We know that a class interval must be greater than what the I formula solution is; however... What is the solution for class interval (for the formula) for a frequency distribution if the data ranges from 100 to 220 with 50 observations?

Answers

Answer 1

Answer:

Therefore the answer is 20.

Step-by-step explanation:

We know that

class interval = range / number of classes

But here number of classes is not given , so we use the formula

class interval = range / ( 1+ 3.322 log N)

where , range =maximum - minimum = 220-100 = 120

N= number of observations = 50

class interval = 120 / ( 1+ 3.322 * log 50) = 18.06

Rounding up to a convinient number

Thus , class intervai = 20

Therefore the answer is 20.

We Know That A Class Interval Must Be Greater Than What The I Formula Solution Is; However... What Is

Related Questions

15. (x - 3)
If f(x) = 2x2 – 5, find the following.
16.fly-2)
17. f(a+h)-f(a)

Answers

Answer:

16. f(y-2) = 2(y-2)²-5

= 2(y²-4y+4)-5

= 2y²-8y+8-5

= 2y²-8y+3

17. f(a+h)-f(a) = 2(a+h)²-5-(2a²-5)

= 2(a²+2ah+h²)-5-2a²+5

= 2a²+4ah+h²-2a²

= h²+4ah

Need help pleaseeee!!!

Answers

Answer:

C is wrong!

Step-by-step explanation:

The explanation is in the picture!

The distance from the green point on the parabola to the parabolas focus is 11. What is the distance from green point to the directrix?

Answers

Answer:

answer 11

Step-by-step explanation:

I think it the right answer

write your answer as an integer or as a decimal rounded to the nearest tenth​

Answers

Answer:Mark Brainliest please

Answer is 4.86 which is rounded to 5

Step-by-step explanation:

Cos 40 degree = VW/7

0.694 =VW/7

0.694 * 7 =VW

4.858 =VW

VW=4.86 is the answer

A sample of 45 bottles of soft drink showed a variance of 1.1 in their contents. The process engineer wants to determine whether or not the standard deviation of the population is significantly different from 0.9 ounces. What is the value of the test statistic

Answers

Answer:

The value of the test statistic is 59.75.

Step-by-step explanation:

The test statistic for the population standard deviation is:

[tex]\chi^2 = \frac{n-1}{\sigma_0^2}s^2[/tex]

In which n is the sample size, [tex]\sigma_0[/tex] is the value tested and s is the sample standard deviation.

A sample of 45 bottles of soft drink showed a variance of 1.1 in their contents.

This means that [tex]n = 45, s^2 = 1.1[/tex]

The process engineer wants to determine whether or not the standard deviation of the population is significantly different from 0.9 ounces.

0.9 is the value tested, so [tex]\sigma_0 = 0.9, \sigma_0^2 = 0.81[/tex]

What is the value of the test statistic

[tex]\chi^2 = \frac{n-1}{\sigma_0^2}s^2[/tex]

[tex]\chi^2 = \frac{44}{0.81}1.1 = 59.75[/tex]

The value of the test statistic is 59.75.

Prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.
i. (G.M)²= (A.M)×(H.M)
ii.A.M>G.M>H.M​

Answers

Answer:

See below

Step-by-step explanation:

we want to prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.

(G.M)²= (A.M)×(H.M) A.M>G.M>H.M

well, to do so let the two unequal positive numbers be [tex]\text{$x_1$ and $x_2$}[/tex] where:

[tex] x_{1} > x_{2}[/tex]

the AM,GM and HM of [tex]x_1[/tex] and[tex] x_2[/tex] is given by the following table:

[tex]\begin{array}{ |c |c|c | } \hline AM& GM& HM\\ \hline \dfrac{x_{1} + x_{2}}{2} & \sqrt{x_{1} x_{2}} & \dfrac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } \\ \hline\end{array}[/tex]

Proof of I:

[tex] \displaystyle \rm AM \times HM = \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } [/tex]

simplify addition:

[tex] \displaystyle \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]

reduce fraction:

[tex] \displaystyle x_{1} + x_{2} \times \frac{1}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]

simplify complex fraction:

[tex] \displaystyle x_{1} + x_{2} \times \frac{x_{1} x_{2}}{x_{1} + x_{2}} [/tex]

reduce fraction:

[tex] \displaystyle x_{1} x_{2}[/tex]

rewrite:

[tex] \displaystyle (\sqrt{x_{1} x_{2}} {)}^{2} [/tex]

[tex] \displaystyle AM \times HM = (GM{)}^{2} [/tex]

hence, PROVEN

Proof of II:

[tex] \displaystyle x_{1} > x_{2}[/tex]

square root both sides:

[tex] \displaystyle \sqrt{x_{1} }> \sqrt{ x_{2}}[/tex]

isolate right hand side expression to left hand side and change its sign:

[tex]\displaystyle\sqrt{x_{1} } - \sqrt{ x_{2}} > 0[/tex]

square both sides:

[tex]\displaystyle(\sqrt{x_{1} } - \sqrt{ x_{2}} {)}^{2} > 0[/tex]

expand using (a-b)²=a²-2ab+b²:

[tex]\displaystyle x_{1} -2\sqrt{x_{1} }\sqrt{ x_{2}} + x_{2} > 0[/tex]

move -2√x_1√x_2 to right hand side and change its sign:

[tex]\displaystyle x_{1} + x_{2} > 2 \sqrt{x_{1} } \sqrt{ x_{2}}[/tex]

divide both sides by 2:

[tex]\displaystyle \frac{x_{1} + x_{2}}{2} > \sqrt{x_{1} x_{2}}[/tex]

[tex]\displaystyle \boxed{ AM>GM}[/tex]

again,

[tex]\displaystyle \bigg( \frac{1}{\sqrt{x_{1} }} - \frac{1}{\sqrt{ x_{2}}} { \bigg)}^{2} > 0[/tex]

expand:

[tex]\displaystyle \frac{1}{x_{1}} - \frac{2}{\sqrt{x_{1} x_{2}} } + \frac{1}{x_{2} }> 0[/tex]

move the middle expression to right hand side and change its sign:

[tex]\displaystyle \frac{1}{x_{1}} + \frac{1}{x_{2} }> \frac{2}{\sqrt{x_{1} x_{2}} }[/tex]

[tex]\displaystyle \frac{\frac{1}{x_{1}} + \frac{1}{x_{2} }}{2}> \frac{1}{\sqrt{x_{1} x_{2}} }[/tex]

[tex]\displaystyle \rm \frac{1}{ HM} > \frac{1}{GM} [/tex]

cross multiplication:

[tex]\displaystyle \rm \boxed{ GM >HM}[/tex]

hence,

[tex]\displaystyle \rm A.M>G.M>H.M[/tex]

PROVEN

Diane must choose a number between 49 and 95 that is a multiple of 2, 3, and 9. Write all the numbers that she could choose. If
there is more than one number, separate them with commas?

Answers

The set of numbers that Diane can choose is:

{54, 60, 66, 72, 78, 84, 90}

Finding common multiples of 2, 3, and 6:

A number is a multiple of 2 if the number is even.

A number is a multiple of 3 if the sum of its digits is multiples of 3.

A number is a multiple of 6 if it is a multiple of 2 and 3.

Then we only need to look at the first two criteria.

First, let's see all the even numbers in the range (49, 95)

These are:

{50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94}

All of these are multiples of 2.

Now we need to see which ones are multiples of 3.

To do it, we sum its digits and see if that sum is also a multiple of 3.

50: 5 + 0 = 5 this is not multiple of 3.

52: 5 + 2 = 7 this is not multiple of 3.

54: 5 + 4 = 9 this is multiple of 3, so 54 is a possible number.

And so on, we will find that the ones that are multiples of 3 are:

54: 5 + 4 = 9.

