Answer:
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
The manager of a donut store believes that 35% of the customers are first-time customers.
This means that [tex]p = 0.35[/tex]
Sample of 150 customers
This means that [tex]n = 150[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.35[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.35*0.65}{150}} = 0.0389[/tex]
What is the probability that the sample proportion will be between 0.2 and 0.4?
p-value of Z when X = 0.4 subtracted by the p-value of Z when X = 0.2.
X = 0.4
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.4 - 0.35}{0.0389}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a p-value of 0.8997
X = 0.2
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.35}{0.0389}[/tex]
[tex]Z = -3.85[/tex]
[tex]Z = -3.85[/tex] has a p-value of 0.0001
0.8997 - 0.0001 = 0.8996
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
WILL MARK BRAINLIEST PLEASE HELP
Answer:
Step-by-step explanation:
check all that apply. sec theta is undefinded for theta = ____ . A. pi/2
B.0 C. pi D.3pi/2
Answer:
Step-by-step explanation:
secθ = 1/cosθ
cosθ = 0 for π/2, 3π/2
secθ is undefined for θ = π/2, 3π/2
Leroy borrowed $1500 at an annual simple interest rate of 12%. He paid $270 in interest. For what time period did Leroy borrow the money?
Answer:
i hope you understand easily
mark me brainlist
Step-by-step explanation:
The edge of a cube was found to be 30 cm with a possible error in measurement of 0.5 cm. Use differentials to estimate the maximum possible error, relative error, and percentage error in computing the volume of the cube and the surface area of the cube. (Round your answers to four decimal places.) My Notes Ask Your Teacher
(a) the volume of the cube maximum possible error relative error percentage error cm
(b) the surface area of the cube maximum possible error relative error percentage error cm Need Help? ReadTalk to Tuter
Answer with Step-by-step explanation:
We are given that
Side of cube, x=30 cm
Error in measurement of edge,[tex]\delta x=0.5[/tex] cm
(a)
Volume of cube, [tex]V=x^3[/tex]
Using differential
[tex]dV=3x^2dx[/tex]
Substitute the values
[tex]dV=3(30)^2(0.5)[/tex]
[tex]dV=1350 cm^3[/tex]
Hence, the maximum possible error in computing the volume of the cube
=[tex]1350 cm^3[/tex]
Volume of cube, [tex]V=(30)^3=27000 cm^3[/tex]
Relative error=[tex]\frac{dV}{V}=\frac{1350}{2700}[/tex]
Relative error=0.05
Percentage error=[tex]0.05\times 100=5[/tex]%
Hence, relative error in computing the volume of the cube=0.05 and
percentage error in computing the volume of the cube=5%
(b)
Surface area of cube,[tex]A=6x^2[/tex]
[tex]dA=12xdx[/tex]
[tex]dA=12(30)(0.5)[/tex]
[tex]dA=180cm^2[/tex]
The maximum possible error in computing the volume of the cube=[tex]180cm^2[/tex]
[tex]A=6(30)^2=5400cm^2[/tex]
Relative error=[tex]\frac{dA}{A}=\frac{180}{5400}[/tex]
Relative error in computing the volume of the cube=0.033
The percentage error in computing the volume of the cube=[tex]0.033\times 100=3.3[/tex]%
Is AABC-ADEF? If so, name which similarity postulate or theorem applies.
75
A. Similar - SSS
B. Similar - AA
0
C. Similar - SAS
D. Cannot be determined
Answer:
B. Similar - AA
Step-by-step explanation:
Two angles in ∆ABC are congruent to two corresponding angles in ∆DEF. Thus, it follows that the third pair of angles of both triangles would also be congruent.
Therefore, the three sides of ∆ABC and corresponding sides of ∆DEF will be proportional to each other.
This satisfies the AA Similarity Criterion. Therefore, ∆ABC ~ ∆DEF by AA.
Can someone answer these?
Answer: hello there here are your answers:
5.d associate property of addition
6.b multiplicative identify
7. c Additive identify
Step-by-step explanation:
5) they are just changing up the number in the ()
6) Its the same number or equation on both sides just wrote different
7) that in a given mathematical system leaves unchanged any element to which it is added.
hope this help have a good day bye!
Which table represents a linear function?
Х
1
2
3
4
y
3
6
12
24
х
1
2
3
4
у
2.
