Answer:
$0.60
Step-by-step explanation:
To find the cost of 1 orange, divide the $6 by 10:
6/10 = 0.6
Hope it helps (●'◡'●)
Can someone solve this for me and a couple more questions ?
Answer:
C. -4
Step-by-step explanation:
Answer:
(c) - 4
is your right answer
The scale on a map indicates that 1 inch corresponds to an actual distance of 75 miles. Two cities are 5.5 inches apart on the map. What is the actual distance between the two cities?
Answer:
412.5
Step-by-step explanation:
Answer:
[tex]412.5[/tex] miles
Step-by-step explanation:
Since 1 inch=75 miles you just multiply [tex]75*5.5[/tex] to get how many miles 5.5 inches is.
Rohit thinks of a 4 digit number. The digit in the one’s place is 3 more than the digit in the ten’s place, but 5 less than the digit in the thousand’s place. The value of the hundred’s place is 600. The digit in thousand’s place is the greatest odd number. What is the number Rohit is thinking of?
Answer:
9614
Step-by-step explanation:
Generic number with 4 digit
1000t + 100h + 10y + x
x = 3 + y
x = m - 5
h = 6
m = 9
if we substitute the value we have:
x = 9 - 5 = 4
4 = 3 + y
y = 1
Final number
9614
Which of the following numbers is rational? Assume that the decimal patterns continue.
Answer:
[tex]\sqrt{49}[/tex]
Step-by-step explanation:
Define a rational number by a number able to expressed a fraction where the denominator is not 0 or 1.
Non-terminating (never-ending) decimals cannot be expressed as a fraction and therefore are irrational. However, recall that [tex]\sqrt{49}=7[/tex], which can be expressed as a fraction (e.g. [tex]\frac{14}{2}[/tex], etc). Thus, the answer is [tex]\boxed{\sqrt{49}}[/tex].
The x intercepts of the function f(x) = 2x(x-5)^2(x+4)^3
are…
Answer:
[tex]\boxed{\sf x- intercepts = 0 , 5 \ and \ -4}[/tex]
Step-by-step explanation:
A function is given to us and we need to find the x Intercepts of the graph of the given function . The function is ,
[tex]\sf \implies f(x) = 2x( x - 5 ) ^2(x+4)^3 [/tex]
For finding the x intercept , equate the given function with 0, we have ;
[tex]\sf \implies 2x ( x - 5 )^2(x+4)^3= 0 [/tex]
Equate each factor with 0 ,
[tex]\sf \implies 2x = 0[/tex]
Divide both sides by 2 ,
[tex]\sf \implies\bf x = 0[/tex]
Again ,
[tex]\sf \implies ( x - 5)^2=0 [/tex]
Taking squareroot on both sides,
[tex]\sf \implies x - 5 = 0 [/tex]
Add 5 to both sides,
[tex]\sf \implies \bf x = 5[/tex]
Similarly ,
[tex]\sf \implies \bf x = -4 [/tex]
Hence the x Intercepts are -4 , 0 and 5 .
{ See attachment also for graph } .
1 Find the value of C to that the function probability density function defined as follow, also calculate the man and variance /4
X -1 0 1
f(x) 3c 3c 6c
Answer:
[tex]c = \frac{1}{12}[/tex]
The mean of the distribution is 0.25.
The variance of the distribution is of 0.6875.
Step-by-step explanation:
Probability density function:
For it to be a probability function, the sum of the probabilities must be 1. The probabilities are 3c, 3c and 6c, so:
[tex]3c + 3c + 6c = 1[/tex]
[tex]12c = 1[/tex]
[tex]c = \frac{1}{12}[/tex]
So the probability distribution is:
[tex]P(X = -1) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 0) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 1) = 6c = 6\frac{1}{12} = \frac{1}{2} = 0.5[/tex]
Mean:
Sum of each outcome multiplied by its probability. So
[tex]E(X) = -1(0.25) + 0(0.25) + 1(0.5) = -0.25 + 0.5 = 0.25[/tex]
The mean of the distribution is 0.25.
Variance:
Sum of the difference squared between each value and the mean, multiplied by its probability. So
[tex]V^2(X) = 0.25(-1-0.25)^2 + 0.25(0 - 0.25)^2 + 0.5(1 - 0.25)^2 = 0.6875[/tex]
The variance of the distribution is of 0.6875.
A statistician calculates that 7% of Americans are vegetarians. If the statistician is correct, what is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%
Answer:
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A statistician calculates that 7% of Americans are vegetarians.
This means that [tex]p = 0.07[/tex]
Sample of 403 Americans
This means that [tex]n = 403[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.07[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.07*0.93}{403}} = 0.0127[/tex]
What is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%?
