MATLAB is a powerful tool for data analysis and is widely used for this purpose. Writing a function that calculates the mean of an input vector is a good way to learn more about the MATLAB language and how it can be used for data analysis.
To write a MATLAB function that calculates the mean of the input vector, the following steps can be followed:Step 1: Open a new MATLAB script and save it with a desired name.Step 2: Define the function using the following format: function [m]
=mean Calculation(x)Step 3: Load content and write the function that calculates the mean of the input vector. Here is an example function: function [m]
=mean Calculation(x) %Calculates the mean of the input vector. len
=length(x); %Number of elements in the input vector. s
=0; for i
=1:len s
=s+x(i); end m
=s/len; %Calculating mean of the input vector. End The function above takes a single input argument which is the input vector whose mean needs to be calculated. The output of the function is m which is the mean of the input vector.Step 4: Save the script file and then test the function. An example of how to test the function is shown below:>> x
=[1 2 3 4 5];>> mean Calculation(x)ans
=3
Step 5: here is additional information:Mean calculation is an important operation that is commonly performed in data analysis and signal processing. MATLAB is a powerful tool for data analysis and is widely used for this purpose. Writing a function that calculates the mean of an input vector is a good way to learn more about the MATLAB language and how it can be used for data analysis.
To know more about MATLAB visit:
https://brainly.com/question/30763780
#SPJ11
Points Consider the equation for a' (t) = (a(t))2 + 4a(t) - 4. How many solutions to this equation are constant for all t? O There is not enough information to determine this. 0 3 01 02 OO
Answer:
3
Step-by-step explanation:
i drtermine that rhe anser is 3 not because i like the number 3 but becuse i do not know how in the wold i am spost to do this very sorry i can not help you with finding your sulution
Write out the form of the partial fraction expansion of the function. Do not determine the numerical values of the coefficients. 7x (a) (x + 2)(3x + 4) X 10 (b) x3 + 10x² + 25x Need Help? Watch It
Partial fraction expansion as:
(x³+ 10x²+ 25x) = A / x + B / (x + 5) + C / (x + 5)²
Again, A, B, and C are constants that we need to determine.
Let's break down the partial fraction expansions for the given functions:
(a) 7x / [(x + 2)(3x + 4)]
To find the partial fraction expansion of this expression, we need to factor the denominator first:
(x + 2)(3x + 4)
Next, we express the expression as a sum of partial fractions:
7x / [(x + 2)(3x + 4)] = A / (x + 2) + B / (3x + 4)
Here, A and B are constants that we need to determine.
(b) (x³ + 10x² + 25x)
Since this expression is a polynomial, we don't need to factor anything. We can directly write its partial fraction expansion as:
(x³+ 10x²+ 25x) = A / x + B / (x + 5) + C / (x + 5)²
Again, A, B, and C are constants that we need to determine.
Remember that the coefficients A, B, and C are specific values that need to be determined by solving a system of equations.
Learn more about partial fraction expansions here:
https://brainly.com/question/31707489
#SPJ11
HELP... I need this for a math exam
The tangent of angle R is given as follows:
[tex]\tan{R} = \frac{\sqrt{47}}{17}[/tex]
What are the trigonometric ratios?The three trigonometric ratios are the sine, the cosine and the tangent of an angle, and they are obtained according to the formulas presented as follows:
Sine = length of opposite side to the angle/length of hypotenuse of the triangle.Cosine = length of adjacent side to the angle/length of hypotenuse of the triangle.Tangent = length of opposite side to the angle/length of adjacent side to the angle = sine/cosine.For the angle R, we have that:
The opposite side is of [tex]\sqrt{47}[/tex].The adjacent side is of 17.Hence the tangent is given as follows:
[tex]\tan{R} = \frac{\sqrt{47}}{17}[/tex]
A similar problem, also about trigonometric ratios, is given at brainly.com/question/24349828
#SPJ1
The graph of the rational function f(x) is shown below. Using the graph, determine which of the following local and end behaviors are correct. 1 -14 Ņ 0 Select all correct answers. Select all that apply: Asx - 3*, f(x) → [infinity] As x co, f(x) → -2 Asx oo, f(x) → 2 Asx-00, f(x) --2 As x 37. f(x) → -[infinity] As x → -[infinity]o, f(x) → 2
As x → ∞, the graph is approaching the horizontal asymptote y = 2. So, as x → ∞ and as x → -∞, f(x) → 2.
From the given graph of the rational function f(x), the correct local and end behaviors are:
1. As x → 3⁺, f(x) → ∞.
2. As x → ∞, f(x) → 2.
3. As x → -∞, f(x) → 2.The correct answers are:
As x → 3⁺, f(x) → ∞As x → ∞, f(x) → 2As x → -∞, f(x) → 2
Explanation:
Local behavior refers to the behavior of the graph of a function around a particular point (or points) of the domain.
End behavior refers to the behavior of the graph as x approaches positive or negative infinity.
We need to determine the local and end behaviors of the given rational function f(x) from its graph.
Local behavior: At x = 3, the graph has a vertical asymptote (a vertical line which the graph approaches but never touches).
On the left side of the vertical asymptote, the graph is approaching -∞.
On the right side of the vertical asymptote, the graph is approaching ∞.
So, as x → 3⁺, f(x) → ∞ and as x → 3⁻, f(x) → -∞.
End behavior: As x → -∞, the graph is approaching the horizontal asymptote y = 2.
As x → ∞, the graph is approaching the horizontal asymptote y = 2.
So, as x → ∞ and as x → -∞, f(x) → 2.
To know more about rational function visit:
https://brainly.com/question/27914791
#SPJ11
Let f(x) be a function of one real variable, such that limo- f(x)= a, lim„→o+ f(x)=b, ƒ(0)=c, for some real numbers a, b, c. Which one of the following statements is true? f is continuous at 0 if a = c or b = c. f is continuous at 0 if a = b. None of the other items are true. f is continuous at 0 if a, b, and c are finite. 0/1 pts 0/1 pts Question 3 You are given that a sixth order polynomial f(z) with real coefficients has six distinct roots. You are also given that z 2 + 3i, z = 1 - i, and z = 1 are solutions of f(z)= 0. How many real solutions to the equation f(z)= 0 are there? d One Three er Two There is not enough information to be able to decide. 3 er Question 17 The volume of the solid formed when the area enclosed by the x -axis, the line y the line x = 5 is rotated about the y -axis is: 250TT 125T 125T 3 250T 3 0/1 pts = x and
The correct answer is option (B) f is continuous at 0 if a = b. Thus, option (B) is the true statement among the given options for volume.
