Answer:
The percent of the increase for the money the class raised is 10 %
Step-by-step explanation:
Because if you divide 1500 by 10 you get 150 that means 150 is 10 % of 1500 and if you add 150 to 1500 you get 1650 so the increase of money the class raised is 10 %
help plzz! find the value of x
Answer: 12°
Hope this helps!
if √7-y=6, then y=
-29
-5
1
29
I don't know
Hello!
√7 - y = 6 <=>
<=> -y = 6 - √7 <=>
<=> y = -6 + √7 => √7 - (-6 + √7) = 6
Good luck! :)
Answer:
-29
Step-by-step explanation:
When you substitute 1 for y in the original equation, you get:
7−(1)−−−−−−√
=?
6
6–√
≠
6 So 1 is not a solution.
From a random sample of 20 bars selected at random from those produced, calculations gave a mean weight of = 52.46 grams and standard deviation of s = 0.42 grams. Assuming t distribution is followed, construct a 90% confidence interval for the mean weight of bars produced, giving the limits to two decimal places.
Answer:
(52.30 ; 52.62)
Step-by-step explanation:
Given :
Sample size, n = 20
Mean, xbar = 52.46
Standard deviation, s = 0.42
We assume a t - distribution
The 90% confidence interval
The confidence interval relation :
C.I = xbar ± Tcritical * s/√n
To obtain the Tcritical value :
Degree of freedom, df = n - 1 ; 20 - 1 = 19 ; α = (1 - 0.90) /2 = 0.1/2 = 0.05
Using the T-distribution table, Tcritical = 1.729
We now have :
C.I = 52.46 ± (1.729 * 0.42/√20)
C. I = 52.46 ± 0.1624
C.I = (52.30 ; 52.62)
tell me the ans of e
The distance from the origin is a.
Step-by-step explanation:
If the point is located at the coordinate [tex](a\cos \alpha, a\sin \alpha)[/tex], then its distance from the origin is given by
[tex]r = \sqrt{x^2 + y^2} = \sqrt{(a\cos \alpha)^2 + (a\sin \alpha)^2}[/tex]
[tex]\:\:\:\:=\sqrt{a^2(\cos^2\alpha + \sin^2 \alpha)}[/tex]
[tex]\:\:\:\:= a[/tex]
HELP ASAP!!!!!!!PLEASE SHOW WORK!!!!!!
Answer:
Area = 72.62 m²
Step-by-step explanation:
Area of a triangle with the given three sides is given by,
Area = [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]
Here, s = [tex]\frac{a+b+c}{2}[/tex]
And a, b, c are the sides of the triangle.
From the question,
a = 20 m, b = 10 m and c = 15 m
s = [tex]\frac{20+10+15}{2}[/tex]
s = 22.5
Substitute these values in the formula,
Area = [tex]\sqrt{22.5(22.5-20)(22.5-10)(22.5-15)}[/tex]
= [tex]\sqrt{22.5(2.5)(12.5)(7.5)}[/tex]
= [tex]\sqrt{5273.4375}[/tex]
= 72.62 m²
I need help.
You are interested in finding a 95% confidence interval for the average commute that non-residential students have to their college. The data below show the number of commute miles for 12 randomly selected non-residential college students. Round answers to 3 decimal places where possible.
Answer:
(11.847 ; 15.813)
Step-by-step explanation:
We are given 12 samples which are :
8, 20, 20, 11, 18, 12, 6, 5, 7, 22, 12, 25
We use a T-distribution to find the confidence interval since the sample size. is small, n < 30
Using a calculator :
The sample mean, xbar = 13.83
Sample standard deviation, s = 6.87
The confidence interval, C.I
C.I = xbar ± Tcritical * s/√n)
Tcritical at 95%, df = n - 1, 12 - 1 = 11
Tcritical(0.05, 11) = 2.20
Hence,
C.I = 13.83 ± 2.20(6.87/√12)
C.I = 13.83 ± 1.9831981
C. I = (13.83 - 1.983 ; 13.83 + 1.983)
C. I = (11.847 ; 15.813)
Write down all the Subsets of {20,40}
Answer:
{20}, {40}, {20,40}, { }
Help please Find the measure of the missing angles.
9514 1404 393
Answer:
x = 64°
y = 26°
Step-by-step explanation:
Angle x and 26° together make a right angle, so ...
x = 90° -26° = 64°
Angles x and y together make a right angle, so ...
y = 90° -(90° -26°) = 26°
Below, the two-way table is given for a
class of students.