Proportion below 7 - 3 = 4% or above 7 + 3 = 10%. Since the normal distribution is symmetric, these probabilities are equal, which means that we find one of them, and multiply by 2.
Probability the proportion is below 4%
p-value of Z when X = 0.04.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.04 - 0.07}{0.0127}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091
2*0.0091 = 0.0182
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
What is y=-2(x+3)^2+2
Answer:
y = -2(x + 3)² + 2
y = 2{ -(x + 3)²+ 1}
y = 2{ -(x² + 6x + 9) + 1}
y = 2{ -x² - 6x - 9 + 1}
y = 2{ -x² - 6x - 8 }
y = -2 { x² + 6x + 8}
OR
y = -2{(x + 4)(x + 2)}
Question:
which is a y-intercept of the graphed function?
Answers:
A. (-9,0)
B. (-3,0)
C. (0,-9)
D. (0,-3)
Answer:
(0, -9)
Step-by-step explanation:
The y intercept is the y value when x =0
(0, -9)
Use the parametric equations of an ellipse, x=acosθ, y=bsinθ, 0≤θ≤2π , to find the area that it encloses.
Answer:
Area of ellipse=[tex]\pi ab[/tex]
Step-by-step explanation:
We are given that
[tex]x=acos\theta[/tex]
[tex]y=bsin\theta[/tex]
[tex]0\leq\theta\leq 2\pi[/tex]
We have to find the area enclose by it.
[tex]x/a=cos\theta, y/b=sin\theta[/tex]
[tex]sin^2\theta+cos^2\theta=x^2/a^2+y^2/b^2[/tex]
Using the formula
[tex]sin^2x+cos^2x=1[/tex]
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]
This is the equation of ellipse.
Area of ellipse
=[tex]4\int_{0}^{a}\frac{b}{a}\sqrt{a^2-x^2}dx[/tex]
When x=0,[tex]\theta=\pi/2[/tex]
When x=a, [tex]\theta=0[/tex]
Using the formula
Area of ellipse
=[tex]\frac{4b}{a}\int_{\pi/2}^{0}\sqrt{a^2-a^2cos^2\theta}(-asin\theta)d\theta[/tex]
Area of ellipse=[tex]-4ba\int_{\pi/2}^{0}\sqrt{1-cos^2\theta}(sin\theta)d\theta[/tex]
Area of ellipse=[tex]-4ba\int_{\pi/2}^{0} sin^2\theta d\theta[/tex]
Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(2sin^2\theta)d\theta[/tex]
Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(1-cos2\theta)d\theta[/tex]
Using the formula
[tex]1-cos2\theta=2sin^2\theta[/tex]
Area of ellipse=[tex]-2ba[\theta-1/2sin(2\theta)]^{0}_{\pi/2}[/tex]
Area of ellipse[tex]=-2ba(-\pi/2-0)[/tex]
Area of ellipse=[tex]\pi ab[/tex]
Mr. Alvarado bought a total of 20 pounds of grass seed at the nursery for $168. He paid $9 per pound for Kentucky blue grass and $6 per pound for Tall Fescue. Which system of equations can be used to find the amount x (in pounds) of Kentucky blue grass and the amount y (in pounds) of Tall Fescue Mr. Alvarado purchased?
Answer:
K+T=20
$9K + $6T = $168
K is the Kentucky blue grass in pounds
T is the Tall fescue in pounds
Step-by-step explanation:
You can start with the first equation. We don't know the exact amounts of each but we know that there was a total of 20 pounds, and there were 2 types of grass seeds, so we can get that the amount of pounds of Kentucky blue grass(K) and the pounds of Tal Fescue(T) has a sum of 20.
K + T = 20
For the second equation we know that there is a sum of $168 so we'll start with that. Then, we know he paid $9 per pound of K so $9* the value of K is the amount paid for Kentucky blue grass total. This can be represented as 9K. We do the same for T, 6T. Since the sum of the cost of $9T and $6K must be $168 we can write this as:
$9K + $6T = $168
What are the domain and range of the function f(x) = 3^x + 5?
a. domain: (negative infinity, infinity); range: (0, infinity)
b. domain: (negative infinity, infinity); range: (5, infinity)
c. domain:(0, infinity); range: (negative infinity, infinity)
d. domain: (5, infinity); range: (negative infinity, infinity)
PLEASE RESPOND QUICKKK THANK YOUU
Answer:
b. domain: (negative infinity, infinity); range: (5, infinity)
Step-by-step explanation:
Answer:
B. Domain: (negative infinity, infinity);
Range: (5, infinity)
Give an example of a function with both a removable and a non-removable discontinuity.
