Suppose we want to choose 6 colors, without replacement, from 14 distinct colors. (a) How many ways can this be done, if the order of the choices matters? (b) How many ways can this be done, if the order of the choices does not matter?

Answers

Answer 1

Answer:

(a) 2,162,160

(b) 3,003

Step-by-step explanation:

(a) order matters

You can choose from 14 for the first pick. Then you have 13 left for the second pick. Then you have 12 left for the third pick. Keep going until you have 9 left for the 6th pick. The number when order matters is:

total = 14 * 13 * 12 * 11 * 10 * 9 = 2,162,160

(b) Order does not matter

Start with the same number as above for picking 6 out of 14. Since order does not matter, we divide by the number of ways you can arrange 6 items.

Since there are 6! ways of arranging 6 items,

total = 2,162,160/6! = 3,003

Answer 2

The number of ways when the order matters are 121080960.

The number of ways when order does not matters are 3003.

Given,

Choose 6 colors, without replacement, from 14 distinct colors.

We have to find:

- How many ways can this be done, if the order of the choices matters.

- How many ways can this be done if the order of the choices does not matter.

What are permutation and combination?

We use permutation when the order of the arrangements matters.

It is given by:

[tex]^ nP_r[/tex] = n! / r!

We use combination when order does not matter.

It is given by:

[tex]^nC_{r}[/tex] = n! / r! (n-r)!

Find the number of ways when order matters.

We have,

n = 14 and r = 6

[tex]^{14}P_{6}[/tex]

= 14! / 6!

= (14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6!) / 6!

= 4 x 13 x 12 x 11 x 10 x 9 x 8 x 7

= 121080960

Find the number of ways when order does not matter.

We have,

n = 14 and r = 6

[tex]^{14}C_{6}[/tex]

= 14! / 6! 8!

= 14 x 13 x 12 x 11 x 10 x 9 / 6 x 5 x 4 x 3 x 2

= 7 x 13 x 11  x 3  

= 3003

Thus,

The number of ways when the order matters are 121080960.

The number of ways when order does not matters are 3003.

Learn more about combination here:

https://brainly.com/question/28134115

#SPJ2


Related Questions

The height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. When graphed, the function gives a line with a slope of −0.4. See the figure below. Suppose that the height of the candle after 11 hours is 16.6 centimeters. What was the height of the candle after 6 hours?

Answers

Answer:

height of the candle after 6 hours= 18.6 centimeters

Step-by-step explanation:

the function gives a line with a slope of −0.4.

the height of the candle after 11 hours is 16.6 centimeters.

after 6 hours, the height will be

But slope= y2-y1/x2-x1

Y2 is the unknown

Y1 = 16.6

X1= 11 hours

X2= 6 hours

y2-y1/x2-x1= -0.4

(Y2-16.6)/(6-11)= -0.4

(Y2-16.6)/(-5)= -0.4

(Y2-16.6)= -5( -0.4)

(Y2-16.6)= 2

Y2 = 2+16.6

Y2 = 18.6 centimeters

height of the candle after 6 hours= 18.6 centimeters

In tests of a computer component, it is found that the mean time between failures is 520 hours. A modification is made which is supposed to increase the time between failures. Tests on a random sample of 10 modified components resulted in the following times (in hours) between failures. 518 548 561 523 536 499 538 557 528 563 At the 0.05 significance level, test the claim that for the modified components, the mean time between failures is greater than 520 hours. Use the P-value method of testing hypotheses.
H0:
H1:
Test Statistic:
Critical Value:
Do you reject H0?
Conclusion:
If you were told that the p-value for the test statistic for this hypothesis test is 0.014, would you reach the same decision that you made for the Rejection of H0 and the conclusion as above?

