the volume of a sample of ethane, c2h6, is 2.10 l at 443 torr and 30 °c. what volume will it occupy at standard temperature and pressure (stp)?

Answers

Answer 1

The volume of ethane gas at standard temperature and pressure is 2.46 L.

The given pressure and temperature are not in standard conditions. So, we have to use the ideal gas law to find the new volume of the gas in standard conditions. The ideal gas law is PV = nRT. where

P = pressure

V = volume

T = temperature

n = number of moles of gas

R = ideal gas constant

The values of P, V, n, and T of a gas can be used to calculate the other properties. Standard conditions are defined as a pressure of 1 atm (760 torr) and a temperature of 273.15 K (0 °C).

The steps to solve the given problem: We will find the number of moles of ethane gas. We will find the new volume of the gas in standard conditions. We are given;

Pressure, P1 = 443 torr

Volume, V1 = 2.10 L

Temperature, T1 = 30 °C = 30 + 273.15 = 303.15 K

Pressure, P2 = 1 atm

Volume, V2 = ?

Temperature, T2 = 0 °C = 0 + 273.15 = 273.15 K

Number of moles, n = ?

The ideal gas law can be written as;

P1V1 = nRT1

where R = 0.0821 L·atm/K·mol

P2V2 = nRT2

where R = 0.0821 L·atm/K·mol

To find the number of moles of ethane gas;

n = P1V1/RT1 = (443 torr) × (2.10 L) / (0.0821 L·atm/K·mol) × (303.15 K)= 0.102 mol

Now, we can find the new volume of the gas in standard conditions;

P2V2 = nRT2V2 = nRT2 / P2 = (0.102 mol) × (0.0821 L·atm/K·mol) × (273.15 K) / (1 atm)= 2.46 L

You can learn more about ethane gas at: brainly.com/question/21220876

#SPJ11

Answer 2

Substituting the given values

,P₁ = 443 Torr, V₁ = 2.10 L, T₁ = (30 + 273.15) K = 303.15 KP₂ = 1 atm,

T₂ = 273.15 KV₂ = P₁V₁T₂/P₂T₁V₂ = (443 Torr x 2.10 L x 273.15 K)/(1 atm x 303.15 K)V₂ = 1.87 L

The volume that the sample of ethane, C2H6, will occupy at

STP is 1.87 L.

The volume of a sample of ethane, C2H6, is 2.10 L at 443 Torr and 30°C. What volume will it occupy at standard temperature and pressure (STP)?The question is a 100 word question. Thus, the answer should not exceed more than 100 words.The given information can be summarized as follows:Volume

(V₁) = 2.10 LT = 30 °CPressure (P₁) = 443 TorrVolume

(V₂) = ?T₂ = 0 °CP₂ = 1 atm (at STP)

Using the combined gas law formula, we can calculate the volume (V₂) of the ethane sample at STP.i.e., P₁V₁/T₁ = P₂V₂/T₂Substituting the given values,

P₁ = 443 Torr, V₁ = 2.10 L, T₁ = (30 + 273.15) K = 303.15 KP₂ = 1 atm, T₂ = 273.15 KV₂ = P₁V₁T₂/P₂T₁V₂ = (443 Torr x 2.10 L x 273.15 K)/(1 atm x 303.15 K)V₂ = 1.87 L

The volume that the sample of ethane, C2H6, will occupy at STP is 1.87 L.

To know more about ethane visit:

https://brainly.com/question/30214217

#SPJ11


Related Questions

draw the structure of the product expected when d-fructose (figure below) is subjected to methylation followed by acidic hydrolysis.

Answers

Upon methylation followed by acidic hydrolysis, the product structure expected when D-fructose is converted is formed.

Here’s how to get the product after methylation and acidic hydrolysis of D-Fructose: Step 1: Methylation Reaction equation:C6H12O6 + CH3I → C7H14O6 + HIThe OH functional group in Fructose is replaced with the OCH3 group through methylation process.In the process of methylation, Fructose is treated with methyl iodide.

The CH3 molecule is added to the Fructose molecule, resulting in the formation of a new compound C7H14O6.Step 2: Acidic hydrolysis Reaction equation:C7H14O6 + 2H2O → C6H12O6 + CH3OHThe compound C7H14O6 formed in the methylation process is treated with acidic hydrolysis, which leads to the formation of a compound with the same formula as the original Fructose molecule.The C7H14O6 compound undergoes hydrolysis to form CH3OH and C6H12O6.

To know more about acidic visit:

https://brainly.com/question/29796621

#SPJ11

or the following exothermic reaction at equilibrium:
H2O (g) + CO (g) <=> CO2(g) + H2(g)
Decide if each of the following changes will increase the value of K (T = temperature).
a) Decrease the volume (constant T)
b) Remove CO (constant T)
c) Add a catalyst (constant T)
d) Decrease the T
e) Add CO (constant T)
f) Add Ne(g) (constant T)
g) Increase the T

Answers

The effect of different changes on the value of K is to be determined for the given exothermic reaction at equilibrium:H2O(g) + CO(g) ⇌ CO2(g) + H2(g) Changes that increase the value of K.

Increasing the temperature (Option g) Decreasing the volume (Option a)Increasing the concentration of CO (Option e)Adding a catalyst (Option c)Increasing the pressure is equivalent to decreasing the volume as the temperature is constant. Le Chatelier’s principle states that increasing the pressure shifts the equilibrium in the direction of fewer moles of gas. In this reaction, there are two moles of gas on the left and two on the right, so the equilibrium position is not affected.

Decreasing the temperature, Option d, will shift the equilibrium towards the reactants, as the reaction is exothermic and heat is treated as a reactant. Adding a non-reactive gas like Ne, Option f, will not affect the equilibrium position, as the mole fraction of reactants and products will remain unchanged. Therefore, the value of K will not change.Remove CO, Option b, will shift the equilibrium position towards the reactants and decrease the value of K.

To know more about H2O(g) + CO(g) ⇌ CO2(g) + H2(g)  visit :

https://brainly.com/question/15283608

#SPJ11

Sodium hydroxide (NaOH) is a strong base that is very corrosive. What is the mass of 2.75 × 10-4 moles of NaOH?
a.3.24 x 10–3 g NaOH
b.1.10 x 10–2 g NaOH
c.6.10 x 10–2 g NaOH
d.6.50 x 10–2 g NaOH

Answers

NaOH has a molar mass of 40 g/mol. Thus, the mass of 2.75 × 10-4 moles of NaOH is b.1.10 x 10–2 g NaOH. Answer: b.1.10 x 10–2 g NaOH

We can use the formula; m = n × M, where m = mass (in grams), n = number of moles, and M = molar mass of NaOH. The molar mass of NaOH is 40 g/mol. Thus, the mass of 2.75 × 10-4 moles of NaOH can be calculated as follows:

m = n × M= 2.75 × 10-4 moles × 40 g/mol= 0.011 g or 1.10 × 10-2 g NaOH has a molar mass of 40 g/mol. Thus, the mass of 2.75 × 10-4 moles of NaOH is b.1.10 x 10–2 g NaOH.

