The Damon family owns a large grape vineyard in western New York along Lake Erie. The grapevines must be sprayed at the beginning of the growing season to protect against various insects and diseases. Two new insecticides have just been marketed: Pernod 5 and Action. To test their effectiveness, three long rows were selected and sprayed with Pernod 5, and three others were sprayed with Action. When the grapes ripened, 390 of the vines treated with Pernod 5 were checked for infestation. Likewise, a sample of 420 vines sprayed with Action were checked. The results are:

Insecticide Number of Vines Checked (sample size) Number of Infested Vines
Pernod 5 390 23
Action 420 46

At the 0.05 significance level, can we conclude that there is a difference in the proportion of vines infested using Pernod 5 as opposed to Action?

Answers

Answer 1

Answer:

The p-value of the test is 0.0088 < 0.05, which means that at the 0.05 significance level, we can conclude that there is a difference in the proportion of vines infested using Pernod 5 as opposed to Action.

Step-by-step explanation:

Before testing the hypothesis, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Pernod 5:

23 out of 390, so:

[tex]p_P = \frac{23}{390} = 0.059[/tex]

[tex]s_P = \sqrt{\frac{0.059*0.941}{390}} = 0.0119[/tex]

Action:

46 out of 420, so:

[tex]p_A = \frac{46}{420} = 0.1095[/tex]

[tex]s_A = \sqrt{\frac{0.1095*0.8905}{420}} = 0.0152[/tex]

Test if there is a difference in proportions:

At the null hypothesis, we test if there is not a difference, that is, the subtraction of the proportions is 0. So

[tex]H_0: p_A - p_P = 0[/tex]

At the alternative hypothesis, we test if there is a difference, that is, the subtraction of the proportions is different of 0. So

[tex]H_1: p_A - p_P \neq 0[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{s}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.

0 is tested at the null hypothesis:

This means that [tex]\mu = 0[/tex]

From the samples:

[tex]X = p_A - p_P = 0.1095 - 0.059 = 0.0505[/tex]

[tex]s = \sqrt{s_A^2+s_P^2} = \sqrt{0.0119^2+0.0152^2} = 0.0193[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{s}[/tex]

[tex]z = \frac{0.0505 - 0}{0.0193}[/tex]

[tex]z = 2.62[/tex]

P-value of the test and decision:

The p-value of the test is the probability of a difference in proportions of at least 0.0505 to either side, which is P(|z| > 2.62), that is, 2 multiplied by the p-value of z = -2.62.

Looking at the z-table, z = -2.62 has a p-value of 0.0044.

2*0.0044 = 0.0088

The p-value of the test is 0.0088 < 0.05, which means that at the 0.05 significance level, we can conclude that there is a difference in the proportion of vines infested using Pernod 5 as opposed to Action.


Related Questions

7b please make the graph look nice and neat and easy to read.

Answers

Answer:

Step-by-step explanation:

i need help. i will give brainiest as soon as possible

Answers

Answer:

B

Step-by-step explanation:

Let me know if you need an explanation.

Answer:

B

Step-by-step explanation:

4x^3+x^2+5x+2

4x^3 cannot cancel with others= 4x^3

4x^2-3x^2= x^2

5x cannot cancel with others= 5x

-3+5= 2

4x^3+x^2+5x+2

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor, but 3 days later 68 people have heard it. Using a logistic growth model, how many people are expected to have heard the rumor after 6 days total have passed since it was initially spread? (Round your answer to the nearest whole person.)

Answers

Answer:

106 people.

Step-by-step explanation:

Logistic equation:

The logistic equation is given by:

[tex]P(t) = \frac{K}{1+Ae^{-kt}}[/tex]

In which

[tex]A = \frac{K - P_0}{P_0}[/tex]

K is the carrying capacity, k is the growth/decay rate, t is the time and P_0 is the initial value.

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor.

This means that [tex]K = 191, P_0 = 38[/tex], so:

[tex]A = \frac{191 - 38}{38} = 4.03[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

3 days later 68 people have heard it.

This means that [tex]P(3) = 68[/tex]. We use this to find k.