We have been given that[tex]limo- f(x)= a, lim„→o+ f(x)=b, ƒ(0)=c[/tex], for some real numbers a, b, c. We need to determine the true statement among the following:A) f is continuous at 0 if a = c or b = c.
The amount of three-dimensional space filled by a solid is described by its volume. The solid's shape and properties are taken into consideration while calculating the volume. There are precise formulas to calculate the volumes of regular geometric solids, such as cubes, rectangular prisms, cylinders, cones, and spheres, depending on their parameters, such as side lengths, radii, or heights.
These equations frequently require pi, exponentiation, or multiplication. Finding the volume, however, may call for more sophisticated methods like integration, slicing, or decomposition into simpler shapes for irregular or complex patterns. These techniques make it possible to calculate the volume of a wide variety of objects found in physics, engineering, mathematics, and other disciplines.
B) f is continuous at 0 if a = b.C) None of the other items are true.D) f is continuous at 0 if a, b, and c are finite.Solution: We know that if[tex]limo- f(x)= a, lim„→o+ f(x)=b, and ƒ(0)=c[/tex], then the function f(x) is continuous at x = 0 if and only if a = b = c.
Therefore, the correct answer is option (B) f is continuous at 0 if a = b. Thus, option (B) is the true statement among the given options.
Learn more about volume here:
https://brainly.com/question/23705404
#SPJ11
Someone help please!
The graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
What is the end behavior of a function?The end behavior of a function refers to how the function behaves as the input variable approaches positive or negative infinity.
The function in this problem is given as follows:
[tex]f(x) = -x^4 + 9[/tex]
It has a negative leading coefficient with an even root, meaning that the function will approach negative infinity both to the left and to the right of the graph.
Hence the graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
More can be learned about the end behavior of a function at brainly.com/question/1365136
#SPJ1
In calculating the Laplace transform L{(t+2) H(t-5)} using the formula L{f(t-a)H(t-a)} = e "L{f(t)} on the Laplace sheet you calculated that the f(t) referred to in this formula is f(1) = **1 +93
The absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) is 4.
We can show that the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) has an absolute maximum by using differentiation. Differentiation of this function can be done easily as:
f'(x) = 2x((x+1)² + x²)
Solving for the critical points, we get:
2x(x²+2x+1) = 0
x² + 2x + 1 = 0
(x + 1) (x + 1) = 0
Therefore, the critical point at which the derivative of the function f(x) equals zero, is given by x = -1. As x can have only positive values on the given interval and the expression is an even-powered polynomial, it is evident that the absolute maximum is obtained at x = -1.
Part (ii):
Therefore, we can find the absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) by plugging in x = -1. This yields:
f(-1) = (-1)² ( (-1) + 1)² = 4
Hence, the absolute maximum of the function f(x) = x²(x + 1)² on (-[infinity]0; +[infinity]0) is 4.
To know more about function click-
http://brainly.com/question/25841119
#SPJ11
A bacteria culture initially contains 2000 bacteria and doubles every half hour. The formula for the population is p(t) = 2000et for some constant k. (You will need to find ke to answer the following.) Round answers to whole numbers. Find the size of the baterial population after 80 minutes. Find the size of the baterial population after 7 hours. A bacteria culture initially contains 2000 bacteria and doubles every half hour. The formula for the population is p(t) = 2000et for some constant k. (You will need to find k to answer the following.) Round answers to whole numbers. Find the size of the baterial population after 80 minutes. 1 Find the size of the baterial population after 7 hours4
the size of the bacterial population after 80 minutes is approximately 1,052,614, and after 7 hours is approximately 2,478,752.
To find the size of the bacterial population after a certain time, we need to find the constant "k" in the formula p(t) = 2000e^(kt).
Given that the bacteria population doubles every half hour, we can set up the equation:
2 = [tex]e^{(0.5k)}[/tex]
Taking the natural logarithm of both sides, we have:
ln(2) = ln([tex]e^{(0.5k)}[/tex])
ln(2) = 0.5k
Now, we can solve for "k":
k = 2 * ln(2)
Approximating the value, we get k ≈ 1.386.
1. Size of bacterial population after 80 minutes:
Since 80 minutes is equivalent to 160 half-hour intervals, we can substitute t = 160 into the formula:
p(160) = 2000[tex]e^{(1.386 * 160)}[/tex]
Calculating the value, we find p(160) ≈ 1,052,614.
2. Size of bacterial population after 7 hours:
Since 7 hours is equivalent to 840 minutes or 1680 half-hour intervals, we can substitute t = 1680 into the formula:
p(1680) = 2000[tex]e^{(1.386 * 1680)}[/tex]
Calculating the value, we find p(1680) ≈ 2,478,752.
To know more about equation visit:
brainly.com/question/29657983
#SPJ11
Find the point of intersection of the plane 3x - 2y + 7z = 31 with the line that passes through the origin and is perpendicular to the plane.
The point of intersection of the plane 3x - 2y + 7z = 31 with the line passing through the origin and perpendicular to the plane is (3, -2, 7).
Given the equation of the plane, 3x - 2y + 7z = 31, and the requirement to find the point of intersection with the line intersects through the origin and perpendicular to the plane, we can follow these steps:
1. Determine the normal vector of the plane by considering the coefficients of x, y, and z. In this case, the normal vector is <3, -2, 7>.
2. Since the line passing through the origin is perpendicular to the plane, the direction vector of the line is parallel to the normal vector of the plane. Therefore, the direction vector of the line is also <3, -2, 7>.
3. Express the equation of the line in parametric form using the direction vector. This yields: x = 3t, y = -2t, and z = 7t.
4. To find the point of intersection, we substitute the parametric equations of the line into the equation of the plane: 3(3t) - 2(-2t) + 7(7t) = 31.
5. Simplify the equation: 62t = 31.
6. Solve for t: t = 1.
7. Substitute t = 1 into the parametric equations of the line to obtain the coordinates of the point of intersection: x = 3(1) = 3, y = -2(1) = -2, z = 7(1) = 7.
Learn more about line intersects
https://brainly.com/question/11297403
#SPJ11
The line AB passes through the points A(2, -1) and (6, k). The gradient of AB is 5. Work out the value of k.
Answer:
Step-by-step explanation:
gradient = 5 = [k-(-1)]/[6-2]
[k+1]/4 = 5
k+1=20
k=19
The value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5 is found to be 19 by using the formula for gradient and solving the resulting equation for k.
