Answer:
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
Step-by-step explanation:
0, 4, 6, 14, 17
inner quartile range of 0 - 17 is 1/2 of 17 subtracted from the higher number = 17 - 1/2 of 8.5 = 8.5 - 4.25 = 4.25 - 4.25 x 3
= 4.25 to 12.75 for inner quartile
inner quartile range is 12.75-4.25 = 8.5
We then 1.5 x 8.5 to show the outlier
= 12.75 meaning there is no outlier if is below.
Lower quartile fences = 4.25 - 1.5 = 2.75
or -1.5 x 8.5 (the range) = -12.75
Upper quartile fence = 12.75 + 1.5 = 14.25 x 8.5 = 121.125 this would be an outlier if it is 12.75 higher than 121.125 or 12.75 lower than 5.50.
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
An observation is considered an outlier if it exceeds a distance of 1.5 times the interquartile range (IQR) below the lower quartile or above the upper quartile. The values of the lower quartile - 1.5 x IQR and upper quartile + 1.5 x IQR are known as the inner fences.
An observation is an outlier if it falls more than above the upper quartile or more than below the lower quartile. The minimum value is so there are no outliers in the low end of the distribution. The maximum value is so there are no outliers in the high end of the distribution.
Use the following data obtained from ages of the last six U. S. Presidents at the time of their inauguration to answer the following questions:
Ages of Last 6 Presidents at Inauguration
Ronald Reagan 69
George Bush 64
Bill Clinton 46
George W. Bush 54
Barack Obama 47
Donald Trump 70
a. Find the mean of the data set. (Round to one decimal place.)
b. Find the standard deviation of the data set. (Do not round until the final answer. Round final answer to 1 decimal place.)
c. What percentage of presidents' ages fall within one standard deviation of the mean
Answer:
a) The mean of the data set is 58.3.
b) The standard deviation of the data-set is of 10.8.
c) 50% of presidents' ages fall within one standard deviation of the mean
Step-by-step explanation:
Question a:
Sum of all values divided by the number of values.
[tex]M = \frac{69 + 64 + 46 + 54 + 47 + 70}{6} = 58.3[/tex]
The mean of the data set is 58.3.
Question b:
Square root of the sum of the difference squared between each value and the mean, divided by the number of values subtracted by 1. So
[tex]S = \sqrt{\frac{(69-58.3)^2 + (64-58.3)^2 + (46-58.3)^2 + (54-58.3)^2 + (47-58.3)^2 + (70-58.3)^2}{5}} = 10.8[/tex]
The standard deviation of the data-set is of 10.8.
Question c:
Between 58.3 - 10.8 = 47.5 and 58.3 + 10.8 = 69.1.
3 out of 6(Reagan, Bush and W. Bush), so:
3*100%/6 = 50%
50% of presidents' ages fall within one standard deviation of the mean
Thank you guys fir the help
9514 1404 393
Answer:
A
Step-by-step explanation:
The function f(x) is required in the numerator, eliminating choices C and D.
The restriction is that function g cannot be zero, so we cannot have ...
3x +2 = 0
3x = -2
x = -2/3 . . . . . eliminates choice B; confirms choice A
[tex]\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}[/tex]
Answer:
y=0.5+sqrt(17)
Step-by-step explanation:
Let y=sqrt{4+sqrt{4+...+sqrt(4)}
y=sqrt(4+y). (Since it's an infinite series)
y^2=4+y, y=0.5-sqrt(17) or 0.5+sqrt(17). We will omit the negative since root values are positive.
whats the distance between (-9, -6) and (-2, 2)
Hi! I'm happy to help!
To find the answer we first have to find the distance between the x and y values.
From the first point, we travel from the x point -9, to the x point, -2. This means that we traveled 7 units.
From the first point, we also travel from the first y point, -6, to the second y point, 2. This means we traveled 8 units.
From here we use the Pythagorean Theorem.
The Pythagorean Theorem says that: a²+b²=c²
We can use a and b (the 7 and 8 units we traveled) to find c (the distance between).
Let's insert our values.
7²+8²=49+64=113=c²
To find c, we need to find the square root of c².
√113
This is 10.6301..., if you want to round the the hundredth, or thousandth, your answer would be 10.63, rounding to the nearest tenth, it would be 10.6, and rounding to the nearest whole number would be 11.