Answers

Answer:

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Step-by-step explanation:

Mean x`= 518 +548 +561 +523 + 536 + 499+  538 + 557+ 528 +563 /10

x`= 537.1

The Variance is  = 20.70

H0 μ≤ 520

Ha μ > 520

Significance level is set at ∝= 0.05

The critical region is t ( with df=9) for a right tailed test is 1.8331

The test statistic under H0 is

t=x`- x/ s/ √n

Which has t distribution with n-1 degrees of freedom which is equal to 9

t=x`- x/ s/ √n

t = 537.1- 520 / 20.7 / √10

t= 17.1 / 20.7/ 3.16227

t= 17.1/ 6.5459

t= 2.6122

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

For the regression equation, Ŷ = +20X + 200 what can be determined about the correlation between X and Y?

Answers

Answer:

There is a positive correlation between X and Y.

Step-by-step explanation:

The estimated regression equation is:

[tex]\hat Y=20X+200[/tex]

The general form of a regression equation is:

[tex]\hat Y=b_{yx}X+a[/tex]

Here, [tex]b_{yx}[/tex] is the slope of a line of Y on X.

The formula of slope is:

[tex]b_{yx}=r(X,Y)\cdot \frac{\sigma_{y}}{\sigma_{x}}[/tex]

Here r (X, Y) is the correlation coefficient between X and Y.

The correlation coefficient is directly related to the slope.

And since the standard deviations are always positive, the sign of the slope is dependent upon the sign of the correlation coefficient.

Here the slope is positive.

This implies that the correlation coefficient must have been a positive values.

Thus, it can be concluded that there is a positive correlation between X and Y.

Which of the following units is incommensurable with kilograms

Answers

Answer:

All units of measurement that are not based on or do not measure mass or weight and volume are incommensurable with kilograms.

Step-by-step explanation:

A measure unit is said to be incommensurable with another if it does not have the same measurement basis with the other measure unit.  For example, a measure in time cannot be measured in kilograms because time is measured in hours, minutes, seconds, days, etc.  But, if a measurement base can be applied to two or more measurement units, then the measurement units are commensurable with the measurement base.

What is the length of the arc on a circle with radius 16 inches intercepted by a 45° angle?

Answers

Find the circumference:

Circumference = 2 x PI x radius:

Circumference = 2 x 3.14 x 16 = 100.48 inches.

A full circle is 360 degrees, a 45 degree angle is 1/8 of a full circle.

Arc length = 100.48 / 8 = 12.56 inches.

Let A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%. Lauren says that both events are independent because P(A) + P(B) = P(A and B) Shawn says that both events are not independent because P(A)P(B) ≠ P(A and B) Which statement is an accurate statement? Lauren is incorrect because the sum of the two events is not equal to the probability of both events occurring. Shawn is incorrect because the product of the two events is equal to the probability of both events occurring. Lauren is correct because two events are independent if the probability of both occurring is equal to the sum of the probabilities of the two events. Shawn is correct because two events are independent if the probability of both occurring is not equal to the product of the probabilities of the two events.

Answers

Answer:

Shawn is correct because two events are independent if the probability of both occurring is equal to the product of the probabilities of the two events.

Step-by-step explanation:

We are given that A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%.

Now, it is stated that the two events are independent only if the product of the probability of the happening of each event is equal to the probability of occurring of both events.

This means that the two events A and B are independent if;

P(A) [tex]\times[/tex] P(B) = P(A and B)

Here, P(A) = 0.58, P(B) = 0.36, and P(A and B) = 0.94

So, P(A) [tex]\times[/tex] P(B) [tex]\neq[/tex] P(A and B)

      0.58 [tex]\times[/tex] 0.36 [tex]\neq[/tex] 0.94

This shows that event a and event B are not independent.

So, the Shawn statement that both events are not independent because P(A)P(B) ≠ P(A and B) is correct.

Answer:

Shawn is correct

Step-by-step explanation:

A study was conducted to determine whether magnets were effective in treating pain. The values represent measurements of pain using the visual analog scale. Assume that both samples are independent simple random samples from populations having normal distributions. Use a significance level to test the claim that those given a sham treatment have pain reductions that vary more than the pain reductions for those treated with magnets.
n xbar s
Sham 20 0.41 1.26
Magnet 20 0.46 0.93

Answers

Answer and Step-by-step explanation: The null and alternative hypothesis for this test are:

[tex]H_{0}: s_{1}^{2} = s_{2}^{2}[/tex]

[tex]H_{a}: s_{1}^{2} > s_{2}^{2}[/tex]

To test it, use F-test statistics and compare variances of each treatment.

