a video inspection snake is use
Answer:
very good thx
Explanation:
A rod that was originally 100-cm-long experiences a strain of 82%. What is the new length of the rod?
122 cm
182 cm
82 cm
22 cm
108.2 cm
Answer:
The new length of the rod is 182 cm.
Explanation:
Given that a rod that was originally 100-cm-long experiences a strain of 82%, to determine what is the new length of the rod, the following calculation must be performed:
100 x 1.82 = X
182 = X
Therefore, the new length of the rod is 182 cm.
Determine the resistance values for a voltage divider that must meet the following specifications:_______.
a. The current drawn from the source under unloaded condition is not to exceed 5 mA.
b. The sourcevoltage is to be 10 V, and the required outputs are to be 5 V and 2.5 V.
c. Sketch the circuit.
d. Deter-mine the effect on the output voltages if a load is connected to each tap one at a time.
Answer:
i) when circuit is unloaded : R1 + R2 = 2kΩ.
ii) when 5V output voltage is applied : R1 = 1 kΩ , R2 = 1 kΩ
iii) when 2.5 v output voltage is applied : R1 = 1500 Ω, R2 = 500 Ω
iv) when: R1 = 1 kΩ , R2 = 1 kΩ is connected in parallel output voltage < 5 V
When : R1 = 1500 Ω, R2 = 500 Ω is connected in parallel output voltage > 2.5V
Explanation:
Current drawn from source under loaded condition ≤ 5 mA
source voltage = 10 v , required output = 5 v , 2.5 v
attached below is the sketch of the circuit
Resistance values
i) when the circuit is unloaded
Req = R1 + R2 = 2 kΩ ( Req = Vs / I = 10 / 5*10^-3 = 2 kΩ )
ii) when output voltage = 5 v
we will apply voltage divider rule
R1 = 1 kΩ ,
R2 = 1 kΩ
iii) When the output voltage = 2.5 v
applying voltage divider rule
R1 = 1500 Ω
R2 = 500 Ω
iv) when the load is connected to each tap one at a time
i.e. when the resistance are in parallel
when: R1 = 1 kΩ , R2 = 1 kΩ is connected in parallel output voltage < 5 V
When : R1 = 1500 Ω, R2 = 500 Ω is connected in parallel output voltage > 2.5V
attached below is the detailed solution to the given problem
What statement about the print() function is true?
print() has a variable number of parameters.
print() can have only one parameter.
print() can be used to obtain values from the keyboard.
print() does not automatically add a line break to the display.
Explanation:
print() has a variable number of parameters. this is the answer.
hope this helps you
have a nice day
Why water parameters of Buriganga river vary between wet and dry seasons?
Explain.
Steam enters a nozzle operating at steady state at 20 bar, 2808C, with a velocity of 80 m/s. The exit pressure and temperature are 7 bar and 1808C, respectively. The mass flow rate is 1.5 kg/s. Neglecting heat transfer and potential energy, determine (a) the exit velocity, in m/s. (b) the inlet and exit flow areas, in cm2
Answer:
A) 600.8 m/s
B) (i) 22.5 cm^2 (ii) 7.11 cm^2
Explanation:
Given data :
P1 = 20 bar , T1 = 2808°C
P2 = 7 bar , T2 = 1808°C
mass flow rate = 1.5 kg/s
Using the superheated vapor region in Table A-4
h1 = 2976.4 KJ/kg , v1 = 0.1200 m^3/kg
h2 = 2799.1 KJ/kg , v2 = 0.2847 m^3/kg
A) calculate exit velocity ( m/s )
given that we are to neglect heat transfer and potential energy
V2 ( exit velocity ) = ( V1^2 + 2 (√h1 - h2 )
= [ (80)^2 + 2 ( √ 2976.4 - 2799.1 )
= 600.8 m/s
B) calculate the inlet and exit flow areas ( cm^2 )
i) Inlet flow area
A1 = ( m * v1 ) / V1
= ( 1.5 * 0.1200 )/ 80 = 22.5 cm^2
ii) exit flow area
A2 = ( m * v2 ) / V2
= ( 1.5 * 0.2847 ) / 600.8 = 7.11 cm^2
Explain ROLAP, and list the reasons you would recommend its use in the relational database environment.
Answer:
ROLAP is a branch of OLAP that is used to contain Relational database ( RDB ). which is a very fast database ( quick process of queries )
Very fast to access and also fast in processing queries provides multidimensional view of data / supports multidimensional database schema with RDBMssupports large databasesExplanation:
ROLAP ( Relational On-line Analytical processing ) is a branch of OLAP that is used to contain Relational database ( RDB ).