Explanation:To find the value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5, we'll use the formula for gradient, which is (y2 - y1) / (x2 - x1).
The given points can be substituted into the formula as follows: The gradient (m) is 5. The point A(2, -1) will be x1 and y1, and point B(6, k) will be x2 and y2. Now, we set up the formula as follows: 5 = (k - (-1)) / (6 - 2).
By simplifying, the equation becomes 5 = (k + 1) / 4. To find the value of k, we just need to solve this equation for k, which is done by multiplying both sides of the equation by 4 (to get rid of the denominator on the right side) and then subtracting 1 from both sides to isolate k. So, the equation becomes: k = 5 * 4 - 1. After carrying out the multiplication and subtraction, we find that k = 20 - 1 = 19.
Learn more about Line Gradient here:https://brainly.com/question/30249498
#SPJ2
Abankintay contains 50 gal of pure water. Brine containing 4 lb of salt per gation enters the tank at 2 galmin, and the (perfectly mixed) solution leaves the tank at 3 galimin. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes (b) What is the maximum amount of sall ever in the tank? (a) The amount of sats in the tank after t minutes is xa (b) The maximum amount of salt in the tank was about (Type an integer or decimal rounded to two decinal places as needed)
(a) To find the amount of salt in the tank after t minutes, we need to consider the rate at which salt enters and leaves the tank.
Salt enters the tank at a rate of 4 lb/gal * 2 gal/min = 8 lb/min.
Let x(t) represent the amount of salt in the tank at time t. Since the solution is perfectly mixed, the concentration of salt remains constant throughout the tank.
The rate of change of salt in the tank can be expressed as:
d(x(t))/dt = 8 - (3/50)*x(t)
This equation represents the rate at which salt enters the tank minus the rate at which salt leaves the tank. The term (3/50)*x(t) represents the rate of salt leaving the tank, as the tank is emptied in 50 minutes.
To solve this differential equation, we can separate variables and integrate:dx=∫dt
Simplifying the integral, we have: ln∣8−(3/50)∗x(t)∣=t+C
Solving for x(t), we get:
Therefore, the amount of salt in the tank after t minutes is given by x(t) = (8/3) - (50/3)[tex]e^(-3/50t).[/tex]
(b) The maximum amount of salt ever in the tank can be found by taking the limit as t approaches infinity of the equation found in part (a):
≈2.67Therefore, the maximum amount of salt ever in the tank is approximately 2.67 pounds.
Learn more about trigonometry here:
https://brainly.com/question/13729598
#SPJ11
A オー E Bookwork code: H34 Calculator not allowed Choose which opton SHOWS. I) the perpendicular bisector of line XY. Ii) the bisector of angle YXZ. Iii) the perpendicular from point Z to line XY. -Y Y B X< F オー -Y -2 X- Z C Y G オー Watch video -Y D H X Y -Z Z Y An
Therefore, option iii) "the perpendicular from point Z to line XY" shows the perpendicular bisector of line XY.
The option that shows the perpendicular bisector of line XY is "iii) the perpendicular from point Z to line XY."
To find the perpendicular bisector, we need to draw a line that is perpendicular to line XY and passes through the midpoint of line XY.
In the given diagram, point Z is located above line XY. By drawing a line from point Z that is perpendicular to line XY, we can create a right angle with line XY.
The line from point Z intersects line XY at a right angle, dividing line XY into two equal segments. This line serves as the perpendicular bisector of line XY because it intersects XY at a 90-degree angle and divides XY into two equal parts.
For such more question on perpendicular
https://brainly.com/question/1202004
#SPJ8
It takes 13 units of carbohydrates and 7 units of protein to satisfy Jacob's minimum weekly requirements. The meat contains 2 units of carbohydrates and 2 units of protein par pound. The cheese contains 3 units of carbohydrates and 1 unit of protein per pound. The meat costs $3.20 per pound and the cheese costs $4.50 per pound. How many pounds of each are needed to fulfill the minimum requirements at minimum cost? What is Jacob's minimum cost? He should buy pound(s) of meat and pound(s) of cheese. (Round your answer to the nearest tenth.) 4 The minimum cost is $ (Round to the nearest cent as needed.)
To fulfill Jacob's minimum weekly requirements for carbohydrates and protein at minimum cost, he should buy approximately 2.7 pounds of meat and 2.3 pounds of cheese. The minimum cost for this combination is $15.20.
Let's assume Jacob needs x pounds of meat and y pounds of cheese to fulfill his minimum requirements. Based on the given information, the following equations can be formed:
2x + 3y = 13 (equation for carbohydrates)
2x + y = 7 (equation for protein)
To find the minimum cost, we need to minimize the cost function. The cost of meat is $3.20 per pound, and the cost of cheese is $4.50 per pound. The cost function can be defined as:
Cost = 3.20x + 4.50y
Using the equations for carbohydrates and protein, we can rewrite the cost function in terms of x:
Cost = 3.20x + 4.50(7 - 2x)
Expanding and simplifying the cost function, we get:
Cost = 3.20x + 31.50 - 9x
To minimize the cost, we take the derivative of the cost function with respect to x and set it equal to zero:
dCost/dx = 3.20 - 9 = 0
Solving for x, we find x = 2.7 pounds. Substituting this value back into the equation for protein, we can solve for y:
2(2.7) + y = 7
y = 7 - 5.4
y = 1.6 pounds
Therefore, Jacob should buy approximately 2.7 pounds of meat and 1.6 pounds of cheese. The minimum cost can be calculated by substituting these values into the cost function:
Cost = 3.20(2.7) + 4.50(1.6) = $15.20
Hence, Jacob's minimum cost is $15.20.
Learn more about cost function here:
https://brainly.com/question/29583181
#SPJ11
Use partial fractions to rewrite OA+B=-7 A+B= -17 O A + B = 17 O A + B = 22 A+B=7 O A + B = −22 7x+93 x² +12x+27 A в as 43 - Bg. Then x+3 x+9
The partial fraction decomposition of (7x + 93)/(x² + 12x + 27) is: (7x + 93)/(x² + 12x + 27) = 12/(x + 3) - 5/(x + 9)
To rewrite the expression (7x + 93)/(x² + 12x + 27) using partial fractions, we need to decompose it into two fractions with denominators (x + 3) and (x + 9).
