Two forces and are applied to an object whose mass is 11.8 kg. The larger force is . When both forces point due east, the object's acceleration has a magnitude of 0.408 m/s2. However, when points due east and points due west, the acceleration is 0.227 m/s2, due east. Find (a) the magnitude of and (b) the magnitude of .
Can you please fill in whatever goes in the blanks ?
Without them, the question makes no sense and has no answer.
Two forces (___) and (___) are applied to an object whose mass is 11.8 kg. The larger force is (___) . When both forces point due east, the object's acceleration has a magnitude of 0.408 m/s2. However, when (___) points due east and (___) points due west, the acceleration is 0.227 m/s2, due east. Find (a) the magnitude of (___) and (b) the magnitude of (___) .
A 280-m-wide river flows due east at a uniform speed of 4.7m/s. A boat with a speed of 7.1m/s relative to the water leaves the south bank pointed in a direction 26o west of north. What is the (a) magnitude and (b) direction of the boat's velocity relative to the ground
Answer:
(a) The speed is 7.96 m/s
(b) The direction is 76 degree from positive X axis in counter clockwise direction.
Explanation:
Width of river = 280 m
speed of river, vR = 4.7 m/s towards east
speed of boat with respect to water, v(B,R) = 7.1 m/s at 26 degree west of north
[tex]vR = 4.7 i \\\\v(B,R) = 7.1 (- sin 26 i + cos 26 j) = - 3.1 i + 6.4 j[/tex]
(a) The velocity of boat with respect to ground is
[tex]\overrightarrow{v}_{(B,R)}=\overrightarrow{v}_{(B,G)}-\overrightarrow{v}_{(R,G)}\\\\- 3.1 \widehat{i} +6.4 \widehat{j}=\overrightarrow{v}_{(B,G)} - 4.7 \widehat{i}\\\\\overrightarrow{v}_{(B,G)} = 1.6 \widehat{i} + 6.4 \widehat{j}\\\\{v}_{(B,G)} = \sqrt{1.6^2 + 6.4^2}=6.96 m/s[/tex]
(b) The direction is given by
[tex]tan\theta = \frac{6.4}{1.6} =4\\\\\theta = 76^o[/tex]
Some runners train with parachutes that trail behind them to provide a large drag force. These parachutes are designed to have a large drag coefficient. One model expands to a square 1.8 mm on a side, with a drag coefficient of 1.4. A runner completes a 240 mm run at 6.0 m/s with this chute trailing behind.
Required:
How much thermal energy is added to the air by the drag force?
Answer:
by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
Explanation:
Given the data in the question;
drag coefficient of Cd = 1.4
speed v = 6.0 m/s
One model expands to a square 1.8 mm on a side
Area A = 1.8 × 1.8 = 3.24 mm² = 3.24 × 10⁻⁶ m²
distance travelled s = 240 mm = 0.24 m
we know that; density of air e = 1.225 kg/m³
Now,
Dragging force F[tex]_D[/tex] = ( Cd × e × v² × A ) / 2
thermal energy = F[tex]_D[/tex] × s
so
thermal energy = ( 1.4 × 1.225 × (6)² × (3.24 × 10⁻⁶) × 0.24 ) / 2
thermal energy = ( 4.8009024 × 10⁻⁵ ) / 2
thermal energy = 2.4004512 × 10⁻⁵ J
Therefore, by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
A train is moving with a speed of 100 m/s. If the train is traveling south, at what position will it be 3 minutes after passing the +1,000-meter position marker ?
Remember, south is the negative direction and when you use the time, it must be in units of seconds. You will be applying one of the equations from above to solve this problem. And you must include a + sign if the final position is positive or a - sign if the final position is negative.
Answer:
The position after 3 minutes is - 800 m.
Explanation:
speed, v = 100 m/s
time, t = 3min = 180 s
initial position, x = 1000 m
let the distance traveled in 3 minutes is d
d = 100 x 180 = - 18000 m
So, the position is
= - 18000 + 1000 = - 800 m
You throw a glob of putty straight up toward the ceiling, which is 3.50 m above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.10 m/s.
1. What is the speed of the putty just before it strikes the ceiling? Express your answer with the appropriate units.
2. How much time from when it leaves your hand does it take the putty to reach the ceiling? Express your answer with the appropriate units.
