2+6^2 = c^2
9+36 = c^2
45 = c^2
Taking the square root
sqrt(45) = sqrt(c^2)
sqrt(9*5) = c
sqrt(9) sqrt(5) =c
3sqrt(5) = c
[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]
Given:-Ross walked 3 m east and 6 m north. Find:-How far is she from the starting point?solution:-Ross walked 3 m east and 6 m north.
so her path is a right angle triangle path.
we know that,
in a right angle triangle, According to the Pythagorean theorom,
[tex]\boxed{\sf{l^2+b^2=h^2 }}[/tex]
where
l= legs b=baseh=hypotenuse According to the question, [tex]\sf{3^2+6^2=f^2 }[/tex] [tex]\sf{9+36=f^2 }[/tex] [tex]\sf{ f^2=45 }[/tex] [tex]\sf{f=\sqrt{45} }[/tex] [tex]\sf{f=3\sqrt{5} }[/tex] Therefore:-he is [tex]\sf{3\sqrt{5} }[/tex] far from the starting point
write and expression for the perimeter of a rectangle with length L and width 6
Answer:
P = 2(L + 6)
Step-by-step explanation:
The perimeter (P) of a rectangle is = 2(Length + Width)
Length = L
Width = 6
.: P = 2(L + 6)
(2.35 x 10^4) – (4.50 x 10^5)
Answer:
−426500
Step-by-step explanation:
Help fast please in a test and don’t know the answer I have tried Googling and everything please help
Answer:
Surface Area = 3,543.7 cm²
Step-by-step explanation:
Surface area of the cylinder = 2πr(h + r)
Where,
radius (r) = 12 cm
height (h) = 35 cm
Plug in the values into the surface area formula
S.A = 2*π*12(35 + 12)
S.A = 24π(47)
S.A = 3,543.71651 cm²
≈ 3,543.7 cm² (approximated to the nearest tenth)
FOR EASY BRAINLIEST:
ANSWER NUMBER: 14.
Answer:
Step-by-step explanation:
Answer:
y=-3/2x+4
Step-by-step explanation:
If f(x) =3x^2 +1 and g(x) = 1 -x, what is the value of (f-g) (2)?
Answer:
(f-g)(2) = 14
Step-by-step explanation:
f(x) =3x^2 +1 and g(x) = 1 -x
f(2) = 3(2)^2 +1 = 3(4)+1 = 12+1 = 13
g(2) = 1-2 = -1
f(2) - g(2) = 13 - -1 = 13+1 =14
Answer:
14
Step-by-step explanation:
(f-g)(2) means f of x minus g of x when x equals 2.
To solve, first set up the equation
[tex](3x^2}+1)-(1-x)[/tex]
Change the signs in the second part. {because this is subtraction}
[tex]3x^2}+1-1+x[/tex]
Replace x with 2.
[tex]3(2^2})+1-1+2[/tex]
Solve.
[tex]3(4)+2[/tex]
[tex]12+2[/tex]
[tex]14[/tex]
A side of the triangle below has been extended to form an exterior angle of 72°. find the value of x.
Answer:
108°
Step-by-step explanation:
The sum of angles on a straight line is 180°
Therefore:
x + 72° = 180°
x = 180° - 72°
x = 108°
Therefore, the value of x is 108°
In Australia, road distance is measured in kilometres.
In the USA, road distance is measured in miles.
5 miles is about the same distance as 8 kilometres.
About how many miles is 120 kilometres?
Answer:
75
Step-by-step explanation:
5 miles-8km
x miles-120 km
x=120×5÷8
x=75 (miles)
Answer:
s
Step-by-step explanation:
since 5 miles is the same as 8 kilometers,how many miles is 120 kilometers..use ratio and proportion
5miles:8kilometers
x. :120kilometers
8x/8=600/8
x=75miles
I hope this helps
solve for x−4 + x ≤ 9
Answer:
x ≤ 6.5
Step-by-step explanation:
x−4 + x ≤ 9
Combine like terms
2x-4≤ 9
Add 4 to each side
2x-4+4≤ 9+4
2x≤ 13
Divide by 2
2x/2 ≤ 13/2
x ≤ 6.5
Find the measure of arc BC?