I hope this was helpful, keep learning! :D
Part E
1e. Subtract the binomial 12y2 – 4y3 from the trinomial 7y - 2y3 + 5y2
Answer:
2y^3-7y^2+7y
Step-by-step explanation:
7y - 2y^3 + 5y^2 - ( 12y^2 – 4y^3)
Distribute the minus sign
7y - 2y^3 + 5y^2 - 12y^2 + 4y^3
Combine like terms
2y^3-7y^2+7y
A ball is thrown from an initial height of
1 meter with an initial upward velocity of
1 m/s. The ball's height h
(in meters) after t
seconds is given by the following. h=1+30t-5t^2
Find all values of t
for which the ball's height is 11
meters.
Round your answer(s) to the nearest hundredth.
Answer:
Step-by-step explanation:
If we are looking for the times that the ball was 11 meters off the ground, we sub in 11 for the height on the left and solve for t:
[tex]11=-5t^2+30t+1[/tex] and
[tex]0=-5t^2+30t-10[/tex] and factor this however it is you are factoring in class to solve for t to get
t = .35 seconds and t = 5.6 seconds
Because the ball reaches this point in its way up and then passes it again on its way down, the ball will have 2 times at this height.
2. How many solutions does this system of equations have? *
y = 5x – 2
y = 5x + 7
Answer:
No solution.
Step-by-step explanation:
[tex]{ \sf{y = ±∞ \: \: and \: \: x = ±∞}}[/tex]
Add :-
a+2b-3c, -3a+b+2cand 2a -3b+c
Answer:
[tex]a + 2b -3 c + - 3a + b + 2c + 2a - 3b + c \\ = a - 3a + 2a + 2b + b - 3b - 3c + 2c + c \\ 0a + 0b + 0c \\ thank \: you[/tex]
a+2b-3c+(-3a+b+2c) +(2a-3b+c)
=a+2b-3c-3a+b+2c+2a-3b+c
=a-3a+2b+2b+b-3b-3c++2b+c
=0a+0b+0c
=0
Therefore, the addition of the expressions, a+2b-3c+(-3a+b+2c) +(2a-3b+c) is zero or 0.
To know more about algebraic expressions
https://brainly.com/question/28307605
A new coffee shop is being built. Its location is the reflection of the arcade's coordinates across
the y-axis. Which procedure will find the correct distance between the arcade and the new coffee shop?( there is more than one answer)
Step-by-step explanation:
mark me brainlist
please mark mep
If the lengths of the legs of a right triangle are 5 and 12, what is the length of the hypotenuse?
Answer:
13
Step-by-step explanation:
If we have a right triangle, we can use the Pythagorean theorem to find the hypotenuse
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
5^2 + 12^2 = c^2
25+144= c^2
169 = c^2
Take the square root of each side
sqrt(169) = sqrt(c^2)
13= c
Answer:
The length of the hypotenuse is 13.
Step-by-step explanation:
[tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex]
[tex]a^2 = 12^2 + 5^2[/tex]
[tex]a^2 = 144 + 25[/tex]
[tex]a^2 = 169[/tex]
a=[tex]\sqrt{169}[/tex]
a= 13
Here we use the idea of the Pythagoras' theorem. Which suggests that [tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex] in which [tex]a^{2}[/tex] is the hypotenuse of the triangle and [tex]b^2[/tex] and [tex]c^{2}[/tex] are the two other lengths of the triangle.
HOPE THIS HELPED
How is the series 6+13+20+...+111 represented in summation notation?
Notice that
6 + 7 = 13
13 + 7 = 20
so if the pattern continues, the underlying sequence in this series is arithmetic with first term a = 6 and difference d = 7. This means the k-th term in the sequence is
a + (k - 1) d = 6 + 7 (k - 1) = 7k - 1
The last term in the series is 111, which means the series consists of 16 terms, since
7k - 1 = 111 ==> 7k = 112 ==> k = 16
Then in summation notation, we have
[tex]\displaystyle 6+13+20+\cdots+111 = \boxed{\sum_{k=1}^{16}(7k-1)}[/tex]
The Laplace Transform of a function f(t), which is defined for all t > 0, is denoted by L{f(t)} and is defined by the improper integral L{f(t)}(s) = infinity 0 e-st.f(t)dt, as long as it converges. Laplace Transform is very useful in physics and engineering for solving certain linear ordinary differential equations. (Hint: think of as a fixed constant)