Freshmen Sophomore
Juniors
Seniors
Total
Male
4
6
2
2
Female 3
4
6
3
Total
If a student is selected at random, find the
probability the student is a male given that it's
a sophomore. Round to the nearest whole
percent.
[?]%
Answer:
20%
Step-by-step explanation:
The total number of students is: 4 + 6 + 2 + 2 + 3 + 4 + 6 + 3 = 30 (students)
The probability is: 6/30 = 1/5 = 0.2 = 20%
The probability that the student is a male given that he's a sophomore is approximately 60%.
What is probability?It is the chance of an event to occur from a total number of outcomes.
The formula for probability is given as:
Probability = Number of required events / Total number of outcomes.
Example:
The probability of getting a head in tossing a coin.
P(H) = 1/2
We have,
The probability that the student is a male given that it's a sophomore can be calculated using the formula:
P(male | sophomore) = P(male and sophomore) / P(sophomore)
The number of male sophomores is 6, and the total number of sophomores is 6+4=10.
So, the probability of selecting a sophomore is:
P(sophomore)
= (number of sophomores) / (total number of students)
= 10 / 23
The number of male sophomores is 6.
So,
The probability of selecting a male sophomore is:
P(male and sophomore) = 6 / 23
Therefore,
The probability that the student is a male given that it's a sophomore is:
P(male | sophomore)
= (6 / 23) / (10 / 23)
= 6 / 10
= 3 / 5
Rounding to the nearest whole percent, we get:
P(male | sophomore) ≈ 60%
Thus,
The probability that the student is a male given that he's a sophomore is approximately 60%.
Learn more about probability here:
https://brainly.com/question/14099682
#SPJ7
The graph below shows a company's profit f(x), in dollars, depending on the price of pencils x, in dollars, sold by the company.
Part A: What do the x-intercepts and maximum value of the graph represent? What are the intervals where the function is increasing and decreasing, and what do they represent about the sale and profit? (4 points)
Part B: What is an approximate average rate of change of the graph from x = 2 to x = 5, and what does this rate represent? (3 points)
Part C: Describe the constraints of the domain. (3 points)
Answer:
Step-by-step explanation:
Part A
The x-intercept are the values of the variable "x" for which the value of the function, f(x) is zero (f(x) = 0)
The given parameters are;
The values of the function, f(x) = The company's profit
The values of the independent variable, "x" = The price of erasers
Therefore, at the x-intercept, where the values of the variable "x" are 0 and 8, the profit of the company, (f(x)) is 0 (the company does not make any profit)
2) The maximum value, which is the highest point of the graph with coordinate (4, 270), gives the company's maximum profit, f(x) = $270, and the price of the eraser, x-value, at which the company makes maximum profit which is at the price of an eraser, x = $4
3) The intervals where the function is increasing is 0 ≤ x ≤ 4
At the interval where the function is increasing, the sale price is increasing and the profits are increasing
The intervals where the function is decreasing is 4 ≤ x ≤ 8
At the interval where the function is decreasing, the sale price is increasing and the profits are decreasing
Part B
The appropriate average rate of change of the graph from x = 1 to x = 4 where f(x) = 120 and 270 respectively is given as follows
Rate of change of the graph from x = 1 to x = 4 is (270 -120)/(4 - 1) = 50
The average rate of change of the graph represents that the as the price of the eraser increases by $1.00 the profits increases by $50.00
THIS WAS NOT MY OWN ANSWER, PLEASE LET oeerivona TAKE THE POINTS!!
In the triangle shown below (not to scale), what is the angle gamma, y, when
A=6.8, B= 8.4, and C = 11.5? Answer in degrees rounded to at least
the nearest hundredth.
ILL GIVE YOU BRAINLIEST!
Answer:
γ = 97.77°
Step-by-step explanation:
A = 6.8
B = 8.4
C = 11.5
To find γ, apply the angle version of the Law of Cosines:
Cos γ = (A² + B² - C²)/(2AB)
Plug in the values
Cos γ = (6.8² + 8.4² - 11.5²)/(2*6.8*8.4)
Cos γ = -15.45/114.24
Cos γ = -0.1352
γ = Cos^{-1}(-0.1352)
γ = 97.77° (nearest hundredth)
Please help!!!!!!!!!!!!