Answer:
129
Step-by-step explanation:
Since,
AD = BC
AD = 3x + 24
BC = 4x - 11
3x + 24 = 4x - 11
4x - 11 = 3x + 24
4x - 3x = 24 + 11
x = 35
BC = 4x - 11
= 4 ( 35 ) - 11
= 140 - 11
BC = 129
Answer:
[tex]AB=BC[/tex]
[tex]3x+24=4x-11[/tex]
[tex]3x-4x=-11-24[/tex]
[tex]x=35[/tex]
[tex]BC=4\times 35-1[/tex]
[tex]=140-11[/tex]
[tex]=129[/tex]
--------------------------
Hope it helps..
Have a great day!!
Jernel has to figure out the area of her square garage. She knows that one side of the garage is equal to the length of her rabbit pen. The dimensions of the rectangular rabbit pen are 13 by 10.
Answer:169
Step-by-step explanation:13 x 13 = 169
You would take the larger side of the pen (13) or else it wouldn’t fit if you chose 10.
How would I answer this: How many minutes are in a 30-day month.... use vertical multiplication to get the right answer
Answer:
There are 43200 minutes in a 30-day month.
Step-by-step explanation:
We know that:
60 minutes = 1 hour
24 hours = 1 day
Thus to determine the minutes in a 30-day month, let us first determine the number of hours in the month.
30
x 24
_______
120
60
_______
720 hours
The 30-day month has a total of 720 hours.
So that the number of minutes that make up 720 hours can be determined by;
720
x 60
_______
000
4320
_______
43200
Therefore, there are 43200 minutes in a 30-day month.
If the outliers are not included what is the mean of the data set 76,79,80,82,50,78,79,81,82
Answer:
The answer is 80
Step-by-step explanation:
we know that
the outlier is 50, as it is not around the other numbers in the data set.
therefore
mean=[76+ 79 + 80 + 82+ 78 + 83 + 79 + 81 + 82]/9
mean=[720]/9
mean=80
Answer:
80
Step-by-step explanation:
mean=[76+ 79 + 80 + 82+ 78 + 83 + 79 + 81 + 82]/9
mean=[720]/9
mean=80
What are the coordinates of the image of L for a dilation with center (0, 0) and scale factor ?
Answer:
The vertices of ABCD:
A ( - 3, 1 )
B ( 4 , - 3 )
C ( 1, 3 )
D ( - 1 , 4 )
∴ ( 4 x, 4 y ):
A ` ( - 12, 4 )
B ` ( 16, - 12 )
C ` ( 4, 12 )
D ` ( - 4 , 16 )
Step-by-step explanation: I hope this helps! ™(*/ω\*)
Shannon buys a table that was priced $700. There is a 8% sales tax in her state. Fortunately, it was 60% off! So she only paid
Answer:
Total paid: 302.40
Step-by-step explanation:
Price x percent off = amount off
700 x .60 (60%) = 420 amount off
price - amount off = sales price
700 - 420 = 280 sales price
sales price x sales tax rate = sales tax
280 x .08 (8%) = 22.40 sales tax
sales price + sales tax = total paid
280 + 22.40 = 302.40 total paid
Find the percentage of the following:
20/60
18/60
21/60
31/60
Answer:
20/60 = 33%
18/60 = 30%
21/60 = 35%
31/60 = 52%
Step-by-step explanation:
Just divide em'
Simple as that.
Answer:
20/60 = 33%18/60 = 30%21/60 = 35%31/60 = 51.67%I hope th is helps you I just divided the fractions by the way :)
help asap no wrong answers----------------------
Answer:
[tex]y=-2(sin(2x))-7[/tex]
Step-by-step explanation:
1. Approach
Given information:
The graph intersects the midline at (0, -7)The graph has a minimum point at ([tex]\frac{\pi}{4}[/tex], 9).What conclusions can be made about this function:
The graph is a sine function, as its y-intercept intersects the midlineThis graph has a negative coefficient, this is because after intersecting the midlines at the y-intercept, the function has a minimum.This graph does not appear to have undergone any horizontal shift, as it intercepts the midlines with its y-interceptTherefore, one has the following information figured out:
[tex]y=-n(sin(ax))+b[/tex]
Now one has to find the following information:
amplitudemidlineperiod2. Midline
The midlines can simply be defined as a line that goes through a sinusoidal function, cutting the function in half. This is represented by the constant (b). One is given that point (0, -7) is where the graph intersects the midline. The (y-coordinate) of this point is the midline. Therefore, the midline is the following:
y = -7
2. Amplitude
The amplitude is represented by the coefficient (n). It can simply be defined by the distance from the midline to point of maximum (the highest part of a sinusoidal function) or point of minimum (lowest point on the function). Since the function reaches a point of minimum after intercepting the (y-axis) at its midlines, the amplitude is a negative coefficient. One can find the absolute value of the amplitude by finding the difference of the (y-coordinate) of the point of minimum (or maximum) and the absolute value of the midline.