Calculate F-value:

[tex]F=\frac{s^{2}_{1}}{s^{2}_{2}}[/tex]

[tex]F=\frac{1.26^{2}}{0.93^{2}}[/tex]

[tex]F=\frac{1.5876}{0.8649}[/tex]

F = 1.8356

The critical value of F is given by a F-distribution table with:

degree of freedom (row): 20 - 1 = 19

degree of freedom (column): 20 - 1 = 19

And a significance level: α = 0.05

[tex]F_{critical}[/tex] = 2.2341

Comparing both values of F:

1.856 < 2.2341

i.e. F-value calculated is less than F-value of the table.

Therefore, failed to reject [tex]H_{0}[/tex], meaning there is no sufficient data to support the claim that sham treatment have pain reductions which vary more than for those using magnets treatment.

Please answer this correctly without making mistakes

Answers

Answer:

1/2 mi

Step-by-step explanation:

Fairfax to Greenwood is equal to one mile

Now think of it as an equation and substitute 1/2 for fairfax and x for greenwood

1/2 + x = 1

This means that x = 1/2

Because of this from Arcadia to Greenwood it is 1/2 mi

Convert 6 feet to miles ( round five decimal places

Answers

Answer:

0.00114

Step-by-step explanation:

Divide length value by 5280

i will rate you brainliest

Answers

Answer:

(3x+11)/ (5x-9)

Step-by-step explanation:

The numerator is what is on the top of the bar in the middle

(3x+11)/ (5x-9)

Answer:

[tex]\large \boxed{\mathrm{Option \ B}}[/tex]

Step-by-step explanation:

The numerator of a fraction is the top section of the fraction.

The efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft2). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y).

Temp. 174 176 177 178 178 179 180 181
Ratio 0.86 1.31 1.42 1.01 1.15 1.02 1.00 1.74
Temp. 184 184 184 184 184 185 185 186
Ratio 1.43 1.70 1.57 2.13 2.25 0.76 1.37 0.94
Temp. 186 186 186 188 188 189 190 192
Ratio 1.85 2.02 2.64 1.53 2.48 2.90 1.79 3.16
(a) Determine the equation of the estimated regression line. (Round all numerical values to five decimal places.)
y =

(b) Calculate a point estimate for true average efficiency ratio when tank temperature is 186. (Round your answer to four decimal places.)


(c) Calculate the values of the residuals from the least squares line for the four observations for which temperature is 186. (Round your answers to four decimal places.)

(186, 0.94)
(186, 1.85)
(186, 2.02)
(186, 2.64)
(d) What proportion of the observed variation in efficiency ratio can be attributed to the simple linear regression relationship between the two variables? (Round your answer to four decimal places.)

Answers

Answer:

Kindly check explanation

Step-by-step explanation:

Given the data:

Temp. 174 176 177 178 178 179 180 181

Ratio 0.86 1.31 1.42 1.01 1.15 1.02 1.00 1.74

Temp. 184 184 184 184 184 185 185 186

Ratio 1.43 1.70 1.57 2.13 2.25 0.76 1.37 0.94

Temp. 186 186 186 188 188 189 190 192

Ratio 1.85 2.02 2.64 1.53 2.48 2.90 1.79 3.16

A)

Using the online linear regression calculator, the lie of best fit which models the data above is :

ŷ = 0.09386X - 15.55523

Where ;

X = independent variable

ŷ = predicted or dependent variable

- 15.55523 = intercept

0.09386 = gradient / slope

B)

Point estimate when tank temperature is 186

ŷ = 0.09386(186) - 15.55523

ŷ = 17.45796 - 15.55523

ŷ = 1.90273

C)

Residual error (y - ŷ), ŷ = 1.90273 when x = 186

(0.94 - 1.90273) = −0.96273

(1.85 - 1.90273) = −0.05273

(2.02 - 1.90273) = 0.11727

(2.64 - 1.90273) = 0.73727

D)

To determine the proportion of observed variation in efficiency ratio, we find the Coefficient of determination R^2, which can be found using the online Coefficient of determination calculator : the r^2 value obtained is 0.4433.