Advantages of ROLAP ( reasons for the use of ROLAP )
Very fast to access ( fast in processing queries )provides multidimensional view of data / supports multidimensional database schema with RDBMssupports large databasesI am having trouble understanding how I got these wrong on my test. Is there something I am missing with xor?
Answer:
your answer is correct
Explanation:
You have the correct mapping from inputs to outputs. The only thing your teacher may disagree with is the ordering of your inputs. They might be written more conventionally as ...
A B Y
0 0 1
0 1 0
1 0 0
1 1 1
That is, your teacher may be looking for the pattern 1001 in the last column without paying attention to what you have written in column B.
write a verilog description of the following combinational circuit using concurrent statements. Each gate has a 5-ns delay, excluding the inverter, which has a 2-ns delay. (consider the below circuit is a full module)
Answer: Hello your question is incomplete attached below is the complete question
answer:
attached below
Explanation:
In this Verilog description we will refer to figure attached below
we will make some representation which are :
Represent outputs of the input AND gates = P
Represent outputs of the input NOR gates = Q
Inverter = R
attached below is the Verilog description
Apart from the type of emergency, what factors affect the decision on weather to evacuate or shelter in place?
Answer:
. 1. Type of building
2. Location of emergency
3. Extent of emergency
Explanation:
1. The kind of building in which people find themselves could be a factor that can be used to make this decision. a lot of buildings can be easily affected by disasters such as explosions or tornadoes the extent of the effect is dependent on how the building is constructed. in some situations it is better to shelter in, while in others it is best to evacuate.
2. Another factor to be considered is the location or area where this is happening it is good to consider this so that people can be safely moved given that help can be easily accessed or if best to stay in.
3. The last is the extent of what is happening. The risk involved is one way of making the choice to evacuate or to stay.
The factors that affect the decision on whether to evacuate or shelter in place include:
Type of building.Location of emergency.Extent of emergencyIt should be noted that the building where an individual lives play a vital role during emergencies. Buildings that have poor foundations can easily be affected during emergencies.
Another factor that should be considered is the location where the emergency is taking place. Lastly, the extent of the emergency can determine if the person should stay or not.
Learn more about emergencies on:
https://brainly.com/question/3237467
Unfiltered full wave rectifier with a 120 V 60 Hz input produces an output with a peak of 15V. When a capacitor-input filter and a 1k ohm load are connected the DC output voltage is 14V. What is... The value of the capacitor? The value of the peak to peak ripple voltage?
Answer:
[tex]V_{pp}=2V[/tex]
Explanation:
Source Voltage [tex]V= 120V[/tex]
Frequency [tex]f=60Hz[/tex]
Peak output voltage [tex]Vp=15V[/tex]
Peak Output Voltage with filter [tex]V_p'=14V[/tex]
Generally the equation for Peak to peak voltage is mathematically given by
[tex]V_p'=V_p-\frac{V_{pp}}{2}[/tex]
Therefore
[tex]V_{pp}=2(V_p-v_p')[/tex]
[tex]V_{pp}=2(15-14)[/tex]
[tex]V_{pp}=2V[/tex]
state two disadvantages and two advantages of a simple manometer.
Water is boiled in a pot covered with a loosely fitting lid at a location where the pressure is 85.4 kPa. A 2.61 kW resistance heater with 84.5% efficiency supplies heat to the pot. How many minutes will it take to boil 6.03 kg of water?
Answer:
t = 6179.1 s = 102.9 min = 1.7 h
Explanation:
The energy provided by the resistance heater must be equal to the energy required to boil the water:
E = ΔQ
ηPt = mH
where.
η = efficiency = 84.5 % = 0.845
P = Power = 2.61 KW = 2610 W
t = time = ?
m = mass of water = 6.03 kg
H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Therefore,
(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)
[tex]t = \frac{1.362\ x\ 10^7\ J}{2205.45\ W}[/tex]
t = 6179.1 s = 102.9 min = 1.7 h
Frame 4 questions about the challenges that astronauts have to face in space.
Answer:
Lack of oxygen
Decompression sickness
temperature variation
lack of gravity
Cosmic radiations hazards
motion sickness
Explanation:
When an astronaut travels in the space he is aware of the challenges he might face during his journey. There are various test and rehearsals of travelling before a final travel takes place. An astronaut goes through many challenges which includes lack of oxygen supply, decompression and motion sickness. There is no gravity in space so an astronaut will have to be aware of the difficulties he might face during his travel. An hour on earth is 7 years long in space, so an astronaut should have patience and be able to deal with time variation.