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline: [tex]y=-7[/tex]
Amplitude: 9 - |-7| = 9 - 7 = 2
3. Period
The period of a sinusoidal function is the amount of time it takes to reach the same point on the wave. In essence, if one were to select any point on the sinusoidal function, and draw a line going to the right, how long would it take for that line to reach a point on the function that is identical to the point at which it started. This can be found by taking the difference of the (x- coordinate) of the intersection point of the midline, and the (x-coordinate) of the point of minimum, and multiplying it by (4).
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline intersection: [tex](0, -7)[/tex]
Period: [tex]4(\frac{\pi}{4}-0)=4(\frac{\pi}{4})=\pi[/tex]
However, in order to input this into the function in place of the variable (a), one has to divide this number by ([tex]2\pi[/tex]).
[tex]a=\frac{2\pi}{\pi}=2[/tex]
4. Assemble the function
One now has the following solutions to the variables:
[tex]n =-16\\a=2\\b=-7\\[/tex]
Substitute these values into the function:
[tex]y=-2(sin(2x))-7[/tex]
Evaluate (5.6 x 10^-4 ) - (9.3x10^-6)
Give your answer in standard form to 3SF
Answer:
I got 5.51x10^-4
Step-by-step explanation:
Answer:
.0005507
Step-by-step explanation:
5.6 x [tex]10^{-4}[/tex]
9.3 x [tex]10^{-6}[/tex]
560 x [tex]10^{-6}[/tex]
- 9.3 x [tex]10^{-6}[/tex]
550.7 x [tex]10^{-6}[/tex]
.0005507
Q5. Evaluate this expression when a=6
Q6. Which option shows this expression simplified correctly?
Q7. Which option shows this expression simplified correctly?
Q8. Find the following:
Q9. Which option shows this expression expanded correctly?
WORD PROBLEM -
Sohanlal is a gardener He is paid 160 daily find how much money will he get in the month of September
GIVE ME UR ANSWERS SOON PLS
Niko wants to put soil in his garden shown below. If soil comes in bags that fill 6 square yards each, how many bags of soil should Niko buy? Hint: you may have some leftover soil.
Answer:
444 pot soils
Step-by-step explanation:
For a given event, what is the result of dividing the number of successful
outcomes by the number of possible outcomes?
A. Outcomes
ОО
B. Probability
h
c. Sample space
D. Empirical data
Answer: B. Probability
For example, let's say you want to know the probability of flipping tails.
There's 1 way to get tails out of 2 sides total. So 1/2 = 0.5 is the probability of flipping tails.
We define "success" as "getting tails".
Suppose that a1, a2, a3, . . . is an arithmetic sequence, in which a3 = 19 and a14 = 96. Find a1.
2. A cylindrical candle has a volume of 785 cm. Determine the minimum amount of plastic which is needed to cover
the outside of the candle for packaging and find the dimensions of the candle which produce this surface area
3. A company which produces pizza ovens has had complaints about their ovens losing too much heat to be
efficient. They have decided to redesign their ovens. The ovens must have a volume of 0.512 m. Find the
optimal design for the oven so that the surface is as small as possible to minimize heat loss Calculate that
surface area.