Assume that f(x)=ln(1+x) is the given function and that Pn represents the nth Taylor Polynomial centered at x=0. Find the least integer n for which Pn(0.2) approximates ln(1.2) to within 0.01.

Answers

Answer:

the least integer for n is 2

Step-by-step explanation:

We are given;

f(x) = ln(1+x)

centered at x=0

Pn(0.2)

Error < 0.01

We will use the format;

[[Max(f^(n+1) (c))]/(n + 1)!] × 0.2^(n+1) < 0.01

So;

f(x) = ln(1+x)

First derivative: f'(x) = 1/(x + 1) < 0! = 1

2nd derivative: f"(x) = -1/(x + 1)² < 1! = 1

3rd derivative: f"'(x) = 2/(x + 1)³ < 2! = 2

4th derivative: f""(x) = -6/(x + 1)⁴ < 3! = 6

This follows that;

Max|f^(n+1) (c)| < n!

Thus, error is;

(n!/(n + 1)!) × 0.2^(n + 1) < 0.01

This gives;

(1/(n + 1)) × 0.2^(n + 1) < 0.01

Let's try n = 1

(1/(1 + 1)) × 0.2^(1 + 1) = 0.02

This is greater than 0.01 and so it will not work.

Let's try n = 2

(1/(2 + 1)) × 0.2^(2 + 1) = 0.00267

This is less than 0.01.

So,the least integer for n is 2

In this exercise we have to use the knowledge of Taylor Polynomial to calculate the requested function, this way we will have;

the least integer for n is 2    

The function given in this exercise corresponds to:

[tex]f(x) = ln(1+x)[/tex]

knowing that the x point will be centered on:

[tex]x=0\\Pn(0,2)\\Error < 0.01[/tex]

By rewriting the equation we have to:

[tex][[Max(f^{(n+1)} (c))]/(n + 1)!] *0.2^{(n+1)} < 0.01[/tex]

So doing the derivatives related to the first function given in the exercise we have to:

[tex]f(x) = ln(1+x)[/tex]

First derivative: [tex]f'(x) = 1/(x + 1) < 0! = 1[/tex] 2nd derivative: [tex]f"(x) = -1/(x + 1)^2 < 1! = 1[/tex] 3rd derivative: [tex]f"'(x) = 2/(x + 1)^3 < 2! = 2[/tex] 4th derivative: [tex]f""(x) = -6/(x + 1)^4 < 3! = 6[/tex]

Following this we have to:

[tex]Max|f^{(n+1)} (c)| < n![/tex]

Thus, error is;

[tex](n!/(n + 1)!) * 0.2^{(n + 1)} < 0.01[/tex]

[tex](1/(n + 1))* 0.2^{(n + 1)} < 0.01[/tex]  

Let's try n = 1

[tex](1/(1 + 1)) *0.2^{(1 + 1)} = 0.02[/tex]

This is greater than 0.01 and so it will not work. Let's try n = 2

[tex](1/(2 + 1)) * 0.2^{(2 + 1)} = 0.00267[/tex]

This is less than 0.01. So,the least integer for n is 2.

See more about Taylor polynomial at brainly.com/question/23842376

Solve for x. Question 12 options: A) 8 B) 5 C) 14 D) 10

Answers

Answer:

B) 5

Step-by-step explanation:

Proportions:

8 ⇒ 10

20 ⇒ 5x

5x = 20*10/8

5x = 25

x = 25/5

x = 5

The diagonals of a rhombus bisect each other of measures 8cm and 6cm .Find its perimeter. please help !!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

20 cm

Step-by-step explanation:

20 cm

8/2 = 4

6/2 = 3

3 and 4 are the sides of the triangle (four triangles in rhombus)

a²+b²=c²

4³+3²=c²

c = 5

5 x 4 = 20

Hope this helped

Answer:

perimeter = 20 cm

Step-by-step explanation:

consider breaking the rhombus into four equal parts.

and that gives you a triangle.