9514 1404 393
Answer:
(c) 16°
Step-by-step explanation:
The external angle at P is half the difference of the intercepted arcs:
P = (90° -58°)/2 = 32°/2
P = 16°
A piece of art is in the shape of an equilateral triangle with sides of 7 inches each. Find the area of the piece of art to the nearest tenth. Explain how you know.
Answer:
21.2 in²
Step-by-step explanation:
The area of an equilateral triangle is given as :
Area, A = √3/4 * a²
Where, a = side length of the equilateral triangle
a = 7 inches ; Recall that all sides of an equilateral triangle are the same.
Put a = 7 in the equation :
A = √3/4 * a²
A = √3/4 * 7²
A = 0.4330127 * 49
A = 21.217 in²
Area, A = 21.2 in²
5. A Ferris wheel at an amusement park measures 16m in diameter. It makes 3 rotations
every minute. The bottom of the Ferris wheel is 1m above the ground. Riders board the
Ferris wheel at the minimum point.
a) Determine the equation that models Emily's height (m) with respect to time (in seconds)
above ground. [3A]
b) A 12m tree stands near the Ferris wheel. For how long (in seconds) is Emily higher than
the tree during the first rotation? Round to 2 decimal places. [4A]
Following are the responses to the given points:
For point a:
[tex]Diameter\ (d)= 16\ m\\\\[/tex]
Calculating the 3 rotations for every minute:
Calculating time for completing 1 rotation:
[tex]1\ rotation=\frac{60}{3}= 20\ second\\\\period=20 \ second\\\\[/tex]
The standard form of the equation of the sine and cosine function is:
[tex]y=A \sin \{ B(x-c)\} +D\\\\y=A \cos \{ B(x-c)\} +D\\\\[/tex]
Calculating the Amplitue:
[tex]A=\frac{max-min}{2}=\frac{17-1}{2}=\frac{16}{2}=8\\\\Period=\frac{2\pi}{B}\\\\20=\frac{2\pi}{B}\\\\B=\frac{2\pi}{20}\\\\B=\frac{\pi}{10}\\\\[/tex]
Calculating the phase shift:
for [tex]\sin[/tex] function: [tex]c=5[/tex]
for [tex]\cos[/tex] function: [tex]c=10[/tex]
Calculating the vertical shift:
[tex]\to D=\frac{max+ min }{2}=\frac{17+ 1}{2}=\frac{18}{2}=9\\\\y=8 \sin \{ \frac{\pi}{10}(t-5)\} +9\\\\y=8 \cos \{ \frac{\pi}{10}(t-10)\} +9\\\\[/tex]
For point b:
[tex]y> 12\ m\\\\12=8 \sin \{ \frac{\pi}{10}(t-5)\} +9\\\\12-9=8 \sin \{ \frac{\pi}{10}(t-5)\} \\\\3=8 \sin \{ \frac{\pi}{10}(t-5)\} \\\\\frac{3}{8}=\sin \{ \frac{\pi}{10}(t-5)\} \\\\\sin^{-1}\frac{3}{8}=\frac{\pi}{10}(t-5) \\\\\frac{\pi}{10} (0.38439677)=(t-5) \\\\1.22357+5=t \\\\t=6.22357\ second\\\\t=6.22\ second\\\\\sin^{-1}\frac{3}{8}=\frac{\pi}{10}(t-5) \\\\\frac{\pi}{10} (2.7571961)=(t-5) \\\\t=8.7764+5\\\\t=13.78\ second\\\\t_2-t_1=13.7764-6.22357= 7.55283\approx 7.55\ second \\\\[/tex]
Learn more:
Rotation: brainly.in/question/39626227
Matthew Travels 42/50 Meters In 26/30 Minutes. Find The Speed of Mathew In Meters Per Second.
Answer:
Matthew travels 0.0161 meters per second.