5
9
14
х
1
2
3
4
у
-3
-5
-7
-9
х
1
2
3
4
у
-2
-4
-2
0
Answer:
3
Step-by-step explanation:
x 1,2,3,4
y-3,-5,-7,-9
[tex]y = - 3 - (x - 1) \times 2[/tex]
The linear function is given by y = 7x - 4
A linear function is in the form:
y = mx + b
where y, x are variables, m is the rate of change and b is the y intercept
From the table, using the points (1, 3) and (4, 24):
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)\\\\y-3=\frac{24-3}{4-1}(x-1)\\\\ y=7x-4[/tex]
The linear function is given by y = 7x - 4.
Find out more on linear function at: https://brainly.com/question/4025726
If someone can pls give me the answer the would be greatly appreciated :)
Step-by-step explanation:
The Answer Is Provided Below ➳
(2²)² = 2⁴/2⁴ = 2⁰ × 2⁰ = 2⁰/2⁰
Pls help quick:
The following figures are not drawn to scale but
AB and CD (if present in the picture) are straight lines. Find x:
Step-by-step explanation:
2x+60°= 110°
2x= 110-60
2x= 50
x= 25°
Plz help. I’m finding surface area. I need the answer in units. Thank you.
Answer:
C. 17 units
Step-by-step explanation:
Surface area of rectangular prism is given as:
A = 2lw + 2lh + 2wh
A = 930 square units
l = 12 units
h = 9 units
w = ? (We're to find the width)
Plug in the value into the formula
930 = 2*12*w + 2*12*9 + 2*w*9
930 = 24w + 216 + 18w
Add like terms
930 - 216 = 42w
714 = 42w
Divide both sides by 42
714/42 = 42w/42
17 = w
w = 17 units
Find the area of the following figure with the indicated dimensions.use pi.
Answer:
The answer is "47.5354".
Step-by-step explanation:
In the given graph it is a half-circle and a triangle.
So, the diameter of the circle is 6.2 so the radius is 3.1
[tex]\text{Area of a circle}= \pi r^2\\\\\text{Area of a triangle}= \frac{1}{2} b h\\\\[/tex]
Calculating the total area of the shape:
[tex]= \pi r^2+\frac{1}{2} \times b\times h\\\\ = 3.14 \times 3.1^2+\frac{1}{2} \times 6.2 \times 5.6\\\\ = 3.14 \times 3.1^2+\frac{1}{2} \times 6.2 \times 5.6\\\\=3.14 \times 9.61+\frac{1}{2} \times 34.72\\\\=3.14 \times 9.61+\frac{1}{2} \times 34.72\\\\= 30.1754+17.36\\\\=47.5354\\\\[/tex]
suppose y varies inversely with X, and y = 48 when x = 3. What is the value of x when y = 24?
NO LINKS OR ANSWERING YOU DON'T KNOW.
a. 3
b. 12
c. 6
d. 24
Answer:
C. 6
Step-by-step explanation:
Recall that inverse variation is given by:
[tex]\displaystyle y=\frac{k}{x}[/tex]
Where k is the constant of variation.
We know that y = 48 when x = 3. Substitute:
[tex]\displaystyle (48)=\frac{k}{(3)}[/tex]
Solve for k:
[tex]k=3(48)=144[/tex]
Hence, our equation is:
[tex]\displaystyle y=\frac{144}{x}[/tex]
We want to find x when y = 24. Substitute:
[tex]\displaystyle \frac{24}{1}=\frac{144}{x}[/tex]
Cross-multiply:
[tex]24x=144[/tex]
Divide both sides by 24. Hence:
[tex]x=6[/tex]
Our answer is C.
What is the mode of the data?
Weight of Dogs In the Pet Store
Stem Leaves
0 3, 8
1 0, 1, 4, 7,
2 2, 4, 5
3 5 0 | 3 = 3 pounds
4 0
A. 17
B. 3
C. no mode
D. 40
Answer:
No mode
Step-by-step explanation:
Mode = number that appears the most
No number appears more than 1 time
Hence there is no mode
Answer:Should be no mode tell me if i'I'm wrong
Step-by-step explanation:
Analyze the figure below and complete the instructions that follow.
Answer:
C. 468 mm²
Step-by-step explanation:
Surface area of the composite solid = 2(LW + LH + WH)
Length (L) = 12 mm
Width (W) = 6 mm
Height (H) = 2 + 7 = 9 mm
Plug in the values into the formula
Surface area = 2(12*6 + 12*9 + 6*9)
Surface area = 2(72 + 108 + 54)
Surface area = 2(234)
= 468 mm²
What are the slope and the y-intercept of the linear function that is represented by the graph?
Answer:
The slope is -3/4 because it rises goes down 3 and runs 4. the Y-intercept or where the line meets the y line is 3.
If a person high jumps 6 feet 2 inches, how many inches is the jump?