(refer to image attached for more clarification)

let a = 3, b = 4

to get the side c, use Pythagorean theorem = c² = a² + b²

c = sqrt (3² + 4²)

side c = 5

therefore,

perimeter = 4 x sides (c)

perimeter = 4 x 5

perimeter = 20 cm

AB||CD. Find the measure of

Answers

Answer:

135 degrees

Step-by-step explanation:

3x+15 = 5x - 5 because of the alternate interior angles theorem.

20 = 2x

x = 10

3(10) + 15 = 30+15 = 45

Remember that a line has a measure of 180 degrees. So we can just subtract the angle we found from 180 degrees to get BFG.

180-45 = 135.

How many variable terms are in the expression 3x3y + 5x2 − 4y + z + 9?

Answers

Answer:

4

Step-by-step explanation:

"4" is the number of variable terms that are in the expression 3x3y + 5x2 _ 4y + z + 9. The four variable terms in the expression are "xy", "x^2", "y" and "z". I hope that this is the answer that you were looking for and the answer has actually come to your desired help. If you need any clarification, you can always ask.

A bag contains two six-sided dice: one red, one green. The red die has faces numbered 1, 2, 3, 4, 5, and 6. The green die has faces numbered 1, 2, 3, 4, 4, and 4. A die is selected at random and rolled four times. You are told that two rolls were 1's and two were 4's. Find the probability the die chosen was green.

Answers

Answer:

the probability the die chosen was green is 0.9

Step-by-step explanation:

Given that:

A bag contains two six-sided dice: one red, one green.

The red die has faces numbered 1, 2, 3, 4, 5, and 6.

The green die has faces numbered 1, 2, 3, 4, 4, and 4.

From above, the probability of obtaining 4 in a single throw of a fair die is:

P (4  | red dice) = [tex]\dfrac{1}{6}[/tex]

P (4 | green dice) = [tex]\dfrac{3}{6}[/tex] =[tex]\dfrac{1}{2}[/tex]

A die is selected at random and rolled four times.

As the die is selected randomly; the probability of the first die must be equal to the probability of the second die = [tex]\dfrac{1}{2}[/tex]

The probability of two 1's and two 4's in the first dice can be calculated as:

= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^4[/tex]

= [tex]\dfrac{4!}{2!(4-2)!} ( \dfrac{1}{6})^4[/tex]

= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^4[/tex]

= [tex]6 \times ( \dfrac{1}{6})^4[/tex]

= [tex](\dfrac{1}{6})^3[/tex]

= [tex]\dfrac{1}{216}[/tex]

The probability of two 1's and two 4's in the second  dice can be calculated as:

= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^2 \times \begin {pmatrix} \dfrac{3}{6} \end {pmatrix} ^2[/tex]

= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]

= [tex]6 \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]

= [tex]( \dfrac{1}{6}) \times ( \dfrac{3}{6})^2[/tex]

= [tex]\dfrac{9}{216}[/tex]

The probability of two 1's and two 4's in both dies = P( two 1s and two 4s | first dice ) P( first dice ) + P( two 1s and two 4s | second dice ) P( second dice )

The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{216} \times \dfrac{1}{2} + \dfrac{9}{216} \times \dfrac{1}{2}[/tex]

The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{432} + \dfrac{1}{48}[/tex]

The probability of two 1's and two 4's in both die = [tex]\dfrac{5}{216}[/tex]

By applying  Bayes Theorem; the probability that the die was green can be calculated as:

P(second die (green) | two 1's and two 4's )  = The probability of two 1's and two 4's | second dice)P (second die) ÷ P(two 1's and two 4's in both die)

P(second die (green) | two 1's and two 4's )  = [tex]\dfrac{\dfrac{1}{2} \times \dfrac{9}{216}}{\dfrac{5}{216}}[/tex]

P(second die (green) | two 1's and two 4's )  = [tex]\dfrac{0.5 \times 0.04166666667}{0.02314814815}[/tex]

P(second die (green) | two 1's and two 4's )  = 0.9

Thus; the probability the die chosen was green is 0.9

Which equation will solve the following word problem? Jared has 13 cases of soda. He has 468 cans of soda. How many cans of soda are in each case? 13(468) = c 468c = 13 468/13 = c 13 = c/468

Answers

Answer:

c = 468 / 13

Step-by-step explanation:

If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.