Answer:
2. Candle dimensions: x = 6.3 cm h = 6.29 cm
A (min) = 373.49 cm²
3. Cylindrical oven dimensions: x = 0.54 m h = 0.55 m
A (min)= 1.4747 m²
Step-by-step explanation:
2.A The volume V of the cylindrical candle is 785 cm³
V = π*x²*h x is the radius of the base and h the heigh of the cylinder
The surface area A is area of the base π*x² . plus lateral area 2*π*r*h
then . A = π*x² + 2*π*x*h . h = V/π*x²
A as a function of x . is
A(x) = π*x² + 2*π*x*785/π*x²
A(x) = π*x² + 1570/x
Taking derivatives on both sides of the equation we get:
A' (x) = 2*π*x - 1570/x²
A'(x) = 0 . 2*π*x - 1570/x² = 0 . 2*π*x³ = 1570
x³ = 250
x = 6.3 cm . and . h = 785/π*x² . h = 785/124.63
h = 6.29 cm
Then dimensions of the cylindrical candle:
x = 6.3 cm h = 6.29 cm
A (min) = 3.14 * (6.3)² + 6.28*6.3*6.29
A (min) = 124.63 + 248.86
A (min) = 373.49 cm²
3. For a cylindrical oven V = 0.512 h = 0.512/ π*x²
Following the same procedure
A(x) = π*x² + 2*π*x*0.512/π*x² .A(x) = π*x² + 1024/x
A'(x) = 2* π*x - 1.024/x²
A'(x) =0 . 2* π*x - 1.024/x² =0 . 2* π*x³ . = 1.024
x³ = 0.512/π . x³ = 0.163
x = 0.54 m h = 0.512/π*x² . h = 0.55 m
A(min) = 3.14*(0.54)² + 1024/x
A(min)= 0.9156 + 0.5591
A (min)= 1.4747 m²
Strat with k add 2 multiply by 6 then subtract 8
Answer:
6(k+2) -8
Step-by-step explanation:
Start with k
k
Add 2
(k+2)
Multiply by 6
6(k+2)
Then subtract 8
6(k+2) -8
6(k+2)-8 is a required answer.
Answer:
Solution given:
Start with k.
Kadd 2
k+2multiply by six
(k+2)*6subtract by 8
6(k+2)-8Identify the slope and y-intercept of each linear function's equation.
y = 3x - 1
slope = 3; y-intercept at -1
x-3=y
slope = -3; y-intercept at 1
y = 1 - 3x
slope = 1; y-interceptat -3
--x+ 3 = y
t
slope = -1; y-intercept at 3
Step-by-step explanation:
Concerning the peculiar interrogate, I will be providing correction(s) to the following answers inserted:
Y = 3x - 1
Slope = 3
Y-intercept = -1
X - 3 = y
Y = x - 3 <== Slope-Intercept Form.
Slope = 1
Y-intercept: -3
Y = 1 - 3x
Slope: -3
Y-intercept: 1
-x + 3 = y
Y = -x + 3 <== Slope-intercept Form.
Slope: -1
Y-intercept: 3
Thus, the following configurations have been defined or derived from the origin of the proposed interrogated.
*I hope this helps.
HELP!!! 15 points. picture below
Step-by-step explanation:
[tex] \sin( \alpha ) = \frac{ \sqrt{5} }{3} \\ \alpha = 48.19 \: degrees \\ \cos( \alpha ) = \frac{2}{3} [/tex]
Answer:
cos theta =± 2/3
Step-by-step explanation:
sin theta = sqrt(5) /3
sin theta = opp side / hypotenuse
We know that
a^2 + b^2 = c^2 from the pythagorean theorem
opposite side ^2 + adjacent side ^2 = hypotenuse ^2
( sqrt(5)) ^2 + adjacent side ^2 = 3^2
5 + adjacent side ^2 = 9
Subtract 5 from each side
5-5 + adjacent side ^2 = 9-5
adjacent side ^2 = 4
Taking the square root of each side
adjacent side = ±2
We know that
cos theta = adj side / hyp
cos theta =± 2/3
True or false..?
In a parallelogram, consecutive angles are supplementary.
Answer:
True
Step-by-step explanation:
Both pairs of opposite angles are congruent. parallelogram, rectangle, rhombus, square. Both pairs of opposite sides are congruent. parallelogram, rectangle, rhombus, square. All consecutive angles are supplementary. parallelogram, rectangle, rhombus, square. diagonals bisect each other. parallelogram, rectangle, rhombus, square.
Answer:
true
Step-by-step explanation:
any 2 consecutive angles are supplamentary