Answer: b.1.10 x 10–2 g NaOH

To know more about NaOH visit:

https://brainly.com/question/20573731

#SPJ11

1. Which of the following is in the correct order of standard state entropy? I. Liquid water < gaseous water II. Liquid water < solid water III. NH;

Answers

The correct order of standard state entropy is given as below: I. Gaseous water > Liquid water II. Solid water < Liquid water III. NH3 > N2H4

Entropy is an important concept of thermodynamics it is defined as the measure of disorder or randomness in a system. A system is said to be in a state of maximum entropy if its entropy is at a maximum and minimum entropy if its entropy is at a minimum. Standard entropy is defined as the entropy of a substance at its standard state, i.e., the most stable state at 1 atm and 25°C.The entropy of water can be represented in three states as gaseous water, liquid water, and solid water. I. Gaseous water has a higher entropy than liquid water. The reason for this is the gaseous water has more freedom of motion as compared to liquid water. Therefore, the entropy of gaseous water is higher than that of liquid water. II. Solid water has a lower entropy than liquid water. The reason for this is that the molecules in solid water have less freedom of motion as compared to liquid water.

Therefore, the entropy of solid water is lower than that of liquid water. III. NH3 has a higher entropy than N2H4. The reason for this is that the NH3 molecule has a higher number of particles as compared to the N2H4 molecule. Therefore, the entropy of NH3 is higher than that of N2H4.The correct order of standard state entropy is given as below: I. Gaseous water > Liquid water II. Solid water < Liquid water III. NH3 > N2H4

To know more about entropy visit:-

https://brainly.com/question/20166134

#SPJ11

The Chemical equation for ethane combustion is: 7O2+2C2H6-->6H2O+4CO2. The gases behave ideally. Most nearly, what volume of O2 at 298k and 1.0atm is required for complete combustion of 10L of C2H6 (gas) at 500K and 1atm. answer choices: 16,19,21,22 liters.

Answers

Therefore, the volume of O2 needed at 298K and 1 atm is approximately 77 liters.

The balanced chemical equation for the combustion of ethane is shown below:

7O2 + 2C2H6 → 4CO2 + 6H2O

We can use the stoichiometry of the reaction to find out how much O2 is needed to completely react with 2 moles of C2H6.

2 moles of C2H6 requires 7 moles of O2.10 L of C2H6 will contain (10/22.4) x 2 moles of C2H6 = 0.892 mole C2H6.

So the amount of O2 needed will be: (7/2) x 0.892 mole C2H6 = 3.118 moles O2.

Since the gases behave ideally, we can use the ideal gas law to find the volume of O2 at 298K and 1 atm.

PV = nRTV = nRT/PV = (3.118 mol) (0.08206 L atm K-1 mol-1) (298 K) / (1 atm)V = 77.02 L ≈ 77 L

Therefore, the volume of O2 needed at 298K and 1 atm is approximately 77 liters.

To know more about Chemical equation visit:

https://brainly.com/question/28792948

#SPJ11

Write the ionic equation for dissolution and the solubility product (Ksp) expression for each of the following slightly soluble ionic compounds. (For the ionic equations, include states-of-matter under the given conditions in your answer. Solubility equilibrium expressions take the general form: Ksp = [An+ ]a . [Bm− ]b. Subscripts and superscripts that include letters must be enclosed in braces {}. For example: Ksp=[A+]2.[B2-] must be typed using K_{sp}=[A^+]^2.[B^2-] (a) Cu3(PO4)2 Net ionic equation Solubility product expression (b) Ag2S Net ionic equation Solubility product expression (c) BaSO3 Net ionic equation Solubility product expression (d) BaF2 Net ionic equation Solubility product expression AND Use solubility products and predict which of the following salts is the most soluble, in terms of moles per liter, in pure water. (Hint: The size of Ksp tells us about solubility in general, but technically you must calculate the molar solubility in order to compare.) Special note: mercury(I) ions forms a dimer and behaves like a polyatomic ion. So, Hg2X2 breaks into Hg22+ + 2X- Hg2I2, Ksp= 5.2e-29 Sn(OH)2, Ksp= 5.5e-27 Ag2SO4, Ksp= 1.2e-05 BaF2, Ksp= 1.8e-07

Answers

a. Cu3(PO4)2The formula of copper (II) phosphate is Cu3(PO4)2. The dissociation reaction for this compound in water is given below.Cu3(PO4)2(s) → 3Cu2+ (aq) + 2PO43- (aq)Solubility product expression for Cu3(PO4)2 is given below.Ksp = [Cu2+]3 [PO43-]2b. Ag2SThe formula of silver sulfide is Ag2S.

The dissociation reaction for this compound in water is given below.Ag2S(s) → 2Ag+ (aq) + S2- (aq)Solubility product expression for Ag2S is given below.Ksp = [Ag+]2 [S2-]c. BaSO3The formula of barium sulfite is BaSO3. The dissociation reaction for this compound in water is given below.BaSO3(s) → Ba2+ (aq) + SO32- (aq)Solubility product expression for BaSO3 is given below.Ksp = [Ba2+] [SO32-]d. BaF2The formula of barium fluoride is BaF2.

The dissociation reaction for this compound in water is given below.BaF2(s) → Ba2+ (aq) + 2F- (aq)Solubility product expression for BaF2 is given below.Ksp = [Ba2+] [F-]2Most soluble salt is the one with the highest Ksp value. Hence, Sn(OH)2 is the most soluble salt in pure water.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

what is the total number of valence electrons in the lewis structure of aso2-?

Answers

The Lewis structure of [tex]AsO_2^-[/tex] has a total of 18 valence electrons. To determine the total number of valence electrons in the Lewis structure of AsO2-, we need to consider the valence electrons of each individual atom.

Arsenic (As) is in Group 15 of the periodic table, so it has 5 valence electrons. Oxygen (O) is in Group 16, so it has 6 valence electrons each. The -1 charge on the [tex]AsO_2^-[/tex] ion indicates the gain of an additional electron.

To calculate the total number of valence electrons, we sum the valence electrons from each atom and then subtract one electron due to the negative charge.

In this case, we have 5 valence electrons for arsenic and 6 valence electrons each for the two oxygen atoms, totalling 17 electrons. Subtracting one electron for the negative charge gives us a total of 16 valence electrons in the [tex]AsO_2^-[/tex] ion.

Therefore, the Lewis structure of [tex]AsO_2^-[/tex] has a total of 18 valence electrons.

Learn more about Lewis structures here:

https://brainly.com/question/29603042

#SPJ11

Regenerate response

Now, consider a situation in which the concentrations of CO, H2, and CH3OH are all 2.1 M . Which statement best describes what will occur?
Now, consider a situation in which the concentrations of , , and are all 2.1 . Which statement best describes what will occur?
A. The reverse reaction will be favored until equilibrium is reached.
B. The forward reaction will be favored until equilibrium is reached.
C. The reaction is at equilibrium, so the concentrations will not change.