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

[tex]68 = \frac{191}{1+4.03e^{-3k}}[/tex]

[tex]68 + 274.04e^{-3k} = 191[/tex]

[tex]e^{-3k} = \frac{191-68}{274.04}[/tex]

[tex]e^{-3k} = 0.4484[/tex]

[tex]\ln{e^{-3k}} = \ln{0.4484}[/tex]

[tex]-3k = \ln{0.4484}[/tex]

[tex]k = -\frac{\ln{0.4484}}{3}[/tex]

[tex]k = 0.2674[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-0.2674t}}[/tex]

How many people are expected to have heard the rumor after 6 days total have passed since it was initially spread?

This is P(6). So

[tex]P(6) = \frac{191}{1+4.03e^{-0.2674*6}} = 105.52[/tex]

Rounding to the nearest whole number, 106 people.

[tex]i^0 +i^1+i^2+i^3+............+i^{2021} = ?[/tex]

Include work.

Answers

Answer:

1+i

Step-by-step explanation:

I do believe i to be the imaginary unit.

Let's write out some partial sums from power=0 to power=7 or whatever we need to see a pattern.

i^0=1

i^0+i^1=1+i

i^0+i^1+i^2=1+i+-1=i

i^0+i^1+i^2+i^3=i+i^3=i+-i=0

i^0+i^1+i^2+i^3+i^4=0+i^4=0+1=1

Hmmm.... we might see 1+i, then i, then 0 again.... let's see.

i^0+i^1+i^2+i^3+i^4+i^5=1+i

Coolness so we should see a pattern

Sum from power=0 to power=multiples of 4 will give us 1.

Sum from power=0 to power=remainder of 1 when final power is divided by 4 gives us 1+i.

Sum from power=0 to power=remainder of 2 when final power is divided by 4 gives us i.

Sum from power=0 to power=remainder of 3 when final power is divided by 4 gives us 1

0.

So 2021 divided by 4....

Since 2020 is a multiple of 4, then 2021 has a remainder of 1 when divided by 4.

So the answer is 1+i.

Anthony read 46 pages of a book in 23 minutes.

To find the unit rate, use
.
Anthony read
pages per minute.

Answers

Answer:

2 pages per minute

Step-by-step explanation:

Take the number of pages and divide by the number of minutes

46 pages / 23 minutes

2 pages per minute

Answer:

2 Pages per Minute

Solutions:

46 ÷ 23 = 2

Final Answer:

Anthony can read 2 pages per minute.

find and sketch the domain of the function. f(x,y)=√(4-x^2-y^2) +√(1-x^2)

Answers

Answer:

Hello

Step-by-step explanation:

The domain is limited with 2 lines parallel: -1 ≤ x ≤ 1

and the disk ? (inside of a circle) of center (0,0) and radius 2

[tex]dom\ f(x,y)=\{(x,y) \in \mathbb{R} ^2 | \ -1\leq x \leq -1\ and \ ( -\sqrt{4-x^2} \leq \ y \leq \sqrt{4-x^2}\ ) \ \}\\[/tex]

At the Fidelity Credit Union, a mean of 3.5 customers arrive hourly at the drive-through window. What is the probability that, in any hour, more than 5 customers will arrive? Round your answer to four decimal places.

Answers

Answer:

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

Step-by-step explanation:

We have the mean, which means that the Poisson distribution is used to solve this question.

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

A mean of 3.5 customers arrive hourly at the drive-through window.

This means that [tex]\mu = 3.5[/tex]

What is the probability that, in any hour, more than 5 customers will arrive?

This is:

[tex]P(X > 5) = 1 - P(X \leq 5)[/tex]

In which

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)[/tex]

Then

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3.5}*3.5^{0}}{(0)!} = 0.0302[/tex]

[tex]P(X = 1) = \frac{e^{-3.5}*3.5^{1}}{(1)!} = 0.1057[/tex]

[tex]P(X = 2) = \frac{e^{-3.5}*3.5^{2}}{(2)!} = 0.1850[/tex]

[tex]P(X = 3) = \frac{e^{-3.5}*3.5^{3}}{(3)!} = 0.2158[/tex]

[tex]P(X = 4) = \frac{e^{-3.5}*3.5^{4}}{(4)!} = 0.1888[/tex]