Answer:
Explanation:
Given that:
the putty initial speed (u) = 9.10 m/s
distance (s) between hand and the ceiling = 3.50 m
the speed of the putty prior to the time it hits the ceiling can be determined by considering the second equation of motion.
v² - u² = 2as
Since the putty is moving in a vertical motion(i.e. in an upward direction)
v² - u² = -2gs
v² = u² - 2gs
[tex]v = \sqrt{u^2 - 2gs}[/tex]
[tex]v = \sqrt{(9.10)^2 -( 2* 9.8) (3.50 -0)}[/tex]
[tex]v = \sqrt{82.81 -19.6 (3.50)}[/tex]
[tex]v = \sqrt{82.81 -68.6}[/tex]
[tex]v = \sqrt{14.21}[/tex]
v = 3.77 m/s
2.
The time it takes to reach the ceiling from the moment it leaves your hand can be calculated by using the first equation of motion:
v = u + at
In an upward direction
v = u - gt
making time t the subject;
v - u = -gt
[tex]t = \dfrac{v-u}{-g}[/tex]
[tex]t = \dfrac{3.77 - 9.10}{-9.8}[/tex]
[tex]t = \dfrac{-5.33}{-9.8}[/tex]
t = 0.54s
sometimes balance point may not be obtained on the potentiometer wire why
What is the source of geothermal power
Answer: Geothermal energy is produced by the heat of Earth's molten interior. This energy is harnessed to generate electricity when water is injected deep underground and returns as steam (or hot water, which is later converted to steam) to drive a turbine on an electric power generator.
Explanation: Hope this helps!
Two charged bees land simultaneously on flowers that are separated by a finite distance. For a few moments, the charged bees rest on the flowers. The charged bees both generate an electric field, and while the charged bees are resting on the flowers, the net electric field at some distance between them is zero.
Required:
Do the bees have the same or opposite signs of charge?
Answer:
the charge of the bees must be of the same sign
Explanation:
The electric field is given by the relation
E = k q / r²
This electric field has outgoing direction if the charge is positive and incoming towards the charge if it is negative.
The force generated by this field on a test charge is
F = q E
Since the charge is a scalar, the direction of the force is the same as the electric field.
In this case the two flowers are at a certain distance and the two charged bees land on them, so the force on a test charge is the vector sum of the force that each bee creates, so that this force is subtracted from the two bees must have the same charge sign.
The force created by the bee on the left goes to the right and the force created by the bee on the right goes to the left, so the forces are subtracted,
Consequently the charge of the bees must be of the same sign
A kingfisher bird that is perched on a branch a few feet above the water is viewed by a scuba diver submerged beneath the surface of the water directly below the bird. Does the bird appear to the diver to be closer to or farther from the surface than the actual bird
Answer:
The bird appears farther
Explanation:
This is because as the light from the bird travels into the water which has a higher refractive index than air, light rays from the kingfisher bird bend towards the normal at the water surface and thus enter the eye of the scuba diver. Now, if we project the light rays from the eyes of the scuba diver into the air, we see that they appear to come from a point farther than that of the actual kingfisher bird perched on the branch.
So, the bird appears to the diver to be farther from the surface than the actual bird
A circus performer stretches a tightrope between two towers. He strikes one end of the rope and sends a wave along it toward the other tower. He notes that it takes 0.9 s for the wave to travel the 26 m to the opposite tower. If one meter of the rope has a mass of 0.28 kg, find the tension in the tightrope.
Answer:
the tension in the tightrope is 233.68 N
Explanation:
Given the data in the question;
Time taken to reach the opposite tower t = 0.9 s
Distance between the two towers S = 26 m
mass per one meter length = 0.28 kg
First we calculate the velocity;
Velocity V = Distance / time
we substitute
Velocity V = 26 m / 0.9 s
Velocity V = 28.889 m/s
We know that Velocity V can also be expressed as;
V = √( T / m )
we make T the subject of formula
V² = T / m
T = mV²
we substitute
T = 0.28 × ( 28.889 )²
T = 233.68 N
Therefore, the tension in the tightrope is 233.68 N
Help please help please
Answer:
No. D is the right answer
A teacher performs a demonstration to show the properties of an unknown substance. The teacher cuts off a piece of gray shiny substance and drops it in water. The substance floats and reacts violently with the water. Based on this Information, what type of element the unknown substance?
A. metalloid
B. metal
C. nonmental
D. halogen
Answer:
nonmental
Explanation:
Option B is correct. The substance floats and reacts violently with the water. Based on this Information, metal is the unknown substance.
What is metal?A metal, a glossy substance that transmits electricity and heat reasonably efficiently when newly manufactured, polished, or broken.
Metals are either malleable or ductile. Metals can be chemical elements like iron.