A pinion and gear pair is used to transmit a power of 5000 W. The teeth numbers of pinion
and gear are 20 and 50. The module is 5 mm, the pressure angle is 20o
and the face width is 45 mm. The
rotational speed of pinion is 300 rev/min. Both the pinion and the gear material are Nitralloy 135 Grade2 with a hardness of 277 Brinell. The quality standard number Qv is 5 and installation is open gearing
quality. Find the AGMA bending and contact stresses and the corresponding factors of safety for a
pinion life of 109
cycles and a reliability of 0.98
Answer:
mark me as a brainleast
Explanation:
209781
A network has three independent file servers, each with 90 percent reliability. The probability that the network will be functioning correctly (at least one server is working) at a given time is:
Answer:
The correct answer is "99.9%".
Explanation:
According to the information given in the question,
[tex]P(1 \ fail) = 0.1[/tex]
The probability of all fail will be:
[tex]P(all \ fail) = (0.1)^3[/tex]
[tex]=0.001[/tex]
hence,
[tex]P(not \ all \ fail)= 1-P(all \ fail)[/tex]
[tex]=0.999[/tex]
[tex]=99.9[/tex] (%)
Thus the above is the right answer.
Compute the minimum length of vertical curve that will provide 220 m stopping sight distance for a design speed of 110 km/h at the intersection of a -3.50% grade and a +2.70% grade.
i have made notes and saved it as a pdf u can take it to answer question and make ur concept good
The minimum length of vertical curve that will provide 220 m stopping sight distance is; 458.8 m
We are given;
Stopping sight distance; S = 220 m
Design Speed; V = 110 km/h
Intersection grade 1; G1 = +2.7
Intersection Grade 2; G2 = -3.5
From the AASHTO Table attached, we can trace the value of the radius of vertical curvature for the given stopping sight distance and design speed.From the table, at S = 220 m and V = 110 km/h, we can see that;
Radius of vertical curvature; K = 74
Now, the difference in grade given is;A = G1 - G2
A = 2.7 - (-3.5)
A = 2.7 + 3.5
A = 6.2
Formula for the minimum length of vertical curve is;L = KA
Thus;
L = 74 × 6.2
L = 458.8 m
Read more about stopping sight distance at; https://brainly.com/question/2087168
Transients (surges) on a line can cause spikes or surges of energy that can damage delicate electronic components. A SPD device contains one or more ________________ than bypass and absorb the energy of the transient.
Answer:
I think ( MOV Metal oxide varistors )
Transients (surges) on a line can cause spikes or surges of energy that can damage delicate electronic components. A SPD device contains one or more MOV Metal oxide varistors than bypass and absorb the energy of the transient.
Elliptic curve cryptography is considered as the latest and probably the one with a future. Having seen RSA in earlier modules, in which ways do YOU think elliptic cryptography is more advanced than RSA. You may read other material or get this information from the internet to answer this question. But make sure to provide necessary references when you do cite others.
Answer:
The answer is below.
Explanation:
Some of the ways, how I think elliptic cryptography is more advanced than RSA are the following:
1. ECC - Elliptic Curve Cryptography uses smaller keys for the same level of security, particularly at greater levels of security.
2. ECC can work well and at a faster rate on a small-capacity device compared to RSA
3. It uses offer speedier SSL handshakes that enhance security
4. It offers fast signatures
5. It allows signatures to be computed in two stages, which enables lower latency than inverse throughput.
6. Relatively quick encryption and decryption
Given : x² + 200x = 166400 The current park is a square, and the addition will increase the width by 200 meters to give the expanded park a total area of 166,400 square meters To Find : the side length of the current square park. Solution: x² + 200x = 166400 => x(x + 200) = 166400 166400 = 320 * 520 => (320)(320 + 200) = 166400 => x = 320 side length of the current square park. = 320 m Learn More: Which expression is a possible leading term for the polynomial ... brainly.In/question/13233517
Answer:
320 m
Explanation:
To find the side length of the current park, x, we solve the quadratic equation for the area of the park
x² + 200x = 166400
x² + 200x - 166400 = 0
We multiply -166400 by x² to get -166400x². We now find the factors of 166400x² that will add up to 200x. These factors are -320x and 520x
So, we re-write the expression as
x² + 200x - 166400 = 0
x² + 520x - 320x - 166400 = 0
We write out the factors of the expression,
x² + 520x - 320x - 320 × 520 = 0
Factorizing the expression, we have
x(x + 520) - 320(x + 520) = 0
(x + 520)(x - 320) = 0
x + 520 = 0 or x - 320 = 0
x = -520 or x = 320
Since x is not negative, we take the positive answer.