[tex]P(X = 5) = \frac{e^{-3.5}*3.5^{5}}{(5)!} = 0.1322[/tex]

Finally

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0302 + 0.1057 + 0.1850 + 0.2158 + 0.1888 + 0.1322 = 0.8577[/tex]

[tex]P(X > 5) = 1 - P(X \leq 5) = 1 - 0.8577 = 0.1423[/tex]

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

3.52 A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find (a) the joint probability distribution of W and Z; (b) the marginal distribution of W; (c) the marginal distribution of Z

Answers

Answer:

a)  The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

b)  P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

c) P ( z = 0 ) = 0.6

  P ( z = 1 ) = 0.4

Step-by-step explanation:

Number of head on first toss = Z

Total Number of heads on 2 tosses = W

% of head occurring = 40%

% of tail occurring = 60%

P ( head ) = 2/5 ,    P( tail ) = 3/5

a) Determine the joint probability distribution of W and Z

P( W =0 |Z = 0 ) = 0.6         P( W = 0 | Z = 1 ) = 0

P( W = 1 | Z = 0 ) = 0.4        P( W = 1 | Z = 1 ) = 0.6

P( W = 1 | Z = 0 ) = 0           P( W = 2 | Z = 1 ) = 0.4

The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

B) Marginal distribution of W

P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

C) Marginal distribution of Z ( pmf of Z )

P ( z = 0 ) = 0.6

P ( z = 1 ) = 0.4

Part(a): The required joint probability of W and Z is ,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Part(b): The pmf (marginal distribution) of W is,

[tex]P(w=0)=0.36,P(w=1)=0.48,P(w=2)=0.16[/tex]

Part(c): The pmf (marginal distribution) of Z is,

[tex]P(z=0)=0.6,P(z=1)=0.4[/tex]

Part(a):

The joint distribution is,

[tex]P(w=0\z=0)=0.6,P(w=1|z=0)=0.4,P(w=2|z=0)=0[/tex]

Also,

[tex]P(w=0\z=1)=0,P(w=1|z=1)=0.6,P(w=2|z=1)=0.4[/tex]

Therefore,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Learn More: https://brainly.com/question/13127182

A boxcar contains six complex electronic systems. Two of the six are to be randomly selected for thorough testing and then classified as defective or not defective.
a. If two of the six systems are actually defective, find the probability that at least one of the two systems tested will be defective. Find the probability that both are defective.
b. If four of the six systems are actually defective, find the probabilities indicated in part (a).

Answers

Answer:

Step-by-step explanation:

Number of electronic systems = 6

(a) Number of defected systems = 2

Probability of getting at least one system is defective

1 defective and 1 non defective + 2 defective

= (2 C 1 ) x (4 C 1) + (2 C 2) / (6 C 2)

= 3 / 5

(b) four defective

Probability of getting at least one system is defective

2 defective and 2 non defective + 3 defective and 1 non defective + 4 defective  

= (4 C 2 ) x (2 C 2) + (4 C 3 )(2 C 1) + (4 C 4) / (6 C 4)

= 1

Answer:

(a)P(At least one defective)[tex]=0.6[/tex]

P(Both are defective)[tex]=0.067[/tex]

(b)P(At least one defective)[tex]=14/15[/tex]

P(Both are defective)[tex]=0.4[/tex]

Step-by-step explanation:

We are given that

Total number of complex electronic system, n=6

(a)Defective items=2

Non-defective items=6-2=4

We have to find the  probability that at least one of the two systems tested will be defective.

P(At least one defective)=[tex]\frac{2C_1\times 4C_1}{6C_2}+\frac{2C_2\times 4C_0}{6C_2}[/tex]

Using the formula

[tex]P(E)=\frac{favorable\;cases}{total\;number\;of\;cases}[/tex]

P(At least one defective)[tex]=\frac{\frac{2!}{1!1!}\times \frac{4!}{1!3!} }{\frac{6!}{2!4!}}+\frac{\frac{2!}{0!2!}\times \frac{4!}{4!}}{\frac{6!}{2!4!}}[/tex]

Using the formula

[tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]

P(At least one defective)[tex]=\frac{2\times \frac{4\times 3!}{3!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}+\frac{1}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times 4}{3\times 5}+\frac{1}{3\times 5}[/tex]