Let's start by expressing the given equation as the sum of two fractions:
(7x + 93)/(x² + 12x + 27) = A/(x + 3) + B/(x + 9)
To find the values of A and B, we can multiply both sides of the equation by the common denominator (x + 3)(x + 9):
(7x + 93) = A(x + 9) + B(x + 3)
Expanding the equation:
7x + 93 = Ax + 9A + Bx + 3B
Now, we can equate the coefficients of like terms on both sides of the equation:
7x + 93 = (A + B)x + (9A + 3B)
By equating the coefficients, we get the following system of equations:
A + B = 7 (coefficient of x)
9A + 3B = 93 (constant term)
Solving this system of equations will give us the values of A and B.
Multiplying the first equation by 3, we get:
3A + 3B = 21
Subtracting this equation from the second equation, we have:
9A + 3B - (3A + 3B) = 93 - 21
6A = 72
A = 12
Substituting the value of A back into the first equation, we can find B:
12 + B = 7
B = -5
Therefore, the partial fraction decomposition of (7x + 93)/(x² + 12x + 27) is:
(7x + 93)/(x² + 12x + 27) = 12/(x + 3) - 5/(x + 9)
Learn more about partial fractions
https://brainly.com/question/30780590
#SPJ11
Therefore, the expression (7x + 93) / (x² + 12x + 27) can be rewritten as (43 - 5) / (x + 3)(x + 9), or simply 38 / (x + 3)(x + 9) for the partial fraction.
To rewrite the given equations using partial fractions, we need to decompose the rational expression into simpler fractions. Let's work through it step by step.
OA + B = -7
A + B = -17
OA + B = 17
OA + B = 22
A + B = 7
OA + B = -22
To begin, we'll solve equations 2 and 5 simultaneously to find the values of A and B:
(2) A + B = -17
(5) A + B = 7
By subtracting equation (5) from equation (2), we get:
(-17) - 7 = -17 - 7
A + B - A - B = -24
0 = -24
This indicates that the system of equations is inconsistent, meaning there is no solution that satisfies all the given equations. Therefore, it's not possible to rewrite the equations using partial fractions in this case.
Moving on to the next part of your question, you provided an expression:
(7x + 93) / (x² + 12x + 27)
We want to express this in the form of (43 - B) / (x + 3)(x + 9).
To find the values of A and B, we'll perform partial fraction decomposition. We start by factoring the denominator:
x² + 12x + 27 = (x + 3)(x + 9)
Next, we express the given expression as the sum of two fractions with the common denominator:
(7x + 93) / (x + 3)(x + 9) = A / (x + 3) + B / (x + 9)
To determine the values of A and B, we multiply through by the common denominator:
7x + 93 = A(x + 9) + B(x + 3)
Expanding and collecting like terms:
7x + 93 = (A + B)x + 9A + 3B
Since the equation must hold for all values of x, the coefficients of corresponding powers of x on both sides must be equal. Therefore, we have the following system of equations:
A + B = 7 (coefficient of x)
9A + 3B = 93 (constant term)
We can solve this system of equations to find the values of A and B. By multiplying the first equation by 3, we get:
3A + 3B = 21
Subtracting this equation from the second equation, we have:
9A + 3B - (3A + 3B) = 93 - 21
6A = 72
A = 12
Substituting the value of A back into the first equation:
12 + B = 7
B = -5
Therefore, the expression (7x + 93) / (x² + 12x + 27) can be rewritten as (43 - 5) / (x + 3)(x + 9), or simply 38 / (x + 3)(x + 9).
To know more about expression:
https://brainly.com/question/29652375
#SPJ4
The function f(x) satisfies f(1) = 5, f(3) = 7, and f(5) = 9. Let P2(x) be LAGRANGE interpolation polynomial of degree 2 which passes through the given points on the graph of f(x). Choose the correct formula of L2,1(x). Select one: OL2,1 (x) = (x-3)(x-5) (1-3)(1-5) (x-1)(x-5) OL₂,1(x) = (3-1)(3-5) (x-1)(x-3) O L2,1 (x) = (5-1)(5-3) (x-3)(x-5) O L2.1(x) = (1-3)(5-3)
To find the correct formula for L2,1(x), we need to determine the Lagrange interpolation polynomial that passes through the given points (1, 5), (3, 7), and (5, 9).
The formula for Lagrange interpolation polynomial of degree 2 is given by:
[tex]\[ L2,1(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \cdot y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \cdot y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} \cdot y_3 \][/tex]
where [tex](x_i, y_i)[/tex] are the given points.
Substituting the given values, we have:
[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} \cdot 5 + \frac{(x-1)(x-5)}{(3-1)(3-5)} \cdot 7 + \frac{(x-1)(x-3)}{(5-1)(5-3)} \cdot 9 \][/tex]
Simplifying the expression further, we get:
[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]
Therefore, the correct formula for L2,1(x) is:
[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]
To know more about Formula visit-
brainly.com/question/31062578
#SPJ11
A rumor spreads in a college dormitory according to the model dR R = 0.5R (1- - dt 120 where t is time in hours. Only 2 people knew the rumor to start with. Using the Improved Euler's method approximate how many people in the dormitory have heard the rumor after 3 hours using a step size of 1?
The number of people who have heard the rumor after 3 hours of using Improved Euler's method with a step size of 1 is R(3).
The Improved Euler's method is a numerical approximation technique used to solve differential equations. It involves taking small steps and updating the solution at each step based on the slope at that point.
To approximate the number of people who have heard the rumor after 3 hours, we start with the initial condition R(0) = 2 (since only 2 people knew the rumor to start with) and use the Improved Euler's method with a step size of 1.
Let's perform the calculation step by step:
At t = 0, R(0) = 2 (given initial condition)
Using the Improved Euler's method:
k1 = 0.5 * R(0) * (1 - R(0)/120) = 0.5 * 2 * (1 - 2/120) = 0.0167
k2 = 0.5 * (R(0) + 1 * k1) * (1 - (R(0) + 1 * k1)/120) = 0.5 * (2 + 1 * 0.0167) * (1 - (2 + 1 * 0.0167)/120) = 0.0166
Approximate value of R(1) = R(0) + 1 * k2 = 2 + 1 * 0.0166 = 2.0166
Similarly, we can continue this process for t = 2, 3, and so on.
For t = 3, the approximate value of R(3) represents the number of people who have heard the rumor after 3 hours.
Learn more about Improved Euler's method here:
https://brainly.com/question/30860703
#SPJ11
You will begin with a relatively standard calculation Consider a concave spherical mirror with a radius of curvature equal to 60.0 centimeters. An object 6 00 centimeters tall is placed along the axis of the mirror, 45.0 centimeters from the mirror. You are to find the location and height of the image. Part G What is the magnification n?. Part J What is the value of s' obtained from this new equation? Express your answer in terms of s.