Answer:
74 inches
Step-by-step explanation:
1 foot is 12 inches, so 6 x 12 = 72, and just add the other 2 inches to get 74 inches.
Answer:
74 inches.
Step-by-step explanation:
Each foot has 12 inches, so multiply 6 by 12 to get 72 inches. Then add the remaining two inches to get a total of 74 inches.
The difference between seven times a number and 9 is equal to five times
the sum of the number and 2. Find the number. Hint: There will be
parenthesis in your equation.
Answer:
The number is 9.5
Step-by-step explanation:
Look at the picture above, it explains everything
A sample of the salaries of assistant professors on the business faculty at a local university revealed a mean income of $100,000 with a standard deviation of $10,000. Assume that salaries follow a bell-shaped distribution. Use the empirical rule:
a. Approximately what percentage of the salaries fall between $90,000 and $110,000?
b. Approximately what percentage of the salaries fall between $80,000 and $120,000?
c. Approximately what percentage of the salaries are greater than $120,000?
Answer:
a) 68%
b) 95%.
c) 2.5%
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 100,000, standard deviation of 10,000.
a. Approximately what percentage of the salaries fall between $90,000 and $110,000?
90,000 = 100,000 - 10,000
110,000 = 100,000 + 10,000
Within 1 standard deviation of the mean, so approximately 68%.
b. Approximately what percentage of the salaries fall between $80,000 and $120,000?
80,000 = 100,000 - 2*10,000
120,000 = 100,000 + 2*10,000
Within 2 standard deviations of the mean, so approximately 95%.
c. Approximately what percentage of the salaries are greater than $120,000?
More than 2 standard deviations above the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean, so approximately 5% are more than 2 standard deviations from the mean.
The normal distribution is symmetric, which means that 2.5% are more then 2 standard deviations below the mean, and 2.5% are more than 2 standard deviations above the mean, which means that 2.5% of the salaries are greater than $120,000.
What is the average (with 0 decimal places) across all schools for the total score? Group of answer choices 1287 1215 1221 1229
Answer:
See explanation
Step-by-step explanation:
Required
The average
The data whose average is to be calculated are not given.
However, the formula to calculate the average is:
[tex]\bar x = \frac{\sum x}{n}[/tex]
Assume the data is:
[tex]1287\ 1215\ 1221\ 1229[/tex]
This means that the number of schools is 4
So:
[tex]\bar x = \frac{1287+ 1215+ 1221+ 1229}{4}[/tex]
[tex]\bar x = \frac{4952}{4}[/tex]
[tex]\bar x = 1238[/tex]
The average of the assumed data is 1238
PLEASE HELP!!! What is the domain of D(t) as it applies in this situation?!?!
Answer:
This Question Is From The Novel Of The Fantastic Mr.Fox
Q. Boggis , Bunce and Bean are Offering a reward for Mr.Fox , They are tired of Losing Chickens Geese and Cider , Create a Description And Drawing of Mr.Fox to allow him to be captured , use the word bank....
________________________________
Swift | Slay | Ginger | Rough | Fast
Thief. | Clever | Fur | Tail | Wife | Night
Cunning | Bushy | wiry | bush | Den | trick
________________________________
100 POINTS!!
Directions: Respond to this question to demonstrate your understanding of the topic/content. Be sure to provide adequate and relevant details learned in the module to support your response. Pay close attention to organizing your response so it makes sense and uses correct grammar. Your response should be at least 5-7 sentences at a minimum.
Question: Your friend claims that the only solution to the equation sin(x)=1 is x=90 degrees. Is your friend correct? If there are more solutions, explain how to determine additional solutions.
......hope it helps......
Answer:
yes,.to obtain sinx as 1 the angle must be 90degrees
so the answer is correct
but there are more solutions like when the cosine angle is 45 the answer is 1
and when x is 450 still sinx = 1..that is to say sin450= 1
The product of 2 consecutive even integers is 16 less than 8 times their sum
Answer:
there are two solutions:
x=0
and
x=14
Step-by-step explanation:
lts suppose the numbers are x and x+2, so:
[tex]x(x+2)=8(x+(x+2))-16\\x(x+2)=8(2x+2)-16=16x+16-16=16x\\x^2+2x=16x\\x^2-14x=0\\x(x-14)=0\\x=0,~x=14[/tex]
The mean age of 5 people in a room is 27 years.
A person enters the room.
The mean age is now 35.
What is the age of the person who entered the room?