P(At least one defective)[tex]=\frac{8}{15}+\frac{1}{15}=\frac{9}{15}[/tex]

P(At least one defective)[tex]=\frac{3}{5}=0.6[/tex]

Now, the probability that both are defective

P(Both are defective)=[tex]\frac{2C_2\times 4C_0}{6C_2}[/tex]

P(Both are defective)=[tex]\frac{\frac{2!}{0!2!}\times \frac{4!}{4!}}{\frac{6!}{2!4!}}[/tex]

P(Both are defective)[tex]=\frac{1}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(Both are defective)[tex]=\frac{1}{3\times 5}[/tex]

P(Both are defective)[tex]=0.067[/tex]

(b)

Defective items=4

Non- defective item=6-4=2

P(At least one defective)=[tex]\frac{4C_1\times 2C_1}{6C_2}+\frac{4C_2\times 2C_0}{6C_2}[/tex]

P(At least one defective)[tex]=\frac{\frac{4!}{1!3!}\times \frac{2!}{1!1!} }{\frac{6!}{2!4!}}+\frac{\frac{4!}{2!2!}\times \frac{2!}{2!}}{\frac{6!}{2!4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times \frac{4\times 3!}{3!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}+\frac{\frac{4\times 3\times 2!}{2!\times 2\times 1}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times 4}{3\times 5}+\frac{2\times 3}{3\times 5}[/tex]

P(At least one defective)[tex]=\frac{8}{15}+\frac{6}{15}=\frac{8+6}{15}[/tex]

P(At least one defective)[tex]=\frac{14}{15}[/tex]

P(Both are defective)[tex]=\frac{4C_2\times 2C_0}{6C_2}[/tex]

P(Both are defective)[tex]=\frac{\frac{4\times 3\times 2!}{2\times 1\times 2!}\times \frac{2!}{2!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(Both are defective)[tex]=\frac{\frac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1}}{3\times 5}[/tex]

P(Both are defective)[tex]=\frac{6}{15}=0.4[/tex]

P(Both are defective)[tex]=0.4[/tex]

How many subsets of at least one element does a set of seven elements have?

Answers

[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]

For each subset it can either contain or not contain an element. For each element, there are 2 possibilities. Multiplying these together we get 27 or 128 subsets. For generalisation the total number of subsets of a set containing n elements is 2 to the power n.

n=7 elemens

total subsets

2^n2⁷128

A chemist has three different acid solutions.

The first solution contains 25% acid, the second contains 35%acid, and the third contains 55% acid.
She created 120 liters of a 40% acid mixture, using all three solutions. The number of liters of 55% solution used is 3 times the number of liters of 35% solution used.

How many liters of each solution was used?

Answers

Let x, y, and z be the amounts (in liters, L) of the 25%, 35%, and 55% solutions that the chemist used.

She ended up with 120 L of solution, so

x + y + z = 120 … … … [1]

x L of 25% acid solution contains 0.25x L of acid. Similarly, y L of 35% solution contains 0.35y L of acid, and z L of 55% solution contains 0.55z L of acid. The concentration of the new solution is 40%, so that it contains 0.40 (120 L) = 48 L of acid, which means

0.25x + 0.35y + 0.55z = 48 … … … [2]

Lastly,

z = 3y … … … [3]

since the chemist used 3 times as much of the 55% solution as she did the 35% solution.

Substitute equation [3] into equations [1] and [2] to eliminate z :

x + y + 3y = 120

x + 4y = 120 … … … [4]

0.25x + 0.35y + 0.55 (3y) = 48

0.25x + 2y = 48 … … … [5]

Multiply through equation [5] by -2 and add that to [4] to eliminate y and solve for x :

(x + 4y) - 2 (0.25x + 2y) = 120 - 2 (48)

0.5x = 24

x = 48

Solve for y :

x + 4y = 120

4y = 72

y = 18

Solve for z :

z = 3y

z = 54

Please help with this question

Answers

Answer:

im not too sure but try using a cartesuan plane and measure it precisely using a protractor then key in the measurements. Im not entirely sure its the correct method tho

The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)