Answer:

468/13 = c

Step-by-step explanation: Further explanation :

[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]

Use the following cell phone airport data speeds​ (Mbps) from a particular network. Find the percentile corresponding to the data speed 4.9 Mbps.

0.2 0.8 2.3 6.4 12.3 0.2 0.8 2.3 6.9 12.7 0.2 0.8 2.6 7.5 12.9 0.3 0.9 2.8 7.9 13.8
0.6 1.5 0.1 0.7 2.2 6.1 12.1 0.6 1.9 5.5 11.9 27.5 0.6 1.7 3.3 8.3 13.8 1.3 3.5 9.8
14.6 10.1 14.7 11.8 14.8

Answers

Answer:

Thus percentile lies between 53.3% and 55.6 %

Step-by-step explanation:

First we arrange the data in ascending order . Then find the number of the values corresponding to the given value. Then equate it with the number of observations and x and then multiply it to get the percentile. n= P/100 *N

where n is the ordinal rank of the given value

N is the number of values in ascending order.

The data in ascending order is

0.1 0.2 0.2 0.2 0.3 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.3

1.5 1.7 1.9 2.2 2.3 2.3 2.6 2.8 3.3 3.5 5.5 6.1 6.4 6.9 7.5 7.9 8.3 9.8 10.1 11.8 11.9 12.1 12.3 12.7 12.9 13.8 13.8 14.6 14.7 14.8 27.5

Number of observation = 45

4.9 lies between 3.3 and 5.5

x*n = 24 observation x*n = 25 observation

x*45= 24 x*45= 25

x= 0.533 x= 0.556

Thus percentile lies between 53.3% and 55.6 %

A professor at a local community college noted that the grades of his students were normally distributed with a mean of 74 and standard deviation of 10. The professor has informed us that 6.3 percent of his students received A's while only 2.5 percent of his students failed the course and received F's.
a. What is the minimum score needed to make an A?
b. What is the maximum score among those who received an F?
c. If there were 5 students who did not pass the course, how many students took the course?

Answers

Answer:

a)  z (score) 1,53

b)  z ( score) - 1,96

c) 200 students

Step-by-step explanation:

Normal Distribution N ( 74;10)

a) From z-table, and for 6,3 %  ( 0,063 ) we find the z (score) 1,53

Note : 6,3 % or 0,063 is the area under the curve, the minimum score neded to get A

b) To fail   2,5 %  ( 0,025 ) from z-table  get - 1,96

c) If the group of  student who did not pass the course (5) correspond to 2,5 % then by simple rule of three

5                 2,5

x ?               100

x = 500/2,5

x = 200

9. There are 50 pupils in a class. Out of this
number, 1/10 speak French only and 4/5 of the remainder speak both French and
English. If the rest speak English only,
i) find the number of students who speak​

Answers

Answer:

Step-by-step explanation:

50 : 10 = 5 speaks French only

50 -5= 45 the remainder

4/5 * 45= 36 speaks French and English

45 - 36= 9 speaks English only

The number of students who speak:

i) French only = 5 students,

ii) both French and English = 36 students,

iii) English only = 9 students.

Step 1: Find the number of students who speak French only.

Step 2: Find the remainder (students who speak both French and English) after subtracting the French-only speakers.

Step 3: Find the number of students who speak both French and English.

Step 4: Find the number of students who speak English only.

Let's calculate it step by step:

Step 1: Find the number of students who speak French only.

1/10 of 50 pupils speak French only:

French-only speakers = (1/10) * 50 = 5 students.

Step 2: Find the remainder (students who speak both French and English) after subtracting the French-only speakers.

Remaining students = Total students - French-only speakers

Remaining students = 50 - 5 = 45 students.

Step 3: Find the number of students who speak both French and English.

4/5 of the remaining students speak both French and English:

Both French and English speakers = (4/5) * 45 = 36 students.