Answers

In a situation where the concentrations of CO, H₂, and CH₃OH are all 2.1 M, the best description of what will occur is that (C) the reaction is at equilibrium, and the concentrations will not change.

Equilibrium in a chemical reaction occurs when the forward and reverse reactions proceed at equal rates. At this point, the concentrations of the reactants and products remain constant, as there is no net change in their concentrations over time.

In this case, since the concentrations of CO, H₂, and CH₃OH are already equal, there is no driving force for the reaction to shift in either direction.

Therefore, (C) the reaction will continue to exist at equilibrium, and the concentrations of the species involved will remain unchanged unless there is a change in the reaction conditions.

To know more about the Equilibrium refer here :

https://brainly.com/question/14511376#

#SPJ11

A lead ball is added to a graduated cylinder containing 31.8 mL of water, causing the level of the water to increase to 93.7 mL. What is the volume in milliliters of the lead ball?
a) 31.8 mL
b) 61.9 mL
c) 93.7 mL
d) 125.5 mL

Answers

Given that a lead ball is added to a graduated cylinder containing 31.8 mL of water, causing the level of the water to increase to 93.7 mL. We need to find the volume in milliliters of the lead ball

. We know that the volume of water displaced by the ball is the same as the volume of the ball. So, to find the volume of the ball, we need to subtract the initial volume of water from the final volume of water

. Hence, the main answer is option b) 61.9 : The volume of the lead ball = Final volume of water - Initial volume of waterVolume of the lead ball = 93.7 mL - 31.8 mL= 61.9 mLTherefore, the volume of the lead ball is 61.9 mL

To know more about water visit:

https://brainly.com/question/28465561

#SPJ11

Explain why the third ionization energy for Magnesium (7732.68 kJ/mol) is significantly higher than its first ionization energy (737

Answers

The ionization energy is the minimum energy that an atom requires to remove an electron from an atom or a positively charged ion. The third ionization energy for Magnesium (7732.68 kJ/mol) is significantly higher than its first ionization energy (737 kJ/mol) .

Explanation:

The ionization energies for magnesium are:1st ionization energy is 7.6462 electron volts (737.7 kJ/mol)2nd ionization energy is 14.963 eV (1445.5 kJ/mol)3rd ionization energy is 77.74 eV (7499.8 kJ/mol)The outermost shell of magnesium has two electrons, which are shielded by 12 core electrons. The first ionization energy is relatively low (737 kJ/mol) because the electron is removed from the outermost shell. The electron configuration for Magnesium is:1s² 2s² 2p⁶ 3s²

This becomes even more evident for the third ionization energy (7499.8 kJ/mol) because the electron being removed is in the 3s orbital which is closer to the nucleus and is not shielded by any other electrons. This makes it harder to remove, which leads to a higher ionization energy. Thus, the third ionization energy for magnesium is significantly higher than its first ionization energy.

To know more about ionization energy visit

https://brainly.com/question/1602374

#SPJ11

C6H5COOH(s) -- C6H5COO-(aq) + H+(aq)
Ka = 6.46 x 10e-5
Benzoic acid, C6H5COOH, dissociates in water as shown in the equation above. A 25.0 mL sample of an aqueous solution of pure benzoic acid is titrated using standardized 0.150 M NaOH.
After addition of 15.0 mL of the 0.150 M NaOH, the pH of the resulting solution is 4.37. Calculate the following:
The number of moles of NaOH added.
Please show steps.
Thank you in advance!

Answers

The number of moles of NaOH added is 0.00225 mol.

To calculate the number of moles of NaOH added, we can use the stoichiometry of the reaction between benzoic acid (C6H5COOH) and NaOH. According to the balanced equation, 1 mole of benzoic acid reacts with 1 mole of NaOH. Given that the concentration of NaOH is 0.150 M and 15.0 mL of NaOH solution is added, we can first convert the volume to liters by dividing it by 1000:
Volume of NaOH = 15.0 mL / 1000 mL/L = 0.015 L
Next, we can calculate the number of moles of NaOH using the formula:
moles of NaOH = concentration × volume
moles of NaOH = 0.150 M × 0.015 L = 0.00225 mol
Therefore, the number of moles of NaOH added is 0.00225 mol.

To know more about C6H5COOH, click here https://brainly.com/question/29206874

#SPJ11

the enrgy profiles for four different reactions are shown below the scales are the same for each. which reaction is the most exothermic

Answers

The energy profile graph depicts the energy changes that occur during a reaction. The energy level of the reactants is represented by the starting point, and the energy level of the products is represented by the ending point.

The most exothermic reaction is the one that releases the most heat, which is reflected by the amount of energy released in the form of heat. According to the graph provided, reaction A is the most exothermic, followed by reaction D.

In contrast, reactions B and C are endothermic, which means that they absorb heat energy. Reaction A releases a significant amount of energy in the form of heat, whereas reaction D releases less energy than reaction A but more than reactions B and C. The energy released in reaction A is higher than any of the other reactions, making it the most exothermic among the four reactions.

To know more about reaction visit:-

https://brainly.com/question/30464598

#SPJ11

based on the values in cells b77 what function can automatically return

Answers

Based on the values in cells B77 the function that can automatically be returned is Min().

What values would be returned?

In cells B77:B81, we are given the instruction to return the minimum value. This emans that the computer should aggreegate all of the values within the given range and return the smallest value.

When this instruction is inputted in a given case, we can expect that particular cell to return the lowest value. So, the function that would be applied to the cell is the Min() function.

Learn more about the min function here:

https://brainly.com/question/30236273

#SPJ1

draw the final products for the following two step reaction. the nucleophile selectively reacts once in each step.

Answers

The final products for the two-step reaction where the nucleophile selectively reacts once in each step reaction.

In a two-step reaction where the nucleophile selectively reacts once in each step, the reaction occurs in two steps.Step 1: In the first step, the nucleophile reacts with the given substrate to form an intermediate. Step 2: In the second step, the intermediate formed in the first step undergoes a reaction with the second reactant to form the final product.

The final products of the two-step reaction where the nucleophile selectively reacts once in each step are as follows: Step 1: The nucleophile attacks the substrate to form an intermediate Step 2: The intermediate formed in the first step reacts with the second reactant to form the final product.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

vinegar is a solution of acetic acid in water. if a 185 ml bottle of distilled vinegar contains 19.1 ml of acetic acid, what is the volume percent (v/v) of the solution?

Answers

The volume percent (v/v) of the vinegar solution with acetic acid comes out to be approximately 10.32%.

To calculate the volume percent (v/v) of the solution, we need to determine the ratio of the volume of the solute (acetic acid) to the volume of the solution (vinegar), and then express it as a percentage.