Answer:
(x+5)(x-3) / (x+5)(x+1)
Step-by-step explanation:
A removeable discontinuity is always found in the denominator of a rational function and is one that can be reduced away with an identical term in the numerator. It is still, however, a problem because it causes the denominator to equal 0 if filled in with the necessary value of x. In my function above, the terms (x + 5) in the numerator and denominator can cancel each other out, leaving a hole in your graph at -5 since x doesn't exist at -5, but the x + 1 doesn't have anything to cancel out with, so this will present as a vertical asymptote in your graph at x = -1, a nonremoveable discontinuity.
1. Come up with an integer that is BIGGER than 10.
2. Come up with an integer that is SMALLER than 10.
3. Come up with an integer that is BIGGER than 0.
4. Come up with an integer that is SMALLER than 0.
I need help pleaseeee
Answer:
1) any number that is greater than ten is considered an integer bigger than ten: for example, 11, 12, 100, 1000000, etc.
2) any number that is smaller than ten is considered an integer smaller than ten: for example, 9, 8, 7, -100, -100000, etc.
3) any number that is bigger than zero is considered an integer bigger than ten: for example, 1, 2, 10, 100, 100000, etc.
4) any number that is smaller than zero is considered an integer smaller than zero: for example, -1, -2, -3, -10, -100000, etc.
Step-by-step explanation:
An integer is any whole number
Answer:
Step-by-step explanation:
integer bigger than 10 is 11
integer smaller than 10 is 9
integer greater than 0 is 1.
integer smaller than 0 is -1.
If y- 1 equals 10 then y
Answer:
11
Step-by-step explanation:
y-1=10
Any figure that crosses equal sign, the operational sign changes.
y=10+1
y= 11
Solve using the substitution method
16x – 4y = 16
4x - 4 = y
Answer:
y = 4 x − 4
Step-by-step explanation:
HELP ASAP! I don’t know how to solve this problem nor where to start. Can someone please help me out here?
===============================================
Explanation:
It might help to draw out the picture as shown below. The pool itself (just the water only) is the inner rectangle. The outer rectangle is the pool plus the border of those 1 by 1 tiles.
The pool is a rectangle 90 feet by 80 feet. If we add on the tiles, then we get a larger rectangle that is 90+2 = 92 feet by 80+2 = 82 feet.
We add on 2 since we're adding two copies of "1" on either side of each dimension.
The larger rectangle's area is 92*82 = 7544 square feet
The smaller rectangle's area is 90*80 = 7200 square feet
The difference in areas is 7544-7200 = 344 square feet.
Each 1 by 1 tile is of area 1*1 = 1 sq foot, meaning that 344 tiles will get us the 344 square foot border around the pool.
Josephine left home traveling at 25 mph. One hour later her friend, Steve, leaves from the same place and travels the same road traveling at 50 mph. How many hours will it take Steve to catch up to Josephine?
Answer:
1 hour
Step-by-step explanation:
J = 50 mph by 2 hours
S = 50 mph by 1 hour
2-1 = 1
if 18 : 6 = x : 3 then what is 5 + 3x
Answer:
32
Step-by-step explanation:
18 : 6 = 3
therefore, x : 3 has to equal 3.
X : 3 = 3
X = 3 × 3
X = 9
To verify:
18 : 6 = 9 : 3
3 = 3
It's true that X = 9, so now just replace the X with 9 in the next equation
5 + 3(9) = 32
Answer:
32
Step-by-step explanation:
18 : 6 = x : 3
Product of means = Product of extremes
6 * x = 3*18
x = [tex]\frac{3*18}{6}[/tex]
x = 3*3
x = 9
Now plugin x = 9 in the expression
5 + 3x = 5 + 3*9
= 5 + 27
= 32
Caffeine: Following are the number of grams of carbohydrates in 12-ounce espresso beverages offered at a coffee shop. 44 29 11 61 15 38 20 41 42 25 26 10 30 12 18 40 21 24 43 6 46 55 34 35 Send data to Excel Part: 0 / 40 of 4 Parts Complete Part 1 of 4 Your Answer is incorrect (a) Find the first and third quartiles of these data. The first quartile of these data is . The third quartile of these data is
Answer:
[tex]Q_1 = 19[/tex] --- first quartile
[tex]Q_3 = 41.5[/tex] --- third quartile
Step-by-step explanation:
Required:
The first and the third quartile
First, we order the dataset in ascending order[tex]Sorted: 6, 10, 11, 12, 15, 18, 20, 21, 24, 25, 26, 29, 30, 34, 35, 38, 40, 41, 42, 43, 44, 46, 55, 61[/tex]
The count of the dataset is:
[tex]n = 24[/tex]
Calculate the median position
[tex]Median=\frac{n+1}{2}[/tex]
[tex]Median=\frac{24+1}{2}[/tex]
[tex]Median=\frac{25}{2}[/tex]
[tex]Median=12.5th[/tex]
This means that the median is between the 12th and the 13th item
Next;
Split the dataset to two parts: 1 to 12 and 13 to 24
[tex]First: 6, 10, 11, 12, 15, 18, 20, 21, 24, 25, 26, 29[/tex]
[tex]Second: 30, 34, 35, 38, 40, 41, 42, 43, 44, 46, 55, 61[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
In this case; n = 12
So:
[tex]Median = \frac{12 + 1}{2}[/tex]
[tex]Median = \frac{13}{2}[/tex]
[tex]Median = 6.5th[/tex]
This means that the median is the average of the 6th and 7th item of the sorted dataset
So, we have:
[tex]Q_1 = \frac{18 + 20}{2}[/tex]
[tex]Q_1 = \frac{38}{2}[/tex]
[tex]Q_1 = 19[/tex] --- first quartile
[tex]Q_3 = \frac{41+42}{2}[/tex]
[tex]Q_3 = \frac{83}{2}[/tex]
[tex]Q_3 = 41.5[/tex] --- third quartile
In which quadrant do the points have negative x-coordinates and negative y-coordinates?