Step 4: Find the number of students who speak English only.

To find the English-only speakers, subtract the total number of French-only speakers and both French and English speakers from the total number of students:

English-only speakers = Total students - (French-only speakers + Both French and English speakers)

English-only speakers = 50 - (5 + 36) = 50 - 41 = 9 students.

To know more about French:

https://brainly.com/question/34246494

#SPJ2

Complete question is:

There are 50 pupils in a class. Out of this number, 1/10 speak French only and 4/5 of the remainder speak both French and English. If the rest speak English only, find the number of students who speak​

i) French only,

ii) both French and English,

iii) English only,

2⁶ × 2⁵ how do i simplify this?​

Answers

Answer:

2^11

Step-by-step explanation:

since the bases are the same, we can add the exponents

a^b * a^c = a^(b+c)

2^6 * 2^5

2^(6+5)

2^11

Find the sum. 31.25 + 9.38

Answers

Answer:

40.63

Step-by-step explanation:

31.25+9.38= 40.63

Hope this helps

Answer: 40.63

Look at the image for shown work.

Choose the correct ray whose endpoint is B.

Answers

Answer:

The second option.

Step-by-step explanation:

The first option consists of a line that extends at both opposite sides to infinity, with no precise end.

The third option is a ray that has an endpoint of A, and extends to infinity towards B.

The fourth option is a line segment. It has two endpoints, B and A.

The second portion is a ray that has an endpoint B, and extends towards A in one direction, to infinity.

The answer is the 2nd option.

Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point (0, 1, 0) is equal to the distance from P to the plane y

Answers

Answer:

x^2 +4y +z = 1

Step-by-step explanation:

Surface consisting of all points P to point (0,1,0) been equal to the plane y =1

given point, p (x,y,z ) the distance from P to the plane (y)

| y -1 |

attached is the remaining part of the solution

 evaluate the expression for r=-10 -54-r=

Answers

Answer:

To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12. If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.

Step-by-step explanation:

Evaluate Algebraic Expressions. ... To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.

Find a vector equation and parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5.

Answers

The normal vector to the plane x + 3y + z = 5 is n = (1, 3, 1). The line we want is parallel to this normal vector.

Scale this normal vector by any real number t to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:

(1, 0, 6) + (1, 3, 1)t = (1 + t, 3t, 6 + t)

This is the vector equation; getting the parametric form is just a matter of delineating

x(t) = 1 + t

y(t) = 3t

z(t) = 6 + t

The vector equation for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5 is v =(1+t)i + (3t)j + (6+t)k

The parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5

x(t) = 1+ty(t) = 3tz(t) = 6+t

The parametric equation of a line through the point A(x, y, z) perpendicular to the plane ax+by+cz= d is expressed generally as:

A + vt where:

A = (x, y, z)

v = (a, b, c) (normal vector)

This can then be expressed as:

s = A + vt

s = (x, y, z) + (a, b, c)t

Given the point

(x, y, z) = (1,0,6)

(a, b, c) = (1, 3, 1)

Substitute the given coordinate into the equation above:

s = (1,0,6) + (1, 3, 1)t

s = (1+t) + (0+3t) + (6+t)

The parametric equations from the equation above are:

x(t) = 1+t

y(t) = 3t

z(t) = 6+t

The vector equation will be expressed as v = xi + yj + zk

v =(1+t)i + (3t)j + (6+t)k

Learn more here: brainly.com/question/12850672

What is the x-value of point A?

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

x = 5

▹ Step-by-Step Explanation

The x-axis and y-axis are labeled on the graph. The x-axis is the horizontal axis. Between 4 and 6, there is a missing number. That number should be 5, leaving us with an x-value of 5 for Point A.

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

Answer:

The x value is 5

Step-by-step explanation:

The x value is the value going across

Starting where the two axis meet, we go 5 units to the right

That is the x value

hich statement best describes the domain and range of p(x) = 6–x and q(x) = 6x? p(x) and q(x) have the same domain and the same range. p(x) and q(x) have the same domain but different ranges. p(x) and q(x) have different domains but the same range. p(x) and q(x) have different domains and different ranges.