Volume percent (v/v) = (Volume of solute / Volume of solution) * 100

In this case, the volume of acetic acid is given as 19.1 ml, and the volume of the solution (vinegar) is 185 ml.

Volume percent (v/v) = (19.1 ml / 185 ml) * 100

                    = 0.1032 * 100

                    = 10.32%

Therefore, the volume percent (v/v) of the solution is approximately 10.32%.

To read more about solution, visit:

https://brainly.com/question/25326161

#SPJ11

5. how much of an 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay?

Answers

Potassium-40 has a half-life of 1.28 x 10^9 years. The amount remaining of a substance undergoing radioactive decay can be determined using the formalin = N0 (1/2)^(t/t1/2)where:N0 is the initial amount is the elapsed timet1/2 is the half-life of the substances is the amount remaining after time pugging in the values:Given:N0 = 800 g t = 3.9 x 10^9 yearst1/2 = 1.28 x 10^9 years

Formula = N0 (1/2)^(t/t1/2)Substitute the values = 800 g (1/2)^(3.9 x 10^9 / 1.28 x 10^9) = 800 g (1/2)^3 = 800 g (0.125) = 100 g (to the nearest 10 g)Thus, 100 g of the 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay. Where: N(t) is the amount of the radioactive substance at time t N0 is the initial amount of the radioactive substance λ is the decay constant (related to the half-life) t is the time elapsed For potassium-40 (K-40), the half-life is approximately 1.25 billion years, or 1.25 × 10^9 years.

Read more about radioactive here;https://brainly.com/question/1236735

#SPJ11

Which of the following best describes what happens to calcium ions during the relaxation period (phase) of a muscle twitch? They are being actively pumped back into the transverse tubules (T-tubules) They are undergoing passive transport back into the sarcoplasmic reticulum They are undergoing passive transport back into the transverse tubules (T-tubules) They are being actively pumped back into the sarcoplasmic reticulum

Answers

During the relaxation period of a muscle twitch, calcium ions are undergoing passive transport back into the sarcoplasmic reticulum.

What happens to calcium ions during the relaxation period of a muscle twitch?

After a muscle contraction, during the relaxation period, the muscle fiber returns to its resting state. During this phase, calcium ions play a crucial role.

Calcium ions are released from the sarcoplasmic reticulum into the sarcoplasm during muscle contraction, allowing the myosin heads to bind with actin filaments and initiate muscle contraction. However, once the contraction is complete, the muscle fiber needs to relax and prepare for the next contraction.

During the relaxation period, calcium ions are actively transported back into the sarcoplasmic reticulum. This active transport process requires energy in the form of ATP and is facilitated by calcium pumps located in the membrane of the sarcoplasmic reticulum.

By actively pumping calcium ions back into the sarcoplasmic reticulum, the concentration of calcium in the sarcoplasm decreases, leading to the relaxation of the muscle fiber.

Learn more about calcium ions

brainly.com/question/12985536

#SPJ11

A sample of solid ammonium chloride was placed in an evacuated container and heated so that it decomposed to ammonia gas and hydrogen chloride gas. After heating the total pressure in the container was 4.4atm. Calculate the Kp at this temperature for the decomposition reaction NH4CL(s) <--> NH3(g) + HCl(g)
using the ICE table I have it as I 0 0
C x x
E x x
is this correct and if not how do I go about solving this problem correctly?

Answers

Therefore, the concentration of NH4Cl is considered to be constant and so it is not included in the expression for Kp. Hence, it is not possible to calculate Kp at this temperature for the given reaction.

The given balanced chemical equation is

NH4Cl(s) ⇌ NH3(g) + HCl(g)

The initial pressure of the system is 0 atm since ammonium chloride is in solid form.

When it is heated, it decomposes to NH3(g) and HCl(g).Let the partial pressure of NH3 be x atm and that of HCl be x atm.

Total pressure of the system = 4.4 atm

Now, according to the ideal gas law,

PV = nRT ……

(1)Here, P is the partial pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the universal gas constant and T is the temperature of the gas. The number of moles of NH3 and HCl are equal since the reaction is 1:1. Let the number of moles of NH3 and HCl be n. From the balanced chemical equation, 1 mole of NH4Cl decomposes to form 1 mole of NH3 and 1 mole of HCl. So, the initial number of moles of NH4Cl is n. Let the change in the number of moles of NH4Cl be x. So, the number of moles of NH4Cl left at equilibrium = n - x. At equilibrium, the number of moles of NH3 and HCl = n (from the balanced chemical equation).Volume of the system is constant. So, the volume occupied by NH3 and HCl together is equal to the volume occupied by NH4Cl initially. The pressure exerted by NH4Cl is negligible compared to the pressure exerted by NH3 and HCl. So, we can consider the pressure of NH4Cl to be zero.

Partial pressure of NH3 = x

Partial pressure of HCl = x

Total pressure of the system = 4.4 atm

Partial pressure of NH3 + partial pressure of HCl = total pressure of the system

x + x = 4.4⇒ 2x = 4.4⇒ x = 2.2 atm

Now, the number of moles of NH3 and HCl = n = initial number of moles of NH4Cl= n-x= n-2.2Since 1 mole of NH4Cl decomposes to form 1 mole of NH3 and 1 mole of HCl, so the number of moles of NH4Cl decomposed = 2.2 moles.

Kp is the equilibrium constant expressed in terms of partial pressures. It is given by

Kp = P(NH3) * P(HCl) / P(NH4Cl)

At equilibrium, partial pressure of NH3 = 2.2 atm and that of HCl is also 2.2 atm.

Partial pressure of NH4Cl is zero since it is in solid state.

Kp = 2.2 * 2.2 / 0Kp is undefined, since the partial pressure of NH4Cl is zero or negligible.

to know more about equilibrium visit:

https://brainly.com/question/30694482

#SPJ11

How many sp3 hybridized carbons are present in aspirin?

How many sp2 hybridized carbons are present in naproxen?

what is the molecular formula of acetaminophen?

Similarities of the structure of aspirin,ibuprofen and naproxen

Answers

Aspirin is an analgesic and anti-inflammatory drug with chemical formula C9H8O4, there is only one sp3 hybridized carbon present in aspirin. Naproxen contains one sp3 hybridized carbon and three sp2 hybridized carbons. The similarities in the structures of aspirin, ibuprofen, and naproxen include the presence of a carboxylic acid functional group, a phenyl ring, and an aromatic ring. They also exhibit analgesic and anti-inflammatory properties.