Answers

Answer:

30 clocks

Step-by-step explanation:

Set up an equation:

Variable x = number of clocks

1200 + 20x = 60x

Isolate variable x:

1200 = 60x - 20x

1200 = 40x

Divide both sides by 40:

30 = x

Check your work:

1200 + 20(30) = 60(30)

1200 + 600 = 1800

1800 = 1800

Correct!

the adjacent sides of a parallelogram are (x + 3) and (x + 2). Find the perimeter of the parallelogram

Answers

9514 1404 393

Answer:

  4x+10

Step-by-step explanation:

For parallelogram adjacent sides a and b, the perimeter is ...

  P = 2(a +b)

For the given sides, the perimeter is ...

  P = 2((x +3) +(x +2)) = 2(2x +5)

  P = 4x +10 . . . perimeter of the parallelogram

A wire 9 meters long is cut into two pieces. One piece is bent into a equilateral triangle for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be cut to minimize the total area of both figures? Give the length of wire used for each: For the equilateral triangle:

Answers

The length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

Here,

To minimize the total area of both figures, we need to find the optimal cut point for the wire.

Let's assume the length of the wire used for the equilateral triangle is x meters, and the remaining length of the wire used for the circle is (9 - x) meters.

For the equilateral triangle:

An equilateral triangle has all three sides equal in length.

Let's call each side of the triangle s meters. Since the total length of the wire is x meters, each side will be x/3 meters.

The formula to find the area of an equilateral triangle with side length s is:

Area = (√(3)/4) * s²

Substitute s = x/3 into the area formula:

Area = (√(3)/4) * (x/3)²

Area = (√(3)/4) * (x²/9)

Now, for the circle:

The circumference (perimeter) of a circle is given by the formula:

Circumference = 2 * π * r

Since the remaining length of wire is (9 - x) meters, the circumference of the circle will be 2π(9 - x) meters.

The formula to find the area of a circle with radius r is:

Area = π * r²

To find the area of the circle, we need to find the radius.

Since the circumference is equal to 2πr, we can set up the equation:

2πr = 2π(9 - x)

Now, solve for r:

r = (9 - x)

Now, substitute r = (9 - x) into the area formula for the circle:

Area = π * (9 - x)²

Now, we want to minimize the total area, which is the sum of the areas of the triangle and the circle:

Total Area = (√(3)/4) * (x²/9) + π * (9 - x)²

To find the optimal value of x that minimizes the total area, we can take the derivative of the total area with respect to x, set it to zero, and solve for x.

d(Total Area)/dx = 0

Now, find the critical points and determine which one yields the minimum area.

Taking the derivative and setting it to zero:

d(Total Area)/dx = (√(3)/4) * (2x/9) - 2π * (9 - x)

Setting it to zero:

(√(3)/4) * (2x/9) - 2π * (9 - x) = 0

Now, solve for x:

(√(3)/4) * (2x/9) = 2π * (9 - x)

x/9 = (8π - 2πx) / (√(3))

Now, isolate x:

x = 9 * (8π - 2πx) / (√(3))

x(√(3)) = 9 * (8π - 2πx)

x(√(3) + 2π) = 9 * 8π

x = (9 * 8π) / (√(3) + 2π)

Now, we can calculate the value of x:

x ≈ 5.61 meters

So, the length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

To learn more on derivative click:

brainly.com/question/12445967

#SPJ4

Which property was used to simplify the expression 4(b+2)=4b+8

Answers

Answer: distributive property

Step-by-step explanation: the 4 is multiplied by everting in the parenthesis

HELP ASAP PLEASE! I tried inputting the numbers into the standard deviation equation but I did not get the right answer to find z. Can someone please help me? Thank you for your time!

Answers

Answer:

Z =  -1.60

it is low ... it appears that for this problem 2 standard deviations below must be reached to be considered "unusual"

Step-by-step explanation:

[(2021-Y)-5]*X-X=XX cho biết X,Y,XX là gì?

Answers

nfbdjanckwochgducbenxikwks


If the cost of a 2.5 meter cloth is $30.5. What will be the cost of 22 meters ?