Answers

Answer:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

Step-by-step explanation:

[tex]p(x) = 6-x[/tex] and

[tex]q(x) = 6x[/tex]

First of all, let us have a look at the definition of domain and range.

Domain of a function [tex]y =f(x)[/tex] is the set of input value i.e. the value of [tex]x[/tex] for which the function [tex]f(x)[/tex] is defined.

Range of a function [tex]y =f(x)[/tex] is the set of output value i.e. the value of [tex]y[/tex] or [tex]f(x)[/tex] for the values of [tex]x[/tex] in the domain.

Now, let us consider the given functions one by one:

[tex]p(x) = 6-x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which p(x) is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

[tex]q(x) = 6x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which [tex]q(x)[/tex] is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Hence, the correct answer is:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

HELP :Write the expression as the
sine or cosine of an angle.

Answers

Answer:

sin(4π/21)

Step-by-step explanation:

Step 1: Rearrange expression

sin(π/3)cos(π/7) - cos(π/3)sin(π/7)

Step 2: Use sin(A ± B)

sin(π/3 - π/7)

Step 3: Evaluate

sin(4π/21)

And we have our answer!

Other Questions
The coefficient of 8.2 N is8216 Find the mass and center of mass of the solid E with the given density rho. E is the cube 0 x a, 0 y a, 0 z a; rho(x, y, z) = 9x2 + 9y2 + 9z2. short Speech on "tomorrow is in the womb of today" I high statement best describes the scientist who contributed to our current body of scientific knowledge please helppp ill give brainliest the question is attached below During the process of translation in a eukaryote messenger RNA is spliced in the nucleus. amino acids are synthesized by RNA polymerase. transfer RNAs are joined together by a large enzyme complex. ribosomes must be imported into the nucleus. mRNA interacts with ribosomes in the cytoplasm. Lee y empareja la frase con la oracin correcta. Read and match each phrase with the correct sentence. Match Term Definition Elisa tiene ________ grande en el bao. A) la lmpara La seora limpia ________ rojo en la sala. B) una baera Me gusta ________ bonita en la cocina. C) el mueble Yo canto en ________ en las maanas. D) la ducha 3.87 moles of iron bromide yielded10.4 moles of sodium bromide WILL CHOOSE BRAINLIEST Let Events A & B be described as follows: P(A) = watching a movie P(B) = going out to dinner The probability that a person will watch a movie is 62% and the probability of going out to dinner is 46%. The probability of watching a movie and going out to dinner is 28.52% Are watching a movie and going out to dinner independent events? Group of answer choices No, because the P(A)P(B) P(A and B). Yes, because the P(A)P(B) = P(A and B). No, because the P(A) + P(B) P(A and B). Yes, because the P(A) + P(B) is greater than 100%. "After entering the house we switch on television." change the voice. The simple rate of return is also called all of the following except ________. annual rate of return unadjusted rate of return accounting rate of return Comparative advantage is Question 13 options: the ability to produce all goods at lower costs than anyone else can. the ability to produce a good at a lower opportunity cost than other producers. the ability to produce more output from given inputs than another producer can. the ability to produce more output of all goods than any Select the correct answer.Simplify.V96 What the settlement/ important places of the Rocky Mountains? Need answers asap. Will mark brailiest. How are Math, Physics, Chemistry, and Biology all related? A long bar slides on two contact points and is in motion with velocity . A steady, uniform, magnetic field B is present. The induced current through resistor R is: If therefractive index of benzere is 2.419,what is the speed of light in benzene? michaela has h hair ties. michaela's sister has triple the number of hair ties that michaela has. choose the expression that shows how many hair bows michaela's sister has Which of the following goes through the largest volumetric change? Question 4 options: A) Water when it's heated from 1oC to 99oC B) Water when it freezes into ice C) Ice when it melts into water D) Water when it boils into steam If the heat of combustion for a specific compound is 1320.0 kJ/mol and its molar mass is 30.55 g/mol, how many grams of this compound must you burn to release 617.30 kJ of heat?