Aspirin is an analgesic and anti-inflammatory drug with chemical formula C9H8O4. Its structure comprises of a carboxylic acid group attached to a phenyl ring and a carbonyl group attached to another phenyl ring. The molecule contains one sp3 hybridized carbon that is bonded to three oxygen atoms (two of which are in the carboxylic acid group), and another sp2 hybridized carbon that is part of the carbonyl group. Therefore, there is only one sp3 hybridized carbon present in aspirin.On the other hand, naproxen contains one sp3 hybridized carbon and three sp2 hybridized carbons, as the molecule has a carboxylic acid group attached to a phenyl ring and two other phenyl rings attached to the main chain.The molecular formula of acetaminophen is C8H9NO2. The structure of acetaminophen is similar to that of aspirin, with a benzene ring connected to an amide functional group. The similarities in the structures of aspirin, ibuprofen, and naproxen include the presence of a carboxylic acid functional group, a phenyl ring, and an aromatic ring. They also exhibit analgesic and anti-inflammatory properties.

To know more about anti-inflammatory visit:

https://brainly.com/question/32615185

#SPJ11

a. The sp³ hybridized carbons that are present in aspirin is one.

b. The sp² hybridized carbons that are present in naproxen is three.

c. The molecular formula of acetaminophen is C₈H₉NO₂.

d. Similarities of the structure of aspirin, ibuprofen and naproxen is have a carboxylic acid group and a cyclic ring structure.

There is only one sp³ hybridized carbon in aspirin. The sp³ hybridized carbon in aspirin is the carbon in the carboxylic acid functional group, which is bonded to the oxygen atom.

In naproxen, there are three sp² hybridized carbons present. These carbons are present in the three aromatic rings present in naproxen. The molecular formula of naproxen is C₁₄H₁₄O₃.

Similarities of the structure of aspirin, ibuprofen, and naproxen:

All three drugs have a carboxylic acid group and a cyclic ring structure. They are nonsteroidal anti-inflammatory drugs (NSAIDs) that are used for pain relief, among other things.

Learn more about aspirin: https://brainly.com/question/31597007

#SPJ11

the complete combustion of 0.441 g of a snack bar in a calorimeter (ccal = 6.15 kj/°c) raises the temperature of the calorimeter by 1.63 °c. calculate the food value (in cal/g) for the snack bar.

Answers

The food value (in cal/g) for the snack bar can be calculated using the given information. The food value (in cal/g) for the snack bar is 1.623 cal/g.

Given that the mass of the snack bar, m = 0.441 g The calorimeter constant, ccal = 6.15 kj/°cThe rise in temperature of the calorimeter, ΔT = 1.63 °c We know that the heat evolved by the combustion of the snack bar is absorbed by the calorimeter. Hence, the heat evolved by the combustion of the snack bar = Heat absorbed by the calorimeter From the formula, Q = m × c × ΔTwhere,Q = Heat evolved by the combustion of the snack bar, and c = Specific heat capacity of water = 1 cal/g °c Now,Q = m × c × ΔT = 0.441 g × 1 cal/g °c × 1.63 °c= 0.717cal

Thus, the heat evolved by the combustion of the snack bar is 0.717 cal. Now, the food value of the snack bar (in cal/g) can be calculated by dividing the heat evolved by the mass of the snack bar. Food value = Heat evolved / mass of snack bar= 0.717 cal / 0.441 g= 1.623 cal/g Therefore, the food value (in cal/g) for the snack bar is 1.623 cal/g.

To know more about calorimeter refer to:

https://brainly.com/question/30873343

#SPJ11

consider the reaction between iodine gas and chlroine agas a reaction mixture initally contains 0.25

Answers

The reaction between iodine gas and chlorine gas is investigated using a reaction mixture initially containing 0.25 moles iodine and 0.35 moles chlorine. Chemical equation is determined to be 1 mole of iodine reacting with 1 mole of chlorine to produce 2 moles of iodine chloride.

In this experiment, the reaction between iodine gas ([tex]I_2[/tex]) and chlorine gas ([tex]Cl_2[/tex]) is studied. The reaction mixture is prepared with an initial amount of 0.25 moles of iodine and 0.35 moles of chlorine. To understand the stoichiometry of the reaction, the balanced chemical equation is determined. Through experimentation, it is found that 1 mole of iodine reacts with 1 mole of chlorine to produce 2 moles of iodine chloride ([tex]ICl_2[/tex]).

Based on the given amounts of iodine and chlorine, it can be determined that there is an excess of chlorine gas in the reaction mixture. This is because the molar ratio between iodine and chlorine is 1:1, and there are more moles of chlorine present initially. Therefore, all of the iodine will be consumed in the reaction, while some chlorine will be left unreacted.

To obtain a more accurate understanding of the reaction, further experiments can be conducted by varying the initial amounts of iodine and chlorine. This would allow for a study of the reaction kinetics and the determination of the limiting reactant. Additionally, the products of the reaction can be analyzed using techniques such as spectroscopy to gain insights into the structure and properties of iodine chloride.

Learn more about stoichiometry here:  

https://brainly.com/question/28780091

#SPJ11

The solubility product Ksp for Ag3PO4 is 3.0 x 10^-18. what is the solubility of silver phosphate in a solution which also contains .07 moles of silver nitrate per liter

Answers

The solubility product constant (Ksp) for [tex]Ag_3PO_4[/tex]  is [tex]3.0 * 10^-18[/tex]. This determines the solubility of silver phosphate in a solution that contains 0.07 moles of silver nitrate per liter.

The solubility product constant (Ksp) is a measure of the maximum concentration of a sparingly soluble salt that can dissolve in a solvent at equilibrium. In the case of [tex]Ag_3PO_4[/tex], the Ksp value is given as [tex]3.0 * 10^-18[/tex]. This means that at equilibrium, the concentration of silver ions [tex](Ag^+)[/tex] and phosphate ions [tex](PO_4^3^-)[/tex] multiplied together should equal [tex]3.0 * 10^-18[/tex].

To find the solubility of silver phosphate in a solution that contains 0.07 moles of silver nitrate per liter, we need to consider the common ion effect. Silver nitrate dissociates in water to produce silver ions ([tex](Ag^+)[/tex], which are already present in the solution. Since [tex]Ag_3PO_4[/tex] contains silver ions as well, the concentration of silver ions from both sources will affect the solubility of silver phosphate.

The presence of 0.07 moles of silver nitrate per liter will increase the concentration of silver ions in the solution. Using the stoichiometry of [tex]Ag_3PO_4[/tex], we can calculate the molar solubility of silver phosphate by comparing the concentrations of silver ions from silver phosphate and silver nitrate. By doing so, we can determine the solubility of silver phosphate in the given solution.

Learn more about solubility product constant here:

https://brainly.com/question/1419865

#SPJ11

The beverage industry's partnership "RefrigerantsNaturally!" is attempting to:
Question options:
O environmental racism
O mount of arable land
O reduce the use of ozone-depleting chemicals
O extended product responsibility

Answers

RefrigerantsNaturally! is attempting to reduce the use of ozone-depleting chemicals.The partnership "RefrigerantsNaturally!" aims at reducing the use of ozone-depleting chemicals in the beverage industry.