Step-by-step explanation:
Given that Matthew travels 42/50 meters In 26/30 minutes, to find the speed of Mathew in meters per second the following calculation must be performed:
42/50 = 0.84
26/30 = 0.86
0.86 x 60 = 52
0.84 meters in 52 seconds
0.84 / 52 = 0.01615
Therefore, Matthew travels 0.0161 meters per second.
make x the subject of the relaton3x-ax=2x+5
Answer:
x =5/ (1-a)
Step-by-step explanation:
3x-ax=2x+5
Subtract 2x from each side
3x -ax-2x = 2x+5-2x
3x -ax -2x = 5
combine like terms
x-ax = 5
Factor out x
x(1-a) =5
Divide each side by 1-a
x =5/ (1-a)
[tex]\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}[/tex]
[tex]3x-ax=2x+5\\\\3x-ax-2x=5\\\\(3-2)x-ax=5\\\\x-ax=5\\\\x(1-a)=5\\\\\dashrightarrow x=\dfrac{5}{1-a}[/tex]
The graph below shows the height an elevator travels, y, in x seconds:
A graph is shown with x axis title as Time in seconds. The title on the y-axis is Height of Elevator Above Ground in feet. The values on the x-axis are from 0 to 5 in increments of 1 for each grid line. The values on the y-axis are from 0 to 125 in increments of 25 for each grid line. A line is shown connecting points on ordered pair 1, 25 and 2, 50 and 3, 75 and 4, 100. The title of the graph is Rate of Ascent.
What is the rate of change for the relationship represented in the graph?
50
25
fraction 1 over 25
fraction 1 over 50
9514 1404 393
Answer:
25 (ft/s)
Step-by-step explanation:
The "rate of change" is taken to mean the "rise" divided by the "run". Here, adjacent points differ in their y-value by 25 ft and their x-value by 1 second.
The rate of change is ...
rise/run = (25 ft)/(1 second) = 25 ft/second
Usually, we're just interested in the numerical value: 25.
_____
Additional comment
The graph is mis-labeled. It is not showing "rate of ascent." It is showing height as a function of time. The "rate of ascent" is the slope of the line on the graph, not its value.
corey calculated the midpoint of AB with A (-3.5) and a B (1,7). What is corry's error?
Step-by-step explanation:
He,smixing x and y values and averaging them. You add x of one point and add to the x value of the second point. Then divide by 2. Do the same with the y values.
The global surface water area is 361, 132,000 square metres. Calculate the volume of water needed to cause a 3mm in sea level.
Answer:
The volume of water is 396 cubic meter.
Step-by-step explanation:
Area of water, A = 132000 square meter
Height, h = 3 mm = 0.003 m
The volume of water is given by
V = Area x height
V = 132000 x 0.003
V = 396 cubic meter.
Engineers are designing a large elevator that will accommodate 44 people. The maximum weight the elevator can hold safely is 8228 pounds. According to the National Health Statistics Reports, the weights of adult U.S. men have mean 186 pounds and standard deviation 60 pounds, and the weights of adult U.S. women have mean 157 pounds and standard deviation 69 pounds.
a. If 44 people are on the elevator, and their total weight is 8228 pounds, what is their average weight?
b. If a random sample of 44 adult men ride the elevator, what is the probability that the maximum safe weight will be exceeded?
c. If a random sample of 44 adult women ride the elevator, what is the probability that the maximum safe weight will be exceeded?
Answer:
a) Their average weight is of 187 pounds.
b) 0.4562 = 45.62% probability that the maximum safe weight will be exceeded.
c) 0.002 = 0.2% probability that the maximum safe weight will be exceeded
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
a. If 44 people are on the elevator, and their total weight is 8228 pounds, what is their average weight?
8228/44 = 187
Their average weight is of 187 pounds.
b. If a random sample of 44 adult men ride the elevator, what is the probability that the maximum safe weight will be exceeded?
For men, we have that [tex]\mu = 186, \sigma = 60[/tex]
Sample of 44 means that [tex]n = 44, s = \frac{60}{\sqrt{44}}[/tex]
This probability is 1 subtracted by the p-value of Z when X = 187. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{187 - 186}{\frac{60}{\sqrt{44}}}[/tex]
[tex]Z = 0.11[/tex]
[tex]Z = 0.11[/tex] has a p-value of 0.5438.
1 - 0.5438 = 0.4562
0.4562 = 45.62% probability that the maximum safe weight will be exceeded.
c. If a random sample of 44 adult women ride the elevator, what is the probability that the maximum safe weight will be exceeded?
For women, we have that [tex]\mu = 157, \sigma = 69[/tex]
Sample of 44 means that [tex]n = 44, s = \frac{69}{\sqrt{44}}[/tex]
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{187 - 157}{\frac{69}{\sqrt{44}}}[/tex]
[tex]Z = 2.88[/tex]
[tex]Z = 2.88[/tex] has a p-value of 0.998.