The magnification n can be found by using the formula n = -s'/s, where s' is the image distance and s is the object distance. The value of s' obtained from this new equation can be found by rearranging the formula to s' = -ns.
To find the magnification n, we can use the formula n = -s'/s, where s' is the image distance and s is the object distance. In this case, the object is placed 45.0 centimeters from the mirror, so s = 45.0 cm. The magnification can be found by calculating the ratio of the image distance to the object distance. By rearranging the formula, we get n = -s'/s.
To find the value of s' obtained from this new equation, we can rearrange the formula n = -s'/s to solve for s'. This gives us s' = -ns. By substituting the value of n calculated earlier, we can find the value of s'. The negative sign indicates that the image is inverted.
Using the given values, we can now calculate the magnification and the value of s'. Plugging in s = 45.0 cm, we find that s' = -ns = -(2/3)(45.0 cm) = -30.0 cm. This means that the image is located 30.0 centimeters from the mirror and is inverted compared to the object.
To know more about Image visit.
https://brainly.com/question/30725545
#SPJ11
Solve the linear system of equations. In addition, graph the two lines corresponding to the two equations in a single coordinate system and use your graph to explain your solution. x - y = 4 X- - 2y = 0 ... Select the correct choice below and, if necessary, fill in any answer boxes to complete your answer. A. There is one solution, x = 8 and y = 4. (Type integers or simplified fractions.) OB. The solution is {(x,y): x= and y=t, tER}. (Type an expression using t as the variable.) OC. There is no solution. Use the graphing tool to graph the system. Click to enlarge graph
The linear system of equations is inconsistent, meaning there is no solution. This can be determined by graphing the two lines corresponding to the equations and observing that they do not intersect. The correct choice is OC: There is no solution.
To solve the linear system of equations, we can rewrite them in the form of y = mx + b, where m is the slope and b is the y-intercept. The given equations are:
x - y = 4 ---> y = x - 4
x - 2y = 0 ---> y = (1/2)x
By comparing the slopes and y-intercepts, we can see that the lines have different slopes and different y-intercepts. This means they are not parallel but rather they are non-parallel lines.
To further analyze the system, we can graph the two lines on a coordinate system. By plotting the points (0, -4) and (4, 0) for the first equation, and the points (0, 0) and (2, 1) for the second equation, we can observe that the lines are parallel and will never intersect.
Therefore, there is no common point (x, y) that satisfies both equations simultaneously, indicating that the system is inconsistent. Hence, the correct choice is OC: There is no solution.
Learn more about linear system of equations here:
https://brainly.com/question/20379472
#SPJ11
in the exercise below, the initial substitution of xea yields the form 0/0. Look for ways to simplify the function algebraically, or use a table and/or graph to determine the limit. When necessary, state that the limit does not exist +7X-8 8-1 -OA FOR- OC 0 OD. Does not exist
The limit of the function as x approaches 1 is 9/2 (Option A)
lim (x → 1) [tex][(x^2 + 7x - 8) / (x^2 - 1)][/tex] =9/2.
To find the limit of the function as x approaches 1, we can simplify the expression algebraically.
First, let's substitute x = 1 into the expression:
lim (x → 1)[tex][(x^2 + 7x - 8) / (x^2 - 1)][/tex]
Plugging in x = 1:
[tex](1^2 + 7(1) - 8) / (1^2 - 1)[/tex]
= (1 + 7 - 8) / (1 - 1)
= 0 / 0
As you correctly mentioned, we obtain an indeterminate form of 0/0. This indicates that further algebraic simplification is required or that we need to use other techniques to determine the limit.
Let's simplify the expression by factoring the numerator and denominator:
lim (x → 1) [(x + 8)(x - 1) / (x + 1)(x - 1)]
Now, we can cancel out the common factor of (x - 1):
lim (x → 1) [(x + 8) / (x + 1)]
Plugging in x = 1:
(1 + 8) / (1 + 1)
= 9 / 2
Therefore, the limit of the function as x approaches 1 is 9/2, which corresponds to option A.
Learn more about limit here: https://brainly.com/question/30782259
#SPJ11
The complete question is:
In the exercise below, the initial substitution of x=a yields the form 0/0. Look for ways to simplify the function algebraically, or use a table and/or graph to determine the limit. When necessary, state that the limit does not exist lim (x → 1) [tex][(x^2 + 7x - 8) / (x^2 - 1)][/tex] is -A .9/2 ,B -7/2, C. O, D. limitDoes not exist
b) V = (y² – x, z² + y, x − 3z) Compute F(V) S(0,3)
To compute F(V) at the point S(0,3), where V = (y² – x, z² + y, x − 3z), we substitute the values x = 0, y = 3, and z = 0 into the components of V. This yields the vector F(V) at the given point.
Given V = (y² – x, z² + y, x − 3z) and the point S(0,3), we need to compute F(V) at that point.
Substituting x = 0, y = 3, and z = 0 into the components of V, we have:
V = ((3)² - 0, (0)² + 3, 0 - 3(0))
= (9, 3, 0)
This means that the vector V evaluates to (9, 3, 0) at the point S(0,3).
Now, to compute F(V), we need to apply the transformation F to the vector V. The specific definition of F is not provided in the question. Therefore, without further information about the transformation F, we cannot determine the exact computation of F(V) at the point S(0,3).
In summary, at the point S(0,3), the vector V evaluates to (9, 3, 0). However, the computation of F(V) cannot be determined without the explicit definition of the transformation F.
Learn more about vector here:
https://brainly.com/question/24256726
#SPJ11
Because of job outsourcing, a town predicts that its public school population will decrease at the rate dN -500 = dx √x + 144 where x is the number of years and W is the total school population. If the present population (x = 0) is 6000, what population size is expected in 25 years? X people
The expected population in 25 years will be 5916.7. Given the rate of decrease in school population dN/dx = - 500/√x + 144, Where x is the number of years and N is the total school population.
Given the rate of decrease in school population dN/dx = - 500/√x + 144, Where x is the number of years and N is the total school population.