The beverage industry, just like any other industry, has been the main contributor to the production of ozone-depleting substances such as CFCs and HCFCs. Consequently, the partnership seeks to identify eco-friendly and sustainable alternatives to these harmful chemicals and champion their adoption in the industry. By so doing, the partnership aims to reduce the amount of ozone-depleting substances released into the atmosphere and to create a more sustainable and environmentally-friendly beverage industry.

The initiative involves significant changes in the beverage industry's equipment and processes, including changing refrigeration technologies, replacing outdated equipment with energy-efficient alternatives, and using natural refrigerants such as CO2, hydrocarbons, and ammonia. The end goal is to create a greener and more sustainable industry that can serve its customers without causing any harm to the environment.Furthermore, the "RefrigerantsNaturally!" partnership is also an example of extended product responsibility, where the beverage industry is taking responsibility for the environmental impact of its products beyond their production and disposal.

The industry is playing an active role in reducing its ecological footprint by investing in eco-friendly technologies and practices, and educating its customers on the importance of environmental conservation. In conclusion, the "RefrigerantsNaturally!" partnership is a critical step towards creating a sustainable and environmentally-friendly beverage industry.

To learn more about ozone depletion : https://brainly.com/question/27768012

#SPJ11

how much ice at a temperature of -10.0 ∘c must be dropped into the water so that the final temperature of the system will be 34.0 ∘c ?

Answers

The mass of ice needed is 1.94 times the mass of water.

To calculate the amount of ice needed to raise the temperature of water from -10.0 °C to 34.0 °C, we need to consider the heat transfer that occurs during the process.

The amount of heat transferred, Q, can be calculated using the formula:

Q = m_ice * C_ice * ΔT_ice + m_water * C_water * ΔT_water

Where:

Q is the total heat transferred

m_ice is the mass of ice

C_ice is the specific heat capacity of ice

ΔT_ice is the change in temperature of the ice (final temperature - initial temperature)

m_water is the mass of water

C_water is the specific heat capacity of water

ΔT_water is the change in temperature of the water (final temperature - initial temperature)

Since the ice is initially at -10.0 °C and needs to be raised to 0.0 °C (melting point of ice), ΔT_ice = 0 - (-10.0) = 10.0 °C.

Similarly, for the water, ΔT_water = 34.0 - 0 = 34.0 °C.

The specific heat capacity of ice, C_ice, is 2.09 J/(g·°C).

The specific heat capacity of water, C_water, is 4.18 J/(g·°C).

Assuming no heat loss to the surroundings, the heat transferred from the ice to the water is equal to the heat absorbed by the water.

Since the ice is at a lower temperature than the water, it will need to absorb heat to reach its melting point (0.0 °C). The heat absorbed by the ice can be calculated using the formula:

Q_ice = m_ice * C_ice * ΔT_ice

On the other hand, the water needs to absorb heat to reach the final temperature of 34.0 °C. The heat absorbed by the water can be calculated using the formula:

Q_water = m_water * C_water * ΔT_water

Since the heat transferred from the ice to the water is equal, we have:

Q_ice = Q_water

Substituting the values:

m_ice * C_ice * ΔT_ice = m_water * C_water * ΔT_water

Now, we can solve for the mass of ice, m_ice:

m_ice = (m_water * C_water * ΔT_water) / (C_ice * ΔT_ice)

Given that the final temperature of the system will be 34.0 °C, we assume that the water is initially at the same temperature.

Let's say we have a mass of water, m_water, in grams. We can substitute the values and calculate the mass of ice needed:

m_ice = (m_water * 4.18 * 34.0) / (2.09 * 10.0)

Simplifying the equation further, we have:

m_ice = (1.94 * m_water)

Therefore, the mass of ice needed is 1.94 times the mass of water.

In conclusion, to determine the specific mass of ice needed to raise the temperature of water from -10.0 °C to 34.0 °C, you would need 1.94 times the mass of water.

To know more about mass visit:

https://brainly.com/question/837939

#SPJ11

The following equilibria were attained at 823 K:
CoO(s) + H2(g) Co(s) + H2O(g)
K_{c} = 68
CoO(s) + CO(g) Co(s) + CO2(g)
K_{c} = 500

Answers

The equilibrium constant for the reaction H2(g) + CO2(g)   H2O(g) + CO(g)is 34000.

At 823 K, the given equilibria were attained and given below; CoO(s) + H2(g) Co(s) + H2O(g)   K_{c} = 68CoO(s) + CO(g) Co(s) + CO2(g)   K_{c} = 500We need to calculate the equilibrium constant for the following reaction;H2(g) + CO2(g)   H2O(g) + CO(g)The overall reaction can be written by summing up the given two equations; CoO(s) + H2(g) Co(s) + H2O(g) CoO(s) + CO(g) Co(s) + CO2(g) ------------------------- CoO(s) + H2(g) + CoO(s) + CO(g) Co(s) + H2O(g) + Co(s) + CO2(g) ------------------------- H2(g) + CO2(g)   H2O(g) + CO(g).

To calculate the equilibrium constant K_{c} for the above overall reaction. We can calculate K_{c} by using the equilibrium constants of the given reactions. Here is the solution below; K_{c (overall)} = K_{c1} x K_{c2}K_{c (overall)} = 68 x 500K_{c (overall)} = 34000By multiplying K_{c1} and K_{c2}, we got the overall equilibrium constant K_{c} as 34000.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas. In which flask are the molecules least polar and therefore most ideal in behavior? a. Flask A b. Flask B c. Flask C d. All are the same. e. More information is needed to answer this.

Answers

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct ..

STP refers to Standard Temperature and Pressure. Standard temperature is 0°C (273.15K) and the standard pressure is 1 atm pressure.

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas.

According to the given information, we can draw the following conclusion;

The molecule with least polar is N2 gas, so Flask C contains N2 gas is least polar. Nitrogen is a gas that is composed of two nitrogen atoms, and because both of these atoms are identical, the molecule is symmetric. There are no polar bonds in the nitrogen molecule because the two bonds between the nitrogen atoms are the same, and the electronegativity difference between nitrogen and nitrogen is zero.

The electronegativity of Nitrogen is 3.04, whereas for Oxygen it is 3.44. NH3 and NO2 have polarity because the electronegativity of Nitrogen is higher than Hydrogen and Oxygen, which are 2.20 and 3.44 respectively.

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct answer.

To know more about molecules visit:

https://brainly.com/question/32298217

#SPJ11

At an altitude of 20 km the temperature is 217 K and the pressure is 0.050 atm. (a) What is the rms speed, the mean free path and collision frequency of N2 molecules at these conditions? (b) What is the probability that a nitrogen molecule at 25 C and 1 atmosphere pressure will travel 100 nm without undergoing a collision?