Answer:
main age = total age/total people
if Main age is = 27
[tex]27 = \frac{ \times }{5} [/tex]
and x = 135
Total age is = 135
then main age is 35
[tex][35 = \frac{y}{6} [/tex]
and y = 210
first main age - second main age = age of the person participating
210 - 135 = 75
the age is = 75HAVE A NİCE DAY
Step-by-step explanation:
GREETINGS FROM TURKEY
What is the value of M
Answer:....... no clue ut pls mark me brainiest
Step-by-step explanation:
The function f(x) is shown in this graph. The function g(x) = -7x - 1. Compare the slopes.
Answer:
D
Step-by-step explanation:
Slope of the first line = (1-3)/1 = -2
The total mass of 8 identical dictionaries is 9.92 kilograms. What is the mass, in kilograms, of one dictionary? Enter your answer in the space provided
Three more than twice a number is 35.
Answer:
x = 16, or if you didn't want the value for x,
2x + 3 = 35
Step-by-step explanation:
Three more: +3
Twice a number: 2x
Combined:
2x + 3 = 35.
Get rid of the 3 by subtracting it from both sides:
2x = 32
Get rid of the 2 by dividing it from both sides:
x = 16
Answer:
The number is 16.
Step-by-step explanation:
Let the unknown number be x.
Now we translate the sentence into an equation piece by piece.
Three more than twice a number is 35.
2x
Three more than twice a number is 35.
2x + 3
Three more than twice a number is 35.
2x + 3 = 35
Now we solve the equation.
Subtract 3 from both sides.
2x = 32
Divide both sides by 2.
x = 16
Answer: The number is 16.
P.S. Notice that x was a variable that was introduced solely to solve the problem. The original problem is a word problem, not an equation, and has no x in it. The correct answer makes no reference to x since x was used to solve the equation but is not part of the given problem. The person asking the question has no idea what x is. He just wants a number as an answer.
Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for the differential equation Q.2 Solve the Initial value problem ln(y ^ x) * (dy)/(dx) = 3x ^ 2 * y given y(2) = e ^ 3 . Q.3 Find the general solution for the given differential equation. (dy)/(dx) = (2x - y)/(x - 2y)
(Q.1)
[tex]y = \dfrac{C - e^x}{2x} \implies y' = \dfrac{-2xe^x-2C+2e^x}{4x^2} = \dfrac{-xe^x-C+e^x}{2x^2}[/tex]
Then substituting into the DE gives
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{2\left(\dfrac{C-e^x}{2x}\right) + e^x}{2x}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{C-e^x + xe^x}{2x^2}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = \dfrac{-C+e^x - xe^x}{2x^2}[/tex]
and both sides match, so y is indeed a valid solution.
(Q.2)
[tex]\ln\left(y^x\right)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
This DE is separable, since you can write [tex]\ln\left(y^x\right)=x\ln(y)[/tex]. So you have
[tex]x\ln(y)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
[tex]\dfrac{\ln(y)}y\,\mathrm dy = 3x\,\mathrm dx[/tex]
Integrate both sides (on the left, the numerator suggests a substitution):
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 + C[/tex]
Given y (2) = e ³, we find
[tex]\dfrac12 \ln^2(e^3) = 6 + C[/tex]
[tex]C = \dfrac12 \times3^2 - 6 = -\dfrac32[/tex]
so that the particular solution is
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 - \dfrac32[/tex]
[tex]\ln(y) = \pm\sqrt{3x^2 - 3}[/tex]
[tex]\boxed{y = e^{\pm\sqrt{3x^2-3}}}[/tex]
(Q.3) I believe I've already covered in another question you posted.
Suppose the random variables X, Y, and Z have the following joint probability distribution. x y z f ( x , y , z ) 1 1 1 0.05 1 1 2 0.10 1 2 1 0.15 1 2 2 0.20 2 1 1 0.20 2 1 2 0.15 2 2 1 0.10 2 2 2 0.05 Determine the conditional probability distribution of X given that Y
Answer:
Determine the conditional probability distribution of X given that Y = 1 and Z = 2. Round your answers to two decimal places (e.g. 98.76).
answer:
Given that Y = 1 : 2/5
Given that Z = 2 : 3/5
Step-by-step explanation:
The conditional probability distribution of X F x | yz^( x )
Given that Y = 1
F x | yz . ( x | yz ) = 2/5
Given that z = 2
= 3/5
attached below is the detailed solution
through: (-2, 2), parallel to y=-x-5
Answer:
y = -x.
Step-by-step explanation:
The slope of the line (m) = -1. ( because of the -x in y = -x - 5)
y - y1 = m (x - x1) where (x1, y1) is a point on the line, so we get;
y - 2 = -1(x - (-2))
y - 2 = -x + -1 * +2
y - 2 = -x - 2
y = -x.