The initial population at x = 0, N(0) = 6000. Integrating both sides, we get the equation as follows: dN/dx = - 500/√x + 144=> dN/[500(√x + 144)] = - dx => ∫dN/[500(√x + 144)] = - ∫dx
Since the initial population is N(0) = 6000, we can substitute N(0) = 6000, and the interval of integration is from 0 to 25.=> N(t) = 6000 - 500∫[0 to 25]1/√x + 144 dx=> N(t) = 6000 - 1000[(1/12) - (1/10)]=> N(t) = 6000 - 83.3=> N(t) = 5916.7
Answer: Therefore, the expected population in 25 years will be 5916.7.
To know more about population visit: https://brainly.com/question/15889243
#SPJ11
ind the arc length of the given curve on the specified interval. This problem may make use of the formula from the table of integrals in the back of the book. (7 cos(t), 7 sin(t), t), for 0 ≤ t ≤ 2π √ √x² + a² dx = 1²2 [x√x² + a² + a² log(x + √x² + a²)] + C
the arc length of the curve on the specified interval is 2π√50.
The arc length of the curve given by (7 cos(t), 7 sin(t), t) on the interval 0 ≤ t ≤ 2π can be found using the integration formula:
∫ √(dx/dt)² + (dy/dt)² + (dz/dt)² dt
In this case, dx/dt = -7 sin(t), dy/dt = 7 cos(t), and dz/dt = 1. Substituting these values into the formula, we get:
∫ √((-7 sin(t))² + (7 cos(t))² + 1²) dt
Simplifying the expression inside the square root:
∫ √(49 sin²(t) + 49 cos²(t) + 1) dt
∫ √(49 (sin²(t) + cos²(t)) + 1) dt
∫ √(49 + 1) dt
∫ √50 dt
Integrating, we get:
∫ √50 dt = √50t + C
Evaluating this expression on the interval 0 ≤ t ≤ 2π:
√50(2π) - √50(0) = 2π√50
Therefore, the arc length of the curve on the specified interval is 2π√50.
learn more about integration here:
https://brainly.com/question/31744185
#SPJ11
Evaluate the integral: S dz z√/121+z² If you are using tables to complete-write down the number of the rule and the rule in your work.
Evaluating the integral using power rule and substitution gives:
[tex](121 + z^{2}) ^{\frac{1}{2} } + C[/tex]
How to evaluate Integrals?We want to evaluate the integral given as:
[tex]\int\limits {\frac{z}{\sqrt{121 + z^{2} } } } \, dz[/tex]
We can use a substitution.
Let's set u = 121 + z²
Thus:
du = 2z dz
Thus:
z*dz = ¹/₂du
Now, let's substitute these expressions into the integral:
[tex]\int\limits {\frac{z}{\sqrt{121 + z^{2} } } } \, dz = \int\limits {\frac{1}{2} } \, \frac{du}{\sqrt{u} }[/tex]
To simplify the expression further, we can rewrite as:
[tex]\int\limits {\frac{1}{2} } \, u^{-\frac{1}{2}} {du}[/tex]
Using the power rule for integration, we finally have:
[tex]u^{\frac{1}{2}} + C[/tex]
Plugging in 121 + z² for u gives:
[tex](121 + z^{2}) ^{\frac{1}{2} } + C[/tex]
Read more about Evaluating Integrals at: https://brainly.com/question/22008756
#SPJ4
: A charity organization orders shirts from a shirt design company to create custom shirts for charity events. The price for creating and printing & many shirts is given by the following function: P(n)= 50+ 7.5s if 0≤ $ ≤ 90 140 +6.58 if 90 < 8 Q1.1 Part a) 5 Points How much is the cost for the charity to order 150 shirts? Enter your answer here Save Answer Q1.2 Part b) 5 Points How much is the cost for the charity to order 90 shirts? Enter your answer here Save Answer
The cost for the charity to order 150 shirts is $1,127, and for the charity to order 90 shirts is $146.58.
a) Given function is:
P(n)= 50+ 7.5s if
0≤ $ ≤ 90 140 +6.58
if 90 < 8
The cost for the charity to order 150 shirts will be calculated using the given function,
P(n)= 50+ 7.5s when n > 90. Thus, P(n)= 140 +6.58 is used when the number of shirts exceeds 90.
P(150) = 140 +6.58(150)
= 140 + 987
= $1,127 (rounded to the nearest dollar)
Therefore, the cost for the charity to order 150 shirts is $1,127.
In the given problem, a charity organization orders shirts from a shirt design company to create custom shirts for charity events. The function gives the price for creating and printing many shirts.
P(n)= 50+ 7.5s if 0 ≤ $ ≤ 90 and 140 +6.58 if 90 < 8. It can be noted that
P(n)= 50+ 7.5s if 0 ≤ $ ≤ 90 is the price per shirt for orders less than or equal to 90.
P(n)= 140 +6.58 if 90 < 8 is the price per shirt for orders over 90.
Thus, we use the second part of the given function.
P(150) = 140 +6.58(150)
= 140 + 987
= $1,127 (rounded to the nearest dollar).
Therefore, the cost for the charity to order 150 shirts is $1,127.
To know more about the cost, visit:
brainly.com/question/29027167
#SPJ11
Finance. Suppose that $3,900 is invested at 4.2% annual interest rate, compounded monthly. How much money will be in the account in (A) 11 months? (B) 14 years
a. the amount in the account after 11 months is $4,056.45.
b. the amount in the account after 14 years is $7,089.88.
Given data:
Principal amount (P) = $3,900
Annual interest rate (r) = 4.2% per annum
Number of times the interest is compounded in a year (n) = 12 (since the interest is compounded monthly)
Let's first solve for (A)
How much money will be in the account in 11 months?
Time period (t) = 11/12 year (since the interest is compounded monthly)
We need to calculate the amount (A) after 11 months.
To find:
Amount (A) after 11 months using the formula A = [tex]P(1 + r/n)^{(n*t)}[/tex]
where P = Principal amount, r = annual interest rate, n = number of times the interest is compounded in a year, and t = time period.
A = [tex]3900(1 + 0.042/12)^{(12*(11/12))}[/tex]
A = [tex]3900(1.0035)^{11}[/tex]
A = $4,056.45
Next, let's solve for (B)
How much money will be in the account in 14 years?
Time period (t) = 14 years
We need to calculate the amount (A) after 14 years.
To find:
Amount (A) after 14 years using the formula A = [tex]P(1 + r/n)^{(n*t)}[/tex]
where P = Principal amount, r = annual interest rate, n = number of times the interest is compounded in a year, and t = time period.