Answers

a) The rms speed is [tex]467\text{ m/s}[/tex], mean free path is [tex]0.44\text{ }\mu \text{m}[/tex], and the collision frequency is [tex]3.5\times {{10}^{8}}\text{ collisions/s}[/tex]

b) At a temperature of 25°C and a pressure of 1 atmosphere, the likelihood of a nitrogen molecule traveling a distance of 100 nm without experiencing a collision is 34%.

a) At a height of 20 km, the temperature measures 217 K while the pressure registers at 0.050 atm. The rms speed of N2 molecules is given by the formula shown below.

[tex]{{v}_{rms}}=\sqrt{\frac{3kT}{m}}[/tex]

Where k is the Boltzmann constant, T is the temperature, m is the mass of N2, and vrms is the root-mean-square speed of the N2 molecules. Substitute the values of the constants and the variables given into the formula and solve.

[tex]{{v}_{rms}}=\sqrt{\frac{3(1.38\times {{10}^{-23}}\text{ J/K})(217\text{ K})}{(28\text{ g/mol})(6.02\times {{10}^{23}}\text{ molecules/mol})}}=467\text{ m/s}[/tex]

The mean free path of N2 molecules at these conditions is given by the formula shown below.

[tex]{{\lambda }_{mfp}}=\frac{1}{\sqrt{2}\pi {{d}^{2}}n}\sqrt{\frac{8kT}{\pi m}}[/tex]

Where d is the diameter of a N2 molecule, n is the number density of N2 molecules, m is the mass of N2, k is the Boltzmann constant, T is the temperature, and λmfp is the mean free path of the N2 molecules. Substitute the values of the constants and the variables given into the formula and solve.

[tex]{{\lambda }_{mfp}}=\frac{1}{\sqrt{2}\pi {{(3.64\times {{10}^{-10}}\text{ m})}^{2}}(2.52\times {{10}^{19}}\text{ molecules/m}^{3})}\sqrt{\frac{8(1.38\times {{10}^{-23}}\text{ J/K})(217\text{ K})}{\pi (28\text{ g/mol})(6.02\times {{10}^{23}}\text{ molecules/mol})}}=0.44\text{ }\mu \text{m}[/tex]

The collision frequency of N2 molecules at these conditions is given by the formula shown below.

[tex]{{Z}_{coll}}=n\sqrt{2}\pi {{d}^{2}}{{v}_{rms}}[/tex]

Where n is the number density of N2 molecules, d is the diameter of a N2 molecule, v is the rms speed of the N2 molecules, and Zcoll is the collision frequency of the N2 molecules. Substitute the values of the constants and the variables given into the formula and solve.

[tex]{{Z}_{coll}}=(2.52\times {{10}^{19}}\text{ molecules/m}^{3})\sqrt{2}\pi {{(3.64\times {{10}^{-10}}\text{ m})}^{2}}(467\text{ m/s})=3.5\times {{10}^{8}}\text{ collisions/s}[/tex]

b) The mean free path of N2 molecules at 25°C and 1 atmosphere pressure is given by the formula shown below.

[tex]{{\lambda }_{mfp}}=\frac{1}{\sqrt{2}\pi {{d}^{2}}n}\sqrt{\frac{8kT}{\pi m}}[/tex]

Where d is the diameter of a N2 molecule, n is the number density of N2 molecules, m is the mass of N2, k is the Boltzmann constant, T is the temperature, and λmfp is the mean free path of the N2 molecules.

Substitute the values of the constants and the variables given into the formula and solve.

[tex]{{\lambda }_{mfp}}=\frac{1}{\sqrt{2}\pi {{(3.64\times {{10}^{-10}}\text{ m})}^{2}}(2.69\times {{10}^{25}}\text{ molecules/m}^{3})}\sqrt{\frac{8(1.38\times {{10}^{-23}}\text{ J/K})(298\text{ K})}{\pi (28\text{ g/mol})(6.02\times {{10}^{23}}\text{ molecules/mol})}}=68\text{ nm}[/tex]

The probability that a nitrogen molecule at 25°C and 1 atmosphere pressure will travel 100 nm without undergoing a collision is calculated using the exponential function, as shown below.

[tex]{{P}_{coll}}={{e}^{-\frac{x}{{{\lambda }_{mfp}}}}}[/tex]

Where x is the distance travelled by a nitrogen molecule, and Pcoll is the probability that a nitrogen molecule at 25°C and 1 atmosphere pressure will travel 100 nm without undergoing a collision. Substitute the values of the constants and the variables given into the formula and solve.

[tex]{{P}_{coll}}={{e}^{-\frac{100\text{ nm}}{68\text{ nm}}}}[/tex]=0.34 or 34%

Therefore, at a temperature of 25°C and a pressure of 1 atmosphere, the likelihood of a nitrogen molecule traveling a distance of 100 nm without experiencing a collision is 34%.

Learn more about rms speed at: https://brainly.com/question/6853705

#SPJ11

The vapor pressure of a 1 M ionic solution is different from the vapor pressure of a 1 M nonelectrolyte solution. In both cases, the solute is nonvolatile. Which set of diagrams in Figure 1 (below) best represents the differences between the two solutions and their vapors? * Option (a) best represents 1 M ionic and nonionic solutions, and the resulting relative vapor pressures. Option (b) best represents 1 M ionic and nonionic solutions, and the resulting relative vapor pressures. Option (c) best represents 1 M ionic and nonionic solutions, and the resulting relative vapor pressures. Option (d) best represents 1 M ionic and nonionic solutions, and the resulting relative vapor pressures.

Answers

The correct option that best represents 1 M ionic and nonionic solutions, and the resulting relative vapor pressures is option (b).

Explanation: Vapor pressure is the pressure exerted by a vapor over a liquid in a closed container when the rates of condensation and vaporization are equal.In a solution, the solvent and solute both have vapor pressures and the solution's vapor pressure is the sum of their partial pressures. Vapor pressure depends on temperature, concentration, and the nature of solute and solvent particles. The vapor pressure of a 1 M ionic solution is lower than that of a 1 M non-electrolyte solution.

The lowering of vapor pressure is due to the nonvolatile nature of the solute which does not evaporate and hence does not contribute to the vapor pressure. It is caused by the presence of ions which interfere with the formation of the vapor phase and reduces the number of solvent particles available to escape into the vapor phase.Option (b) best represents 1 M ionic and nonionic solutions and the resulting relative vapor pressures. It shows that the vapor pressure of the solution decreases with increasing concentration of ionic solutes. It correctly represents the fact that the vapor pressure of a non-electrolyte solution is higher than that of an ionic solution.  

To know more about vapor pressures visit:-

https://brainly.com/question/29640321

#SPJ11

an atom of which of the following elements has the highest electronegativity? a)k b)as c)ba d)si e)br

Answers

The atom of Bromine (Br) has the highest electronegativity. This means option (e) is correct.

Electronegativity is the power of an atom to attract the shared pair of electrons towards it in a covalent bond. The electronegativity of the elements increases from left to right across the period of the periodic table. As we move from left to right across the period of the periodic table, the nuclear charge increases and the atomic radius decreases, resulting in a higher effective nuclear charge acting on the valence electrons, making them more strongly attracted to the nucleus.