60: 6 + 0 = 6

66: 6 + 6 = 12

72: 7 + 2 = 9

78: 7 + 8 = 15

84: 8 + 4 = 12

90:9 + 0 = 9

Then the numbers that Diane could choose are:

{54, 60, 66, 72, 78, 84, 90}

If you want to learn more about multiples, you can read:

https://brainly.com/question/1553674

Add .003, 265.8, 83.04
and 1972

Answers

Answer: 2.320.843

Explanation: Calculator

Help me because I dont understand

Answers

Answer:

105 sq ft + 31 sq ft

Step-by-step explanation:

=  136 sq ft

Hope it helps✌✌

f(x)=3(x+5)+4/xwhat is f (a+2) solve this problem with showing the work

Answers

smac my az like the drum

In the statements below, V is a vector space. Mark each statement true or false. Justily each answer a. The set R is a two-dimensional subspace of R3.Choose the correct answer below O A. False, because R2 is not closed under vector addition. O B. True, because R2 is a plane in R3 Ос. False, because the set R2 is not even a subset of R3 OD. True, because every vector in R2 can be represented by a linear combination of vectors inR3 b. The number of variables in the equation Ax 0 equa's the dimension of Nul A. Choose the correct answer below O A. False, because the number of free variables is equal to the dimension of Nul A. O B. True, because the number of variables in the equation Ax 0 equals O C. True, because the dimension of Nul A equals the largest any solution to O D. False, because the number of plvot columns is equal to the dimension of Nud A. c. A vector space the number of columns in A and the number of columns in A equa's the dimension of Nul A. number of Os in any solution to the equation Ax -b, and the equation Ax- 0 always has the trivial solution, so the number of variables is infinite-dimensional if it is spanned by an infinite set Choose the correct answer below O A. True, because the dimension of a vector space is equal to the number of elements in a set that spans O B. Faise, because a basis for the vector space may O C. True, because the dimension of a vector space number of O D. Faise, because all vector spaces are finite-dimensional. d. If dim Van and it S spans V, then S is a basis of V. Choose the correct answer below. the vector space. have only finitely many elements, which would make the vector space finite-dimensional is the number of vectors in a basis for that vector space, and a vector space spanned by an infinite set has a basis with an infinite number of vect O A. False, because the set S must have less than n elements O B. True, because if a vector space is finite-dimensional, then a set that spans t is a basis of the vector space O C. False, in order for S to be a basis, it must also have n elements O D. True, because if a set spans a vector space, regardiess of the dimension of the vector space, then that setis a basis of the vector spaoe e. The only three-dimensional subspace of R3 is R3 itself. Choose the correct answer below Faise, because False, because any subspaces of R3 which contain three-element vectors are three-dimensional, but most of these most three-dimensional subspaces of R3 are spanned by a linearly dependent set of tree vectors, but R can only be sparned by thre Inearly independent vectors subspaces do not contain all of R
D. True, because any three linearly dependent vectors in R3 span all of R3, so there is no three-dmensional subspace of R' that is not R

Answers

Answer:

A. False

B. True

C. False

D. True

Step-by-step explanation:

Only three dimensional subspace for R3 is R3 itself. In a 3 d subspace there are 3 basis vectors which are all linearly independent vectors. Dimension of a vector is number of subspace in that vector. Finite set can generate infinite dimension vector space.

Which letter on the diagram below represent a diameter of the circle

Answers

Answer:

where is your diagram?

Step-by-step explanation:

PLEASE HELPPPPPPPPPPPPPP

Answers

Answer:

False

Step-by-step explanation:

To find the inverse of a function, switch the variables and solve for y.

The inverse of f(n)=-(n+1)^3:

[tex]y=-(n+1)^3[/tex]

[tex]n=-(y+1)^3[/tex]

[tex]\sqrt[3]{n} =-(y+1)[/tex]

[tex]\sqrt[3]{n} =-y-1[/tex]

[tex]\sqrt[3]{n} +1=-y[/tex][tex]-(\sqrt[3]{n} +1)=y[/tex]

[tex]-\sqrt[3]{n} -1=y[/tex]

Answer:

False

Step-by-step explanation:

Find the missing segment in the image below

Answers

Answer:

Step-by-step explanation:

2 cans of beans cost 98¢ how many cans can you buy for $3.92?