A = [tex]3900(1 + 0.042/12)^{(12*14)}[/tex]
A =[tex]3900(1.0035)^{168}[/tex]
A = $7,089.88
To learn more about Principal amount, refer:-
https://brainly.com/question/11566183
#SPJ11
Which of the following is an eigenvector of A = 1 -2 1 1-2 0 1 ܘ ܝܕ ܐ ܝܕ 1 ܗ ܕ 0 1-2 1 0 1
The eigenvectors of matrix A are as follows:x1 = [2, 0, 1]Tx2 = [-3, -2, 1]Tx3 = [5, -1, 1]TWe can see that all three eigenvectors are the possible solutions and it satisfies the equation Ax = λx. Therefore, all three eigenvectors are correct.
We have been given a matrix A that is as follows: A = 1 -2 1 1 -2 0 1 0 1The general formula for eigenvector: Ax = λxWhere A is the matrix, x is a non-zero vector, and λ is a scalar (which may be either real or complex).
We can easily find eigenvectors by calculating the eigenvectors for the given matrix A. For that, we need to find the eigenvalues. For this matrix, the eigenvalues are as follows: 0, -1, and -2.So, we will put these eigenvalues into the formula: (A − λI)x = 0. Now we will solve this equation for each eigenvalue (λ).
By solving these equations, we get the eigenvectors of matrix A.1st Eigenvalue (λ1 = 0) (A - λ1I)x = (A - 0I)x = Ax = 0To solve this equation, we put the matrix as follows: 1 -2 1 1 -2 0 1 0 1 ۞۞۞ ۞۞۞ ۞۞۞We perform row operations and get the matrix in row-echelon form as follows:1 -2 0 0 1 0 0 0 0Now, we can write this equation as follows:x1 - 2x2 = 0x2 = 0x1 = 2x2 = 2So, the eigenvector for λ1 is as follows: x = [2, 0, 1]T2nd Eigenvalue (λ2 = -1) (A - λ2I)x = (A + I)x = 0To solve this equation, we put the matrix as follows: 2 -2 1 1 -1 0 1 0 2 ۞۞۞ ۞۞۞ ۞۞۞
We perform row operations and get the matrix in row-echelon form as follows:1 0 3 0 1 2 0 0 0Now, we can write this equation as follows:x1 + 3x3 = 0x2 + 2x3 = 0x3 = 1x3 = 1x2 = -2x1 = -3So, the eigenvector for λ2 is as follows: x = [-3, -2, 1]T3rd Eigenvalue (λ3 = -2) (A - λ3I)x = (A + 2I)x = 0To solve this equation, we put the matrix as follows: 3 -2 1 1 -4 0 1 0 3 ۞۞۞ ۞۞۞ ۞۞۞We perform row operations and get the matrix in row-echelon form as follows:1 0 -5 0 1 1 0 0 0Now, we can write this equation as follows:x1 - 5x3 = 0x2 + x3 = 0x3 = 1x3 = 1x2 = -1x1 = 5So, the eigenvector for λ3 is as follows: x = [5, -1, 1]T
So, the eigenvectors of matrix A are as follows:x1 = [2, 0, 1]Tx2 = [-3, -2, 1]Tx3 = [5, -1, 1]TWe can see that all three eigenvectors are the possible solutions and it satisfies the equation Ax = λx. Therefore, all three eigenvectors are correct.
to know more about eigenvectors visit :
https://brainly.com/question/31043286
#SPJ11
The eigenvector corresponding to eigenvalue 1 is given by,
[tex]$\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]
In order to find the eigenvector of the given matrix A, we need to find the eigenvalues of A first.
Let λ be the eigenvalue of matrix A.
Then, we solve the equation (A - λI)x = 0
where I is the identity matrix and x is the eigenvector corresponding to λ.
Now,
A = [tex]$\begin{pmatrix}1&-2&1\\1&-2&0\\1&0&1\end{pmatrix}$[/tex]
Therefore, (A - λI)x = 0 will be
[tex]$\begin{pmatrix}1&-2&1\\1&-2&0\\1&0&1\end{pmatrix}$ - $\begin{pmatrix}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}1-\lambda&-2&1\\1&-2-\lambda&0\\1&0&1-\lambda\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]
The determinant of (A - λI) will be
[tex]$(1 - \lambda)(\lambda^2 + 4\lambda + 3) = 0$[/tex]
Therefore, eigenvalues of matrix A are λ1 = 1,
λ2 = -1,
λ3 = -3.
To find the eigenvector corresponding to each eigenvalue, substitute the value of λ in (A - λI)x = 0 and solve for x.
Let's find the eigenvector corresponding to eigenvalue 1. Hence,
λ = 1.
[tex]$\begin{pmatrix}0&-2&1\\1&-3&0\\1&0&0\end{pmatrix}$ $\begin{pmatrix}x\\y\\z\end{pmatrix}$ = $\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]
The above equation can be rewritten as,
-2y+z=0 ----------(1)
x-3y=0 --------- (2)
x=0 ----------- (3)
From equation (3), we get the value of x = 0.
Using this value in equation (2), we get y = 0.
Substituting x = 0 and y = 0 in equation (1), we get z = 0.
Therefore, the eigenvector corresponding to eigenvalue 1 is given by
[tex]$\begin{pmatrix}0\\0\\0\end{pmatrix}$[/tex]
To know more about eigenvector, visit:
https://brainly.com/question/32593196
#SPJ11
f(x) = x^2+3x+2/ x^2 - x - 2 Find the asymptotes and intercepts for the graph of f, and then use this information and a sign chart for f(x) to sketch the graph of f.
To sketch the graph of f(x) = (x^2 + 3x + 2)/(x^2 - x - 2), we need to determine the asymptotes, intercepts, and create a sign chart for f(x).
To begin, let's find the asymptotes and intercepts:
1. Vertical Asymptotes:
Vertical asymptotes occur when the denominator of the fraction is equal to zero. So, we set the denominator x^2 - x - 2 = 0 and solve for x:
(x - 2)(x + 1) = 0
x = 2 or x = -1
Therefore, we have two vertical asymptotes at x = 2 and x = -1.
2. Horizontal Asymptote:
To find the horizontal asymptote, we examine the degrees of the numerator and denominator. Since both have the same degree (2), we divide the leading coefficients. The horizontal asymptote is given by the ratio of the leading coefficients:
y = 1/1 = 1
So, we have a horizontal asymptote at y = 1.
3. x-intercepts:
To find the x-intercepts, we set the numerator equal to zero and solve for x:
x^2 + 3x + 2 = 0
(x + 2)(x + 1) = 0
x = -2 or x = -1
Hence, the x-intercepts are at x = -2 and x = -1.