The electronegativity of the elements decreases as we move down the group of the periodic table. This is due to the fact that, as we move down the group, the number of shells in the element increases, shielding the valence electrons from the nucleus' attractive force, resulting in a weaker effective nuclear charge acting on the valence electrons.

To know more about electronegativity visit:

https://brainly.com/question/29597673

#SPJ11

what is the expected major product for the following reaction? i ii iii iv v excess cl2

Answers

The expected major product for the given reaction i, ii, iii, iv, v in excess Cl2. 2,2,3-trichloropentane The formation of 2,2,3-trichloropentane involves the abstraction of a hydrogen from the secondary carbon atom.

In this reaction, the compound with the molecular formula C5H12 undergoes chlorination in the presence of excess chlorine. The given reaction has five types of hydrogens as shown below: i) Methyl hydrogens (CH3 group)ii) Primary hydrogens iii) Secondary hydrogens iv) Tertiary hydrogen v) Vinyl hydrogens The reactivity of the different hydrogens towards chlorine is different.

This difference in reactivity is due to the difference in the relative stabilities of the products obtained after H-Cl bond dissociation. The stability of the carbocation intermediate formed after H-Cl bond dissociation determines the reactivity of the hydrogens towards chlorine.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

Other Questions
which is a good strategy for evaluating a health and fitness center? Daily 120 patients come to a walk-in clinic to visit the doctors or get tested. The clinic operates 8 hours a day, and is closed on both Saturdays and Sundays. On average, there are 5 patients in the clinic at any point in time. 3-1. What is the weekly rate of patients visit at this clinic? What is the monthly rate, considering that the clinic works 22 days a month (write down the unit for your calculated value)? draw a structure for (1s,2r)-2-methylcyclopentanecarbaldehyde. the classic goodyear blimp is essentially a helium balloon--a big one, containing 5700 m3 of helium. suppose f(x,y,z)=x2 y2 z2 and w is the solid cylinder with height 5 and base radius 5 that is centered about the z-axis with its base at z=1. enter as theta. find the average rate of change of the function over the given intervals. f(x) = 12x^3 + 12; a) [5,7]b) [-4,4] what is the distribution of the test statistic if the null hypothesis is true Covid-19 has created a volatile operating environment for all companies and one major concern is the impact on asset values. Companies will need to carefully consider the impairment of their assets and will need to make key judgements and sensitivity of assumptions regarding their recoverable amount calculations.Required: Briefly discuss the impact of Covid-19 on any two aspects of the impairment testing on intangibles. Please ensure that your discussion is relevant to the assets specified. (5 Marks) find the first partial derivatives of the function. (sn = x1 2x2 ... nxn; i = 1, ..., n. give your answer only in terms of sn and i.) u = sin(x1 2x2 nxn) Given K units of capital and L units of labor, a company produces Q = 2K1/2 [1/3 units of its product. Each unit of capital costs $3 and each unit of labor costs $1. The selling price for the product is $3 per unit. What is the maximum profit? A. 4 B. 6 C. 8 D. 12 25. In a market, the inverse supply function is given by p (q) = aq + b for some positive constants a and b. The equilibrium price is 7 and the equilibrium quantity is 2. If the producer surplus is 4, then A. a = 1, b = 5 B. a = 2, b=3 C. a = 3, b=1 D. a = 3, b = 2 The main difference between adverse selection and moral hazard is: The former is an information asymmetry problem and the latter is not. The former happens before a contract and the latter happens after. The former is not an information asymmetry problem and the latter is. The former happens after a contract and the latter happens before. All costs of a product that are considered assets in a company's balance sheet when the costs are incurred and that are expensed as cost of goods sold only when the product is sold is called? Owentoriable costs O Product costs Variable costs Foodcasts What are the products of photosynthesis?A. Sugars and oxygenB. Carbon dioxide, water, and sunlightC. Carbon dioxide, sunlight, oxygen, water, and sugarsD. Carbon dioxide, oxygen, and water What figure of speech is regardless grown Answer questions in two paragraphs.How does "Regret" by Guy de Maupassant represent middle-classvalues and behaviors? When you answer this question, be sure toconsider why M. Savel keeps his love f .Whitman Company has just completed its first year of operations. The company's absorption costing income statement for the year appears below:Whitman Company Income Statement Sales (39,000 units x $40.60 per unit) $1,542,800Cost of goods sold (38,000 units x $24 per unit) 912,000Gross margin 630,800Selling and administrative expenses 437,000Net operating income $193,800The company's selling and administrative expenses consist of $285,000 per year in fixed expenses and $4 per unit sold in variable expenses. The $24 per unit product cost given above is computed as follows:Direct materials $11Direct labor 5Variable manufacturing overhead 3Fixed manufacturing overhead ($240,000 x 48,000 units) 5Absorption costing unit product cost $241. Prepare the company's income statement in the contribution format using variable costing.2. Reconcile any difference between the net operating income on your variable costing income statement and the net operating income on the absorption costing income statement. Both sets of values have an average of 13. Is Set A's standard deviation smaller, larger, or about the same as Set B's?(Note: This question can be answered by knowing the concept of standard deviation, without actually computing the standarddeviation).Set A: 1 2 3 23 24 25Set B: 9 10 11 14 16 18A LargerB) About the sameNot enough information provided to tellD) Smaller Demand for a certain product is forecast to be 851 annually. The product follows a seasonal pattern, for which the January monthly index is 0.64. What is the seasonally-adjusted sales forecast for January? Wildhorse Company purchased a delivery truck for $40,000 on July 1, 2022. The truck has an expected salvage value of $4,000, and is expected to be driven 100,000 miles over its estimated useful life of 8 years. Actual miles driven were 15,000 in 2022 and 12,000 in 2023. Wildhorse uses the straight-line method of depreciation. (a) Your answer is partially correct. Compute depreciation expense for 2022 and 2023. Depreciation Expense 2022 2023 Straight-line method $ $ $ 4500 Prepare the journal entry to record 2022 depreciation. (Credit account titles are automatically indented when amount is entered. Do not indent manually. If no entry is required, select "No Entry for the account titles and enter for the amounts.) Account Titles and Explanation Debit Credit Prepare the journal entry to record 2023 depreciation. (Credit account titles are automatically indented when amount is entered. Do not indent manually. If no entry is required, select "No Entry for the account titles and enter for the amounts.) Account Titles and Explanation Debit Credit Show how the truck would be reported in the December 31, 2023, balance sheet. WILDHORSE COMPANY Partial Balance Sheet Select the atom(s) that can hydrogen bond to the positive pole of water: Select the atom(s) that can hydrogen bond to the negative pole of water: 7 0 Determine the maximum number of water molecules that could theoretically form hydrogen bonds with an asparagine molecule at pH 7. number of water molecules: Consider any intermolecular attractions between the asparagine molecule and water to be hydrogen bonds.