Answers

You can buy 8 cans for $3.92

0.98 divided by 2 = 0.49
3.92 divided by 0.49 = 8

8x0.49=3.92

please solve asap thanks ​

Answers

Answer:

A' (-2,3)

B' (-1,1)

C' (-4,0)

Step-by-step explanation:

Given coordinates:

A (3,0)

B (4,-2)

C (1,-3)

We want to find the location of the coordinates after a translation of <-5,3>

Explanation of translation

<-5,3>

Subtract 5 from the x value and add 3 to the y value

Applying translation

A (3,0) ---------> (3-5,0+3) ---------> (-2,3)

B (4,-2) ---------> (4-5,-2+3) ---------> (-1,1)

C (1,-3) ---------> (1-5,-3+3) ---------> (-4,0)

So the new coordinates would be

A' (-2,3)

B' (-1,1)

C' (-4,0)

In 1815, Sophie Germain won a mathematical prize given by the Institut de France for her work on the theory of elasticity. The prize was a medal made of 1 kilogram of gold. How much is the medal worth today in U.S. dollars and in euros

Answers

Answer:

gold price : $58.72/gram

$58,720 per kilo(1000) grams

Step-by-step explanation:

the ages of two students are in the ratio of 3:5,if the older is 40yrs. How old is the younger student​

Answers

Answer:

24 years

Step-by-step explanation:

total ratio =8

older student=40 years

3/8*40 ÷ 5/8=24

F(x)=x+8;g(x)=x+2. Find f=g

Answers

Answer:

f(x) can not be equal to g(x)

Step-by-step explanation:

If the result is possible:

f(x) = g(x)

x + 8 = x + 2

x + 8 - (x + 2) = x + 2 - (x + 2)

6 = 0

Because 6 can't be equal to 0, so do f(x) can't be equal to g(x)

Geometry help I don’t know any of this stuff!!

Answers

Answer:

radius chordsecant linecenterpoints of tangency circumference

IS THSI RIGHTTTTTTTT??????????????

Answers

Answer:

No. It is EF and GH

Step-by-step explanation:

Answer:

No

Step-by-step explanation:

The answer will be EF and GH, both are 7 units long.

Look at the image for the question

Answers

Answer:

Does the answer help you?

Using Eulers formula, how many edges does a polyhedron with 9 faces and 14 vertices have?

Answers

By Euler's Formula

F + V = E + 2

Solution

F = 9

V = 14

E = ?

Substuting the values

⇨ 9 + 14 = E + 2

⇨ 23 = E + 2

⇨ 23 - 2 = E

⇨ 21 = E

Hence , the number of edges in polyhedron is 21.

The number of edges of a polyhedron with 9 faces and 14 vertices have will be 21.

What is a polygon?

The polygon is a 2D geometry that has a finite number of sides. And all the sides of the polygon are straight lines connected to each other side by side.

here, we have,

Using Euler's formula, the number of the edges does a polyhedron with 9 faces and 14 vertices have

We know the formula for the edges of the polyhedron will be

By Euler's Formula

F + V = E + 2

The number of faces, vertices, and edges of a polyhedron are denoted by the letters F, V, and E.

Then we have

Solution

F = 9

V = 14

E = ?

Substuting the values

⇨ 9 + 14 = E + 2

⇨ 23 = E + 2

⇨ 23 - 2 = E

⇨ 21 = E

Hence , the number of edges in polyhedron is 21.

More about the polygon link is given below.

brainly.com/question/17756657

#SPJ2

Simplify the given expression.

Answers

Answer:

8x-21

----------------------

(2x-7)(2x+7)

Step-by-step explanation:

7                       4

-----------   + ------------

4x^2 -49    2x+7

Factor  ( notice that it is the difference of squares)

7                       4

-----------   + ------------

(2x)^2 - 7^2    2x+7

7                       4

-----------       + ------------

(2x-7)(2x+7)    2x+7

Get a common denominator

7                       4(2x-7)

-----------       + ------------

(2x-7)(2x+7)    (2x-7)(2x+7)

Combine

7 +4(2x-7)

----------------------

(2x-7)(2x+7)  

7 +8x-28

----------------------

(2x-7)(2x+7)  

8x-21

----------------------

(2x-7)(2x+7)  

Answer:

(8x - 21) / (2x + 7)(2x - 7)

Step-by-step explanation:

7 / (4x^2 - 49)+ 4 / (2x + 7)

= 7 / (2x + 7)(2x - 7) + 4 / (2x + 7)

LCM = (2x + 7)(2x - 7)   so we have

(7 + 4(2x - 7) / (2x + 7)(2x - 7)

=   (8x - 21) / (2x + 7)(2x - 7).

A car travels 630 miles in 14 hours. At this rate, how far will it travel in 42 hours?