Now, let's create a sign chart for f(x):
We consider three intervals based on the vertical asymptotes (-∞, -1), (-1, 2), and (2, ∞). We choose test points within each interval and evaluate the function's sign.
For example, if we choose x = -2 (in the interval (-∞, -1)):
f(-2) = (-2^2 + 3(-2) + 2)/(-2^2 - (-2) - 2) = (-2 - 6 + 2)/(-4 + 2 - 2) = (-6)/(-4) = 3/2 > 0
By evaluating the function at other test points within each interval, we can complete the sign chart.
To learn more about asymptotes Click Here: brainly.com/question/32503997
#SPJ11
.
A pair of shoes has been discounted by 12%. If the sale price is $120, what was the original price of the shoes? [2] (b) The mass of the proton is 1.6726 x 10-27 kg and the mass of the electron is 9.1095 x 10-31 kg. Calculate the ratio of the mass of the proton to the mass of the electron. Write your answer in scientific notation correct to 3 significant figures. [2] (c) Gavin has 50-cent, one-dollar and two-dollar coins in the ratio of 8:1:2, respectively. If 30 of Gavin's coins are two-dollar, how many 50-cent and one-dollar coins does Gavin have? [2] (d) A model city has a scale ratio of 1: 1000. Find the actual height in meters of a building that has a scaled height of 8 cm. [2] (e) A house rent is divided among Akhil, Bob and Carlos in the ratio of 3:7:6. If Akhil's [2] share is $150, calculate the other shares.
The correct answer is Bob's share is approximately $350 and Carlos's share is approximately $300.
(a) To find the original price of the shoes, we can use the fact that the sale price is 88% of the original price (100% - 12% discount).
Let's denote the original price as x.
The equation can be set up as:
0.88x = $120
To find x, we divide both sides of the equation by 0.88:
x = $120 / 0.88
Using a calculator, we find:
x ≈ $136.36
Therefore, the original price of the shoes was approximately $136.36.
(b) To calculate the ratio of the mass of the proton to the mass of theelectron, we divide the mass of the proton by the mass of the electron.
Mass of proton: 1.6726 x 10^(-27) kg
Mass of electron: 9.1095 x 10^(-31) kg
Ratio = Mass of proton / Mass of electron
Ratio = (1.6726 x 10^(-27)) / (9.1095 x 10^(-31))
Performing the division, we get:
Ratio ≈ 1837.58
Therefore, the ratio of the mass of the proton to the mass of the electron is approximately 1837.58.
(c) Let's assume the common ratio of the coins is x. Then, we can set up the equation:
8x + x + 2x = 30
Combining like terms:11x = 30
Dividing both sides by 11:x = 30 / 11
Since the ratio of 50-cent, one-dollar, and two-dollar coins is 8:1:2, we can multiply the value of x by the respective ratios to find the number of each coin:
50-cent coins: 8x = 8 * (30 / 11)
one-dollar coins: 1x = 1 * (30 / 11)
Calculating the values:
50-cent coins ≈ 21.82
one-dollar coins ≈ 2.73
Since we cannot have fractional coins, we round the values:
50-cent coins ≈ 22
one-dollar coins ≈ 3
Therefore, Gavin has approximately 22 fifty-cent coins and 3 one-dollar coins.
(d) The scale ratio of the model city is 1:1000. This means that 1 cm on the model represents 1000 cm (or 10 meters) in actuality.
Given that the scaled height of the building is 8 cm, we can multiply it by the scale ratio to find the actual height:
Actual height = Scaled height * Scale ratio
Actual height = 8 cm * 10 meters/cm
Calculating the value:
Actual height = 80 meters
Therefore, the actual height of the building is 80 meters.
(e) The ratio of Akhil's share to the total share is 3:16 (3 + 7 + 6 = 16).
Since Akhil's share is $150, we can calculate the total share using the ratio:
Total share = (Total amount / Akhil's share) * Akhil's share
Total share = (16 / 3) * $150
Calculating the value:
Total share ≈ $800
To find Bob's share, we can calculate it using the ratio:
Bob's share = (Bob's ratio / Total ratio) * Total share
Bob's share = (7 / 16) * $800
Calculating the value:
Bob's share ≈ $350
To find Carlos's share, we can calculate it using the ratio:
Carlos's share = (Carlos's ratio / Total ratio) * Total share
Carlos's share = (6 / 16) * $800
Calculating the value:
Carlos's share ≈ $300
Therefore, Bob's share is approximately $350 and Carlos's share is approximately $300.
Learn more about profit and loss here:
https://brainly.com/question/26483369
#SPJ11
In the diagram below, how many different paths from A to B are possible if you can only move forward and down? A 4 B 3. A band consisting of 3 musicians must include at least 2 guitar players. If 7 pianists and 5 guitar players are trying out for the band, then the maximum number of ways that the band can be selected is 50₂ +503 C₂ 7C1+5C3 C₂ 7C15C17C2+7C3 D5C₂+50₁ +5Co
There are 35 different paths from A to B in the diagram. This can be calculated using the multinomial rule, which states that the number of possible arrangements of n objects, where there are r1 objects of type A, r2 objects of type B, and so on, is given by:
n! / r1! * r2! * ...
In this case, we have n = 7 objects (the 4 horizontal moves and the 3 vertical moves), r1 = 4 objects of type A (the horizontal moves), and r2 = 3 objects of type B (the vertical moves). So, the number of paths is:
7! / 4! * 3! = 35
The multinomial rule can be used to calculate the number of possible arrangements of any number of objects. In this case, we have 7 objects, which we can arrange in 7! ways. However, some of these arrangements are the same, since we can move the objects around without changing the path. For example, the path AABB is the same as the path BABA. So, we need to divide 7! by the number of ways that we can arrange the objects without changing the path.
The number of ways that we can arrange 4 objects of type A and 3 objects of type B is 7! / 4! * 3!. This gives us 35 possible paths from A to B.
To learn more about multinomial rule click here : brainly.com/question/32616196
#SPJ11
A trader buys some goods for Rs 150. if the overhead expenses be 12% of the cost price, then at what price should it be sold to earn 10% profit?
Answer:
Rs.184.80
Step-by-step explanation:
Total cp =(cp + overhead,expenses)
Total cp =150 + 12% of 150
Total,cp = 150 + 12/100 × 150 = Rs 168
Given that , gain = 10%
Therefore, Sp = 110/100 × 168 = Rs 184.80