Answers

Answer:

268.40

Step-by-step explanation:

We can write a ratio to solve

2.5 meters        22 meters

-----------------  = --------------

30.5 dollars       x dollars

Using cross products

2.5 * x = 30.5 * 22

2.5x =671

Divide each side by 2.5

2.5x / 2.5 = 671/2.5

x =268.4

Determine the degree of the polynomial −65b+53x3y

Answers

Answer:

im pretty sure the degree is 4.

Step-by-step explanation:

Simplify this expression 3^-3
ASAPPPP PLSSSS

Answers

Step-by-step explanation:

-27 okay 3^-3 its same as 3^3

Answer: A)

[tex]3^{-3}[/tex]

[tex]3^{-3}=\frac{1}{3^3}[/tex]

[tex]=\frac{1}{3^3}[/tex]

[tex]3^3=27[/tex]

[tex]=\frac{1}{27}[/tex]

OAmalOHopeO

Suppose the method of tree ring dating gave the following dates A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution.

1241 1210 1267 1314 1211 1299 1246 1280 1291

a. Determine if the data meets the initial conditions to construct a confidence interval.
b. Find the sample mean year x and sample standard deviation σ.
c. What is the maximal margin of error when finding a 90 % confidence interval for the mean of all tree-ring dates from this archaeological site?

Answers

Answer:

(1238.845 ;1285.376)

Step-by-step explanation:

Conditions for constructing a confidence interval :

Data must be random

Distribution should be normal and independent ;

Based on the conditions above ; data meets initial conditions ;

C. I = sample mean ± margin of error

Given the data :

1241 1210 1267 1314 1211 1299 1246 1280 1291

Mean, xbar = Σx / n = 11359 / 9 = 1262.11

The standard deviation, s = [√Σ(x - xbar)²/n - 1]

Using a calculator ; s = 37.525

The confidence interval :

C.I = xbar ± [Tcritical * s/√n]

Tcritical(0.10 ; df = n - 1 = 9 - 1 = 8)

Tcritical at 90% = 1.860

C. I = 1262.11 ± [1.860 * 37.525/√9]

C.I = 1262.11 ± 23.266

(1238.845 ;1285.376)

± 23.266

The margin of error :

[Tcritical * s/√n]

[1.860 * 37.525/√9]

C.I = ± 23.266

plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz help i will give
brainliest

Answers

Answer:

55

Step-by-step explanation:

55 appears 3 times, which is the most repetition in the data set

Answer:

55

Step-by-step explanation:

Mode = number that appears most often

The number 55 appears 3 times which is the most out of the other numbers

Hence mode = 55

if 3x=y+z, y=6-7, and z+x=8, what is the value of y/z?

Answers

Answer:

-4/25

Step-by-step explanation:

3x=y+z

y=6-7=-1

z+x=8

y/z=?

solution

3x=-1 + z

x= -1 + z\3 ...eq(*)

then, z= 8- x

z= 8 - (-1 +z)\3

z= 8 +(1- z )\3

z= 8+1\3 -z \3

= 24+1\3 - z\3

z=25\3-z\3

z+z\3=25\3

4z\3=25\3

4z=25

z=25/4

then,

25/4 +x = 8

x=8- 25/4

x= 32 - 25/4

x=7/4

so that,

y/z=-1 /25/4

=-4/25

A bus driver makes roughly $3280 every month. How much does he make in one week at this rate.

Answers

Answer:

I think around $36

Hope it helps!

Answer:

It depends...

Step-by-step explanation:

It depends how much weeks are in the month if there are three weeks and no extra days then you would have an answer of about 1093 (exact: 1093.33333333). just divide the number of weeks by the number of money.

What is the common difference between successive terms in the sequence?

0.36, 0.26, 0.16, 0.06, –0.04, –0.14,

Answers

The correct answer is: -0.10. Explanation: The common difference between successive terms in a sequence is the number you add to each term to find the next one.

Write the equation of the line in fully simplified slope-intercept form.

Answers

Answer:

y = -x+3

Step-by-step explanation:

Slope intercept form =>  y = mx+b

To find 'm', the slope, pick 2 coordinates.