Metal is substance floats and reacts violently with the water. When particles collide, energy is transferred. A change in temperature can be used to identify this.
The substance floats and reacts violently with the water. Based on this Information, metal is the unknown substance.
Hence, option B is correct.
To learn more about metal, refer to the link;
https://brainly.com/question/18153051
#SPJ2
A charge Q is transferred from an initially uncharged plastic ball to an identical ball 24 cm away.The force of attraction is then 17 mN. How many electrons were transferred from one ball to the other?
Answer:
The number of electrons transferred from one ball to the other is 2.06 x 10¹² electrons
Explanation:
Given;
magnitude of the attractive force, F = 17 mN = 0.017 N
distance between the two objects, r = 24 cm = 0.24 m
The attractive force is given by Coulomb's law;
[tex]F = \frac{1}{4\pi \epsilon _0} \times \frac{Q^2}{r^2} = \frac{kQ^2}{r^2} \\\\Q^2 = \frac{Fr^2}{k} \\\\Q = \sqrt{ \frac{Fr^2}{k}} \\\\Q = \sqrt{ \frac{(0.017)(0.24)^2}{9\times 10^9}} \\\\Q = 3.298 \times 10^{-7} \ C[/tex]
The charge of 1 electron = 1.602 x 10⁻¹⁹ C
n(1.602 x 10⁻¹⁹ C) = 3.298 x 10⁻⁷
[tex]n = \frac{3.298 \times 10^{-7}}{1.602 \times 10^{-19}} = 2.06 \times 10^{12} \ electrons[/tex]
Therefore, the number of electrons transferred from one ball to the other is 2.06 x 10¹² electrons
2 Lights slows down when it enters water from air.
a What happens to its speed?
b What happens to its wavelength?
c What happens to its frequency?
An object is in free fall Group of answer choices Anytime it has an acceleration equal to 9.8 m/s/s Anytime it feels the force of gravity Only if the weight is the only force acting on the object Only when it's moving vertically down
Answer:
Anytime it feels the force of gravity.
Explanation:
Gravity is considered to be a universal force of attraction which acts between all objects that has both mass, energy and can occupy space. Therefore, it acts in such a way as to bring objects together i.e causing the objects to fall down towards the Earth.
This ultimately implies that, an object is in free fall anytime it feels the force of gravity i.e regardless of how fast the object moves or the direction it moves, the only force acting on the object is the force of gravity (g).
For example, when you throw any object up, it will naturally fall down due to the gravitational force between the Earth and the object.
Additionally, the gravity of earth makes it possible for all physical objects to possess weight.
On planet Earth, the acceleration due to gravity that all physical objects experience is 9.8 meters per seconds square.
1. What are Earth's natural climate cycles?
If you pitch a baseball with twice the kinetic energy you gave it in the
previous pitch, the magnitude of its momentum is
Answer:
the magnitude of momentum is √2≈ b
Explanation:
hope that helped
The archerfish uses a remarkable method for catching insects sitting on branches or leaves above the waterline. The fish rises to the surface and then shoots out a stream of water precisely aimed to knock the insect off its perch into the water, where the archerfish gobbles it up. Scientists have measured the speed of the water stream exiting the fish's mouth to be 3.7 m/s. An archerfish spots an insect sitting 18 cm above the waterline and a horizontal distance of 28 cm away. The fish aims its stream at an angle of 39° from the waterline.
Required:
Determine the height above the waterline that the stream reaches at the horizontal position of the insect.
Answer:
The fish gobbles the mosquito at height 18 cm.
Explanation:
Initial velocity, u = 3.7 m/s
horizontal distance, d = 28 cm
Angle, A = 39 degree
Let the time is t.
Horizontal distance = horizontal velocity x time
d = u cos A x t
0.28 = 3.7 cos 39 x t
t = 0.097 s
Let the height is h.