Hi there!
»»————- ★ ————-««
I believe your answer is:
Quadrant III
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
The plane is split into four quadrants. Quadrant III houses all the points with negative signs for both X and Y values.⸻⸻⸻⸻
See the attached picture for reference.
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
HELP!!!!!! I need an answer fasttttt
Answer:
see the attachment
Step-by-step explanation:
Hope it helps you
evaluate the expression when b= -6 and c=3
-4c+b
Answer:
-18
Step-by-step explanation:
b = -6
c = 3
-4c + b = ?
Plug in the value of each variable into the equation
-4c + b = ?
= -4(3) + (-6)
= -12 - 6
= -18
whether the distribution of the mean of a large number of independent, identically distributed variables. true or false
Answer:
The statement is false
Step-by-step explanation:
Given
See comment for complete statement
Required
Is the statement true or false
From central limit theorem, we understand that a distribution is approximately normal if the distribution takes a sample considered to be large enough from the population.
Also, the mean and the standard deviation are known.
However, the given statement implies that the distribution will be normal depending on an underlying distribution; this is false.
The amount of tax on a chair was $3.60. The tax rate was 5%. Find the original price of the chair.
Bianca solved the problem below. Find Bianca’s error.
0.05(3.60) = Original price
The original price is $0.18.
9514 1404 393
Answer:
$72.00
Step-by-step explanation:
The relationship between price and tax is ...
tax amount = (tax rate) × (price)
Then the price can be found by dividing by the tax rate:
price = (tax amount)/(tax rate)
price = $3.60 / 0.05 = $72.00
The original price of the chair was $72.00.
__
Bianca apparently did not pay any attention to the way tax is computed. Nor did she check her work. The original price is not a small fraction of the tax. It is the other way around. Bianca used a wrong relationship between tax and price.
Let v=-9i+j and w=-i-6j find 8v-6w
Answer:
78i+52j
Step-by-step explanation:
8(9i+2j)-6(-i-6j)
72i+16j+6i+36j
=78i+52j
SCALCET8 3.8.001.MI. A population of protozoa develops with a constant relative growth rate of 0.6137 per member per day. On day zero the population consists of two members. Find the population size after seven days. (Round your answer to the nearest whole number.) P(7)
Answer:
A population of protozoa develops with a constant relative growth rate of 0.6137 per member per day. On day zero the population · Q: For this discussion, you will work in groups to find the area and answer questions.
Step-by-step explanation:
What is the volume of a cone with a height of 27 cm
and a radius of 13 cm? Round your answer to the
nearest tenth.
Use the button on your calculator to complete this
problem.
V=
cm3
Answer:4778.3 cm^3
Step-by-step explanation: The formula for volume of a cone is V=1/3h pi r^2. By plugging in the height and the radius we get our answer.
Answer:
4778.4 :)
Step-by-step explanation:
You are making a committee from the class and need to have 6 students on it. There are 32 students in the class.
answer in permutations
Answer:
32P6
Step-by-step explanation:
nPr
n=32
r=6
We have a study involving 5 different groups that each contain 9 participants (45 total). What two degrees of freedom would we report when we report the results of our study
Answer:
Degree of freedoms F(4,40)
Step-by-step explanation:
Given:
There is a study which is involving 5 different groups that each contains 9 participants (totally 45)
The objective is to calculate the degree of freedoms
Formula used:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Solution:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Where,
K= number of groups = 5
N= total number of observations
which is given as follows,
N=45
Then,
Numerator degree of freedom = k-1
=5-1
=4
Denominator degree of freedom = N-K
=45-5
=40
Therefore,
Degree of freedoms, F(4,40)