So, x = 320 m
Calculate the number of 12 V batteries (capacity 120 Ah) needed to run a 3 kW DC motor that operates in 240 V. How many hours the motor will run with 20 of such batteries connected in series?
Answer:
20 batteries9.6 hoursExplanation:
To obtain 240 V from 12 V batteries they must be connected in series. The number needed is ...
240/12 = 20 . . . batteries needed
__
The current draw will be ...
(3000 W)/(240 V) = 12.5 A
Then the time available from the battery stack is ...
(120 Ah)/(12.5 A) = 9.6 h
The motor can run 9.6 hours from the series connection.
Bài 3: Cho cơ cấu culít (hình 3.5) với các kích thước động lAB = 0,5lAC = 0,1m. Khâu 3 chịu tác dụng của mô men M3 = 500 N. Cơ cấu ở trạng thái cân bằng. Tại thời điểm khâu 1 ở vị trí υ1 = 900 hãy tính áp lực tại các khớp động tại B, C và A.
The main water line into a tall building has a pressure of600kPaat 5mbelow ground level. Apump brings the pressure up so the water can be delivered at 200kPaat the top floor 150maboveground level. The volumetric flow rate is 0.01m3/s. Consider the liquid water as an incompressiblesubstance. Assume steady state operation, negligible changes in kinetic energy, and the water temperature remains constant. Determine the required pumpingpower [kW, hp].
Answer:
Required pump power = - 11.205 kW
Explanation:
Pi = 600 kPa
Zi ( initial height ) = - 5m
P2 = 200 kPa
Ze ( top floor above ground level ) = 150m
Flowrate = 0.01 m^3/s = 10 kg/s
Temperature = 10°C ( assumed value ) remains constant
calculate the value of pumping power required ( i.e. work done )
Applying the energy equation
Hi + 1/2(vi)^2 + gZi = He + 1/2(Ve)^2 + gZe + W
given negligible internal/kinetic energy difference in "h's = the pv terms
W = ( Pi Vi - Pe V2 ) + g( Zi - Z2 )
= ( (600 * 0.001) - (200 * 0.001) ) + (9.81/1000) ( - 5 - 150 )
= - 1.1205 Kg/kJ
required pump power = flowrate * -1.1205
= 10 * ( - 1.1205 ) = - 11.205 kW
A steam turbine takes in steam at a temperature of 400 Celsius and releases steam to the condenser at a temperature of 120 Celsius. If the turbine takes 500 kJ of heat in each cycle, what is the maximum amount of work that could be generated by the turbine in each cycle
Answer:
[tex]W= 208 KJ[/tex]
Explanation:
From the question we are told that:
Take in Temperature [tex]T_1=400C=>673K[/tex]
Take Out Temperature [tex]T_2=120+>393K[/tex]
Heat [tex]Q=500kJ[/tex]
Generally the equation for Carnot Engine Efficiency is mathematically given by
[tex]n_c=\frac{T_1-T_2}{T_1}[/tex]
[tex]n_c=\frac{673-393}{673}[/tex]
[tex]n_c=0.4[/tex]
Where
[tex]n_c=\frac{W}{Q}[/tex]
[tex]W = Q*n_c[/tex]
[tex]W= 500 * 0.4[/tex]
[tex]W= 208 KJ[/tex]
Which of the following is not a part sympathetic activation during the fight or flight response?
Answer:
Digestion functions become more active
Explanation:
I just took the text!
An ideal gas within a piston-cylinder assembly undergoes a Carnot refrigeration cycle. The isothermal compression occurs at 325 K from 2 bar to 4 bar. The isothermal expansion occurs at 250 K. Determine:
a. the coefficient of performance
b. the heat transfer to the gas during the isothermal expansion, in kj per kmol of gas
c. the magintude of the net work input, in kj per kmol of gas.