Use the second equation of motion
[tex]h =u t-0.5 gt^2\\\\h= u sin A t - 0.5 gt^2\\\\h= 3.7 sin 39 \times 0.097 - 0.5\times 9.8\times 0.097\times0.097\\\\h =0.226 -0.046 \\\\h=0.18 m=18 cm[/tex]
6. A transverse periodic wave on a string with a linear density of 0.200 kg/m is described by the following equation: y = 0.08 sin(469t – 28.0x), where x and y are in meters and t is in seconds. What is the tension in the string? A) 3.99 N B) 32.5 N C) 56.1 N D) 65.8 N
Answer:
T = 56.11 N
Explanation:
Given that,
The equation of a wave is :
y = 0.08 sin(469t – 28.0x),
where x and y are in meters and t is in seconds
The linear mass density of the wave = 0.2 kg/m
The speed of wave is given by :
[tex]v=\sqrt{\dfrac{T}{\mu}}[/tex]
Also,
[tex]v=\dfrac{\omega}{k}[/tex]
We have,
[tex]k=469\ and\ \omega=28[/tex]
Put all the values,
[tex]\dfrac{\omega}{k}=\sqrt{\dfrac{T}{\mu}}\\\\(\dfrac{\omega}{k})^2=\dfrac{T}{\mu}\\\\T=(\dfrac{\omega}{k})^2\times \mu[/tex]
Put all the values,
[tex]T=(\dfrac{469}{28})^2\times 0.2\\\\T=56.11\ N[/tex]
So, the tension in the string is 56.11 N.
semiconductor have negative temperature coefficient of resistance why
Answer:
As the number of free electrons increases, the resistance of this type of non-metallic material decreases with increasing temperature.
Explanation:
A compact car has a maximum acceleration of 3.0 m/s2 when it carries only the driver and has a total mass of 1300 kg. What is its maximum acceleration after picking up four passengers and their luggage, adding an additional 400 kg of mass?
Answer:
[tex]a_2=3.88m/s^2[/tex]
Explanation:
From the Question we are told that:
Initial Mass [tex]m_1=1300kg[/tex]
Final mass [tex]m_2=1300+400=>1700kg[/tex]
[tex]a_1=3.0m/s^2[/tex]
Generally the equation for Force is mathematically given by
[tex]F=m_1a_1[/tex]
[tex]F=1300*5[/tex]
[tex]F=6500N[/tex]
Generally the equation for Final acceleration is mathematically given by
[tex]F'=m_2*a_2[/tex]
[tex]a_2=\frac{6500}{1700}[/tex]
[tex]a_2=3.88m/s^2[/tex]
Consider different points along one spoke of a wheel rotating with constant angular velocity. Which of the following is true regarding the centripetal acceleration at a particular instant of time?
a. The magnitude of the centripetal acceleration is greater for points on the spoke closer to the hub than for points closer to the rim
b. both the magnitude and the direction of the centripetal acceleration depend on the location of the point on the spoke.
c. The magnitude of the centripetal acceleration is smaller for points on the spoke closer to the hub than for points closer to the rim but the direction of the acceleration is the same at all points on this spoke.
d. The magnitude and direction of the centripetal acceleration is the same at all points on this spoke.
Answer:
Option (a).
Explanation:
Let the angular velocity is w.
The centripetal acceleration is given by
[tex]a = r w^2[/tex]
where, r is the distance between the axle and the spoke.
So, more is the distance more is the centripetal acceleration.
(a) For the points on the spoke closer to the hub than for points closer to the rim is larger distance, so the centripetal force is more.
The statement is true.
(b) The direction of centripetal acceleration is always towards the center, so the statement is false.
(c) It is false.
(d) It is false.
Option (a) is correct.
a man is standing near the edge of a cliff 85 meters high. he throws a stone upward vertically with an intial velocity of 10 m/s. the stone clears the cliff edge on the way down and falls all the way to the ground. what is the maximum height of the stone above the ground
Answer:
h = 90.10 m
Explanation:
Given that,
A man is standing near the edge of a cliff 85 meters high, h₀ = 85 m
The initial speed of the stone, u = 10 m/s
The path followed by the projectile is given by :
[tex]h(t)=-4.9t^2+10t+85[/tex] ....(1)
For maximum height,
Put dh/dt = 0
So,
[tex]\dfrac{dh}{dt}=-9.8t+10=0\\\\t=\dfrac{10}{9.8}\\\\=1.02\ s[/tex]
Put the value of t in equation (1).
[tex]h(t)=-4.9(1.02)^2+10(1.02)+85\\\\=90.10\ m[/tex]
So, the maximum height of the stone is equal to 90.10 m.
20 points and brainliest‼️‼️‼️‼️
A 4.88 x 10-6 C charge moves 265 m/s
parallel (at 0°) to a magnetic field of
0.0579 T. What is the magnetic force
on the charge?
Answer:
0 N
Explanation:
Applying,
F = qvBsin∅................. Equation 1
Where F = Force on the charge, q = charge, v = Velocity, B = magnetic charge, ∅ = angle between the velocity and the magnetic field.