1. Find L{t}. (hint: remember integration by parts)
A. 1
B. -1/s2
C. 0
D. 1/s2
E. -s2
F. None of these
2. Find L{1}.
a.1/s
b. 1
c. 0
d. -s
e. -1/s
f. none of these
(1) D
[tex]L_s\left\{t\right\} = \displaystyle\int_0^\infty te^{-st}\,\mathrm dt[/tex]
Integrate by parts, taking
[tex]u = t \implies \mathrm du=\mathrm dt[/tex]
[tex]\mathrm dv = e^{-st}\,\mathrm dt \implies v=-\dfrac1se^{-st}[/tex]
Then
[tex]L_s\left\{t\right\} = \displaystyle \left[-\frac1ste^{-st}\right]\bigg|_{t=0}^{t\to\infty}+\frac1s\int_0^\infty e^{-st}\,\mathrm dt[/tex]
[tex]L_s\left\{t\right\} = \displaystyle \frac1s\int_0^\infty e^{-st}\,\mathrm dt[/tex]
[tex]L_s\left\{t\right\} = \displaystyle -\frac1{s^2}e^{-st}\bigg|_{t=0}^{t\to\infty}[/tex]
[tex]L_s\left\{t\right\} = \displaystyle \boxed{\frac1{s^2}}[/tex]
(2) A
[tex]L_s\left\{1\right\} = \displaystyle\int_0^\infty e^{-st}\,\mathrm dt[/tex]
[tex]L_s\left\{1\right\} = \displaystyle\left[-\frac1se^{-st}\right]\bigg|_{t=0}^{t\to\infty}[/tex]
[tex]L_s\left\{1\right\} = \displaystyle\boxed{\frac1s}[/tex]
Pls Help ASAP..................
Answer:
1. 8+(30/(2+4)) = 8+(30/6) = 8+5 = 13
2. ((8+30)/2)+4 = (38/2)+4 = 19+4 = 23
Step-by-step explanation:
:)
Answer:
Step-by-step explanation:
23:
(8 + 30) ÷ 2 + 4
13:
8 + 30 ÷ (2 + 4)
please give me the brainliest if u can
Drag each factor to the correct location on the image.
If p(1) = 3, p(-4) = 8, p(5) = 0, p(7) = 9, p(-10) = 1, and p(-12) = 0,
P(x).
Answer:
(x-7) and (x+12) are the factors and the rest are non factors...
Instructions: State what additional information is required in order
to know that the triangles in the image below are congruent for the
reason given
Reasory. AAS Postulate
Answer:
YWX = DFE
Step-by-step explanation:
AAS means angle angle side. so, we need 2 angles and 1 side.
we have 1 side and one angle confirmed.
so, we need one of the other two angles (W or Y vs. F or D) confirmed.
they probably want W and F as answer, as Y and D would make it a special case of AAS : ASA.
Solve triangles: angle bisector theorem
DAC = BAD.
What is the length of CD?
Round to one decimal place.
Answer:
Step-by-step explanation:
CD/6.5 = 2.6/4.9 This is the result of the angle bisector theorem.
The theorem basically says that the side opposite the angle being bisected is divided the ratio of the sides enclosing the angle.
Multiply both sides of the proportion by 6.5
CD = 2.6 * 6.5 / 4.9
CD = 3.4489
CD = 3.4 rounded.
3.06 as. a fraction PLEASE HELP
Answer:
153/50
Step-by-step explanation:
3.06
Rewriting as
There are two numbers after the decimal so we put the number over 100
306/100
Divide top and bottom by 2
153/50
To write 3.06 as a fraction you have to write 3.06 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.
3.06 = 3.06/1 = 30.6/10 = 306/100
And finally we have:
3.06 as a fraction equals 306/100
I need help Plz help
What is 22 x 2 + 6 = x
Answer:
x=50
Step-by-step explanation:
22•2=44
44+6=50
Answer:
50
Step-by-step explanation:
22×2=44+6=50.
jjjjjjjjjjjjjjjjjj
Use the permutation formula to solve a problem when n = 8 and r = 2.
A. 56
B. 672
C. 6,720
D. 40,320
Answer:
Option A. 56
Step-by-step explanation:
From the question given above, the following data were obtained:
Total number (n) = 8
Item taken for permutation (r) = 2
Pemutation (P) =?
ₙPᵣ = n! / (n – r)!
₈P₂ = 8! / (8 – 2)!
₈P₂ = 8! / 6!
₈P₂ = 8 × 7 × 6! / 6!