1 - 0.998 = 0.002.
0.002 = 0.2% probability that the maximum safe weight will be exceeded
What is the measure of x?
Please help!
Answer:
[tex]{ \tt{x + 30 \degree = 90 \degree}} \\ { \tt{x = 90 \degree - 30 \degree}} \\ { \tt{x = 60 \degree}}[/tex]
2 times the sum of a number Plus 8 is 26 what is the number
Answer:
x = 5
General Formulas and Concepts:
Pre-Algebra
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
2(x + 8) = 26
Step 2: Solve for x
[Division Property of Equality] Divide 2 on both sides: x + 8 = 13[Subtraction Property of Equality] Subtract 8 on both sides: x = 5Marta's bedroom floor is rectangular is 18 feet long and 15 feet wide. The height of the ceiling is 8 feet. She has 3 rectangular windows that are each 6 feet long and 4 feet wide. She will paint the entire room except the floor and the window. What is the area that Marta will paint?
9514 1404 393
Answer:
726 ft²
Step-by-step explanation:
The perimeter of the room is ...
P = 2(L+W) = 2(18 +15) = 66 . . . . ft
Then the gross wall area (including windows) is ...
A = LH = (66 ft)(8 ft) = 528 ft² . . . . gross wall area
The area of the 3 windows is ...
A = 3×LW = 3×(6 ft)(4 ft) = 72 ft² . . . . window area
The area of the ceiling is ...
A = LW = (18 ft)(15 ft) = 270 ft² . . . . ceiling area
__
Then the net area to be painted is ...
gross wall area + ceiling area - window area
= 528 ft² +270 ft² -72 ft² = 726 ft²
The area that Marta will paint is 726 ft².
Given m = 1/2 and the point (3, 2), which of the following is the point-slope form of the equation?
Answer:
The point-slope form is y - 2 = 1/2 (x - 3)
Step-by-step explanation:
The point-slope form is y - y1 = m (slope) (x - x1). All I did was plug the numbers in the correct locations to get my answer.
PLEEASE HELP ME IM RUNNING LATE
If mC = 49 , find the values of x and y.
Answer:
m∠y=41
m∠x=90
Step-by-step explanation:
It is an isosceles triangle, so m∠B=49 too
49+49=98
180-98=82
82÷2=41
m∠y=41
41+49=90
180-90=90
m∠x=90
p=2,-3 and Q= -1,4. Evaluate 3q-2p
Answer:
When p=2 , q=-1
3q-2p
3(-1) - 2(2)
(3)-4
-1
When p=-3 , q=4
3(4)-2(-3)
(12 )-(-6)
=18
Kayla, Devon and Maggie are working on translating verbal expressions into algebraic
expressions. The question on their assignment asks them to translate "seven less than four
times the square root of x".
9514 1404 393
Answer:
4√x -7
Step-by-step explanation:
Four times the square root of x is written 4√x. Seven less than that is found by subtracting 7:
[tex]4\sqrt{x}-7[/tex]
Find the measure of the missing angles.
Answer:
Step-by-step explanation:
First of all, D is the supplement to the right angle. Together they equal 180 degrees providing the right angle is sitting on a line.
d + 90 = 180 Subtract 90 from both sides.
d = 180 - 90
d = 90
e is vertically opposite the 49 degree angle. Therefore e = 49 (that's what vertically opposite angles do).
f is supplementary to e. Together they add to 180
e + f = 180 But you know e is 49 so
49 + f = 180 Subtract 49 from both sides.
f = 180 - 49
f = 131
Write the equation 5x – 2y = 10 in the form y = mx + b.
-2y=10-5x
-2y/-2=(10-5x)/-2
Y=5/2x-2
I really need help please
Answer:
first question is D
second question is D .875
Step-by-step explanation:
35*2.5= 87.5
7 divided by 8= .875
Answer:
D 87.5 miles
D 0.875 = 7/8 so it is a decimal that terminates after 3 dp.
Step-by-step explanation:
We write;
Scale Inch x Miles
2.5 x 35 = 87.5 miles
Why??
87.5 miles is found when we use the scale of 35 miles = 1inch
Answer = D 87.5 miles
The second one we can either multiply by 7/8 or divide by 1-7/8 = 1/8 to show that;
1/ 1/8 = 0.125
1-0.125 = 0.875