Answer:
a) [tex]\mu=3.3[/tex]
b) [tex]Q=1440.7KJ/Kmol[/tex]
c) [tex]W=1872.9KJ/Kmol[/tex]
Explanation:
From the question we are told that:
Initial Temperature [tex]T_1=325k[/tex]
initial Pressure [tex]P_1=2 bar[/tex]
Final Pressure [tex]P_2=4 bar[/tex]
iso-thermal expansion [tex]T_2=250k[/tex]
a)
Generally the equation for Coefficient of performance is mathematically given by
[tex]\mu=\frac{T_2}{T_1-T_2}[/tex]
[tex]\mu=\frac{250}{325-250}[/tex]
[tex]\mu=3.3[/tex]
b)
Generally the equation for Heat Expansion is mathematically given by
[tex]Q=RT_2 In(\frac{P_2}{P_1})[/tex]
Where
R=Gas constant
[tex]R=8.314462618[/tex]
Therefore
[tex]Q=8.314462618*250 In(\frac{4}{2})[/tex]
[tex]Q=1440.7KJ/Kmol[/tex]
c)
Generally the equation for work input is mathematically given by
[tex]W=RT_1 In(\frac{P_2}{P_1})[/tex]
[tex]W=8.314462618*250 In(\frac{4}{2})[/tex]
[tex]W=1872.9KJ/Kmol[/tex]
The coefficient of performance is 3.33, the heat transfer in the isothermal expansion is 1440.71kJ/K.mol and the work input is calculated as 1872.92kJ/K.mol
Given Data:
T1 = 325KP1 = 2 barP2 = 4 barT2 = 250KIsothermal expansion occurs at 250K.
a) The coefficient of performanceThis is calculated as
COP =[tex]\frac{T_2}{T_1-T_2}=\frac{250}{325-250} =3.33[/tex]
b) Heat Transfer in isothermal expansion[tex]Q = RT_2In(\frac{p_2}{p_1})[/tex]
Therefore; In isothermal process du = 0
R = 8.314 AkJ/K.mol
Q = 8.314 * 250 In(4/2)
Q = 1440.71kJ/K.mol
c) Work InputW[tex]_i_n[/tex]=[tex]RT_1In(\frac{p_2}{p_1})\\W_i_n=8.314*325In(4/2)\\W_i_n=1872.92kJ/K.mol[/tex]
The work input is 1872.92kJ/K.mol
Learn more on Carnot cycle here:
https://brainly.com/question/14983940
https://brainly.com/question/13170743
So I am going to do online school till I graduate and I have horrible internet. i only get about 3 quarters of each class I take so I miss most of it. WHAT DO I DO. my mom said she will never let me go back to a brick-and-mortar school.
In the construction of a large reactor pressure vessel, a new steel alloy with a plane strain fracture toughness of 55 MPa-m1/2 and a Y value of 1.0. An in-service stress level of 200 MPa has been calculated. What is the length of a surface crack (in mm) that will lead to fracture
Answer:
[tex]l=24mm[/tex]
Explanation:
From the question we are told that:
Plane strain fracture toughness of [tex]T=55 MPa-m1/2[/tex]
Y value [tex]Y=1.0[/tex]
Stress level of[tex]\sigma =200 MPa[/tex]
Generally the equation for length of a surface crack is mathematically given by
[tex]l=\frac{1}{\pi}(\frac{T}{Y*\sigma})^2[/tex]
[tex]l=\frac{1}{3.142}(\frac{55}{1*200})^2[/tex]
[tex]l=0.024m[/tex]
Therefore
in mm
[tex]l=24mm[/tex]
Technician A says that all electric motors are DC motors. Technician B says that two types of brushless motors use AC current. Which technician is correct
Answer:
Technician B only.
Explanation:
It is not necessary that all electric motors will use Direct current, some may also use Alternative current. Some electric motors that use DC may use brushes. There are two types of brushless motors that use alternative current.
A rod that was originally 100-cm-long experiences a strain of 82%. What is the new length of the rod?
122 cm
182 cm
82 cm
22 cm
108.2 cm
Answer: (b)
Explanation:
Given
Original length of the rod is [tex]L=100\ cm[/tex]
Strain experienced is [tex]\epsilon=82\%=0.82[/tex]
Strain is the ratio of the change in length to the original length
[tex]\Rightarrow \epsilon =\dfrac{\Delta L}{L}\\\\\Rightarrow 0.82=\dfrac{\Delta L}{100}\\\\\Rightarrow \Delta L=82\ cm[/tex]
Therefore, new length is given by (Considering the load is tensile in nature)
[tex]\Rightarrow L'=\Delta L+L\\\Rightarrow L'=82+100=182\ cm[/tex]
Thus, option (b) is correct.