₈P₂ = 8 × 7
₈P₂ = 56
Answer:
A. 56
Step-by-step explanation:
Naomi invested $3,425 in an account that
pays 3% simple interest. what was the total
balance of the account after 15 years?
Answer:
$4,966.25
Step-by-step explanation:
3 x 15 = 45
After 15 years, Naomi would have earned a total of 45% interest rate.
3,425 x 1.45 = 4,966.25
Don't use .45 as the multiplier
3,425 x .45 = 1,541.25 <- incorrect
What is the conjugate of 3 + 6i?
A -3 - 61
B 3 - 6i
C 3 + 6i
D 9i
Answer:
C.3-6
Step-by-step explanation:
Every complex number has a complex conjugate.
Examples is a+bi the conjugate is a-bi,if your adding the two conjugate its going to be 2a and if your subtracting the result is 2bi.And if multiplied it is seen as complex number which are a²+b²
The length of the shadow of a flagpole was found to be 72 feet. The shadow of a 3 foot picket fence in line with the flagpole was 4 feet. What is the height of the flagpole.
Answer:
54ft
Step-by-step explanation:
if 3foot is 4ft tall
then a shadow of 72 ft will be how tall?= x
4x =3ft by 72ft
4x= 216ft
x= 216/4
×=54
Solve each system by graphing.
9514 1404 393
Answer:
no solution
Step-by-step explanation:
These lines have the same slope and different y-intercepts, so graph as parallel lines. As such, they will have no point of intersection, so there is NO SOLUTION to this system of inconsistent equations.
PLS HELP QUICK IM BEGGINGGGG!!!!! PLEASE HELP ME!!
The following box plot represents the heights of the students in Mr. Taylor's fourth grade math class.
In a complete sentence, answer the following question:
One of the values in this data set is 138. In this box plot, what does this value mean?
Answer:
The value 138 means that this height (138cm) is less than the average height of a 4th grader.
Answer: No credit wanted
Step-by-step explanation:
The other guy is completely right.
A toddler is allowed to dress himself on Mondays, Wednesdays, and Fridays. For each of his shirt, pants, and shoes, he is equally likely to put it on correctly as incorrectly. Getting these articles of clothing on correctly are independent of each other. On the other days, the mother dresses the toddler with 100% accuracy. Given that the toddler is correctly dressed, what is the probability that today is Monday
Answer:
0.0286 = 2.86% probability that today is Monday.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Dressed correctly
Event B: Monday
Probability of being dressed correctly:
100% = 1 out of 4/7(mom dresses).
(0.5)^3 = 0.125 out of 3/7(toddler dresses himself). So
[tex]P(A) = 0.125\frac{3}{7} + \frac{4}{7} = \frac{0.125*3 + 4}{7} = \frac{4.375}{7} = 0.625[/tex]
Probability of being dressed correctly and being Monday:
The toddler dresses himself on Monday, so (0.5)^3 = 0.125 probability of him being dressed correctly, 1/7 probability of being Monday, so:
[tex]P(A \cap B) = 0.125\frac{1}{7} = 0.0179[/tex]
What is the probability that today is Monday?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.0179}{0.625} = 0.0286[/tex]
0.0286 = 2.86% probability that today is Monday.
35) Like J is represented by the equation 3x-2y=10. Line M is perpendicular to line J at (6,-1) What is the equation of Line M
Answer:
y=-2/3x+3
Step-by-step explanation:
the equation of line J is y=3/2x-5
perpendicular slope would be -2/3
you want it at point (6, -1) so sub the points into y=-2/3x+b
-1=-2/3(6)+b
-1=-4+b
3=b
y=-2/3x+3
If 4 men working 4 hours for 4 days complete 4 units of work, then how many units of work will be completed by 2 men working for 2 hours per day in 2 days.
Answer:
16 days
Step-by-step explanation:
Here,
By the question,
4 men takes 4 days working each day 4 hours to complete 4 units of work..
then..
if 1 man works 1 hour each day then i would take ( 4×4×4 ) days
= 64days
then..
if 2 men work for 2 hours per day then.
it would take
4×4×4 / 2×2 days
= 16 days
What is the value of x?
Answer:
x=30°
hopefully this answer can help you to answer the next question
there is a 400 meter track. tom rides a bike at the speeed of 450 meters/minute. mike runs at the speed of 250 meters/minute. if both of them set out at the same time and same place, how soon will they meet for the first time?
Answer: Distance: 2250
Step-by-step explanation:
Find GCF of 450 and 250