From the question,
Given: q = 4.88×10⁻⁶ C, v = 265 m/s, B = 0.0579 T, ∅ = 0°
Substitute these values into equation 1
F = ( 4.88×10⁻⁶)(265)(0.0579)(sin0)
Since sin0° = 0,
Therefore,
F = 0 N
the magnitude of the electrical force acting between a +2.4x10-8c charge and 1+1.8x10-6 charge that are separated by 1.008m is
Answer:
3.83×10¯⁴ N
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +2.4x10¯⁸ C
Charge 2 (q₂) = +1.8x10¯⁶ C
Distance apart (r) = 1.008 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
The magnitude of the electrical force acting between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × 2.4x10¯⁸ × 1.8x10¯⁶ / (1.008)²
F = 0.0003888 / 1.016064
F = 3.83×10¯⁴ N
Thus the magnitude of the electrical force acting between the two charges is 3.83×10¯⁴ N
A two-slit interference experiment in which the slits are 0.200 mm apart and the screen is 1.00 m from the slits. The m = 1 bright fringe in the figure is 9.49 mm from the central bright fringe. Find the wavelength of the ligh
Answer:
λ = 1.90 10⁻⁶ m
Explanation:
The interference pattern for the two-slit case is
d sin θ = m λ
let's use trigonometry
tan θ = y / L
interference experiments angles are small
tan θ = sin θ /cos θ = sin θ
sin θ = y / L
we substitute
d y / L = m λ
λ = [tex]\frac{ d \ y}{m \ L}[/tex]
we calculate
λ = 0.2000 10⁻³ 9.49 10⁻³ / (1 1.00)
λ = 1.898 10⁻⁶ m
λ = 1.90 10⁻⁶ m
The wavelength of the light after calculation is find out to be λ = 1.90 *10⁻⁶ m
What is wavelength?
The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.
The interference pattern for the two-slit case is
d sin θ = m λ
let's use trigonometry
[tex]tan\theta=\dfrac{y}{L}[/tex]
interference experiments angles are small
[tex]sin\theta=\dfrac{y}{L}[/tex]
we substitute
[tex]\dfrac{dy}{L}=m\lambda[/tex]
[tex]\lambda=\dfrac{dy}{mL}[/tex]
we calculate
[tex]\lambda=\dfrac{0.2\times 10^{-3}\times 9.49\times 10^{-3}}{1\times 1}[/tex]
[tex]\lambda=1.90\times 10^{-6}\ m[/tex]
Hence the wavelength of the light after calculation is find out to be λ = 1.90 *10⁻⁶ m
To know more about wavelength follow
https://brainly.com/question/10728818
Two objects are separated by a distance D. Which force, in theory, will act on the objects for any value of D?
tension
gravity
normal
friction
Answer:
here is ur answer...
Explanation:
gravity .......is ur answer
and the value of D is DE³S NU + s
An attractive force that exist between all object with mass attract another objects the magnitude of the force is directly proportional..
Hope this help!
PLEASE HELP ME WITH THIS ONE QUESTION
Answer:
[tex]^{214} _{83} Bi[/tex] → [tex]^{210}_{81}Tl[/tex] + [tex]^4_2He[/tex]
Explanation:
[tex]^{214} _{83} Bi[/tex] → [tex]x[/tex] + [tex]^4_2He[/tex]
Subtract the [tex]^4_2He[/tex] from the [tex]^{214} _{83} Bi[/tex]
214 - 4 = 210
83 -2 = 81
Therefore, [tex]x[/tex] = [tex]^{210}_{81}Tl[/tex]
Jacie made a model to show the water cycle. The model she made is shown
below.
Which process in the model represents condensation?
A. As water vapor transfers heat to ice cubes, it forms clear droplets outside the
plastic wrap.
B. As water vapor gains heat from ice cubes, it forms clear droplets outside the
plastic wrap.
C. As water vapor transfers heat to ice cubes, it forms colored droplets inside the
plastic wrap.
D. As water vapor gains heat from ice cubes, it forms colored droplets inside the
plastic wrap
Answer:
option C
Explanation:
as water vapor transfer heat, colored drops are seen inside the wrap.
I’ve been stuck please help !!
Answer:
The slope of the position time graph gives the velocity.
Explanation:
The slope of the position time graph gives the value of velocity.
In first graph,
The slope is constant in both the parts but positive . So the velocity is also constant and positive for both the parts. and more than the second part, so the initial velocity is more than the final velocity.
In the second graph,
The slope is constant in both the parts but negative. So, the velocity is constant but negative for both the parts. Initial velocity is more negative than the final velocity.