(0,3)

(2,1)

Use this equation to find the slope using these 2 coordinates: (y1 - y2)/(x1 - x2)

(3 - 1)/(0 - 2) = -1

m = slope = -1

'b' is the y-intersept, or the point when a line passes through the y-axis. That's (0,3).

b = y-intercept = 3

So the equation will be y = -1x + 3, or y = -x + 3

The answer above me is correct

Please help with this question

Answers

9514 1404 393

Answer:

  (d)  -1/32

Step-by-step explanation:

It may be easier to rearrange the expression so it has positive exponents.

  [tex]\dfrac{1}{2^{-2}x^{-3}y^5}=\dfrac{2^2x^3}{y^5}=\dfrac{4(2)^3}{(-4)^5}=-\dfrac{4\cdot8}{1024}=\boxed{-\dfrac{1}{32}}[/tex]

A medicine bottle contains 8 grams of medicine. One dose is 400 milligrams. How many milligrams does the bottle contain?

Answers

Answer:

8×1000 milligrams

8000 milligrams

Using f(x)=2x+7 and g(x)=x-3, find f(g(-2))

Answers

It’s 2x+1 sorry if it’s wrong
Other Questions
Tanya has a garden with a trench around it. The garden is a rectangle with a length of 2 1/2 m and width 2 m The trench and garden together make a rectangle with length 3 1/2 and width 3mFind the area of just the trench. How many grams of hydrogen is produced from 12.5 G of MG reacting with hydrochloric acid in this balanced equation?Mg+ 2HCL >MgCl2+H2 Assume that the custodian of a $450 petty cash fund has $62 in coins and currency plus $383 in receipts at the end of the month. The entry to replenish the petty cash fund will include: A. A debit to Cash for $378. B. A debit to Cash Over and Short for $5. C. A debit to Petty Cash for $383. D. A credit to Cash for $383. E. A credit to Cash Over and Short for $5. W. E. B. Du Bois once said "All art is propaganda." When he said that, what do you think he meant?Do you agree or disagree with Du Bois's statement? You buy tomato sauce for $0.37 per ounce. One portion of potato gnocchi requires 3.5 ounces of tomato sauce. How much does the sauce for one portion cost? Round to the nearest cent.Select one:a. $1.30b. $1.31c. $1.28d. $1.29 A) 78.5 cm B) 4.7cm C) 5.8cmD) 23.0 cm Por qu Karla no estudi ayer para el examen de literatura? 12. When you write a historical essay, which step should complete first?Determine which point of view you will use in your essay.Read other historical essays, to use as guides for structure.Select the organizational pattern most appropriate for the draft.Gather factual details from primary and/or secondary sources. SMART PPL PLEASE LOOK AT THIS I BEG YOU AND I WILL DO ANYTHING U WANT!! 8. I got my little brother _____ my bedroom for me!A. tidied B. having tidied C. to tidy D. tidy Use the graph below for this question:what is the average rate of change from x = 0 to x = 2?a) 3b) -1c) 2d) -2 Point P is the incenter of DEF. Point P is the point of concurrency of the angle bisector. Find AP. A specified group of banks get together and agree to use a blockchain for wholesale settlement of interbank transfers. This is most likely an example of a ........................ blockchain. Group of answer choices Permissionless Permissioned Is scented candle harmful to dogs? Second National Bank is considering adding 5 new ATM machines. Each machine costs $25,000 and installation costs are $15,000 per machine. Second National Bank expects the new machines to save $0.33 per transaction on 250,000 transactions per year on the new machines. It also expects the new machines to last for 15 years. If the bank needs to earn 14 percent return on this investment, what is the net present value of this investment?a. $506,729b. $306,729c. $272,269d. $381,729e. $424,228Can you provide a step-by-step process and the functions for a financial calculator Find the least number when divided by 75,125 and 225 Leaves a remainder 6 in each case. draw the structure of iso -pentylpropanoate Two positive charges ( 8.0 mC and 2.0 mC) are separated by 300 m. A third charge is placed at distance r from the 8.0 mC charge in such a way that the resultant electric force on the third charge due to the other two charges is zero. The distance r is What is the slope of the line that contains these points? x- 31, 36,41,46 y- 10,8,6,4 True or False: Synchronized cardioversion is appropriate for treating an unknown wide complex tachycardi