Answers

Assuming the car's speed [tex]\frac{630}{14}=45\mathrm{mph}[/tex] does not change, the car will travel [tex]45\cdot42=\boxed{1890}[/tex] miles.

Hope this helps :)

Using the applet, explore the results for simulating a group of 30 people and noting whether there is a duplicated birthday (whether at least two people have a matching birthday). Run at least 40 trials. What is the relative frequency of trials that had at least two people with the same birthday

Answers

Answer:I just need points

Step-by-step explanation:

Hey

Let V be the volume of the solid obtained by rotating about the y-axis the region bounded y = sqrt(25x) and y = x^2/25. Find V by slicing & find V by cylindrical shells.

Answers

Explanation:

Let [tex]f(x) = \sqrt{25x}[/tex] and [tex]g(x) = \frac{x^2}{25}[/tex]. The differential volume dV of the cylindrical shells is given by

[tex]dV = 2\pi x[f(x) - g(x)]dx[/tex]

Integrating this expression, we get

[tex]\displaystyle V = 2\pi\int{x[f(x) - g(x)]}dx[/tex]

To determine the limits of integration, we equate the two functions to find their solutions and thus the limits:

[tex]\sqrt{25x} = \dfrac{x^2}{25}[/tex]

We can clearly see that x = 0 is one of the solutions. For the other solution/limit, let's solve for x by first taking the square of the equation above:

[tex]25x = \dfrac{x^4}{(25)^2} \Rightarrow \dfrac{x^3}{(25)^3} = 1[/tex]

or

[tex]x^3 =(25)^3 \Rightarrow x = \pm25[/tex]

Since we are rotating the functions around the y-axis, we are going to use the x = 25 solution as one of the limits. So the expression for the volume of revolution around the y-axis is

[tex]\displaystyle V = 2\pi\int_0^{25}{x\left(\sqrt{25x} - \frac{x^2}{25}\right)}dx[/tex]

[tex]\displaystyle\:\:\:\:=10\pi\int_0^{25}{x^{3/2}}dx - \frac{2\pi}{25}\int_0^{25}{x^3}dx[/tex]

[tex]\:\:\:\:=\left(4\pi x^{5/2} - \dfrac{\pi}{50}x^4\right)_0^{25}[/tex]

[tex]\:\:\:\:=4\pi(3125) - \pi(7812.5) = 14726.2[/tex]

Heeeellllllppppp?????

Answers

9514 1404 393

Answer:

  -1

Step-by-step explanation:

We notice that we want term a1 and have terms a17 and a33. These terms (every 16-th term) form an arithmetic sequence. The middle term (a17) is the average of the other two, so we have ...

  a17 = (a1 +a33)/2

  2a17 -a33 = a1 = 2(10) -21 = -1

  a1 = -1

_____

Additional comment

You could go to the trouble to find the general term of the sequence.

  an = a1 +d(n -1)

  a17 = a1 + d(17 -1) = 10

  a33 = a1 + d(33 -1) = 21

Subtracting the first equation from the second, we have ...

  16d1 = 11

  d1 = 11/16

Using the first equation, we find ...

  a1 +(11/16)(17 -1) = 10

  a1 = 10 -11 = -1 . . . . same as above.

If y = ax^2 + bx + c passes through the points (-3,10), (0,1) and (2,15), what is the value of a + b + c?

Answers

Hi there!

[tex]\large\boxed{a + b + c = 6}[/tex]

We can begin by using the point (0, 1).

At the graph's y-intercept, where x = 0, y = 1, so:

1 = a(0)² + b(0) + c

c = 1

We can now utilize the first point given (-3, 10):

10 = a(-3)² + b(-3) + 1

Simplify:

9 = 9a - 3b

Divide all terms by 3:

3 = 3a - b

Rearrange to solve for a variable:

b = 3a - 3

Now, use the other point:

15 = a(2)² + 2(3a - 3) + 1

14 = 4a + 6a - 6

Solve:

20 = 10a

2 = a

Plug this in to solve for b:

b = 3a - 3

b = 3(2) - 3 = 3

Add all solved variables together:

2 + 3 + 1 = 6

A sample of 375 college students were asked whether they prefer chocolate or vanilla ice cream. 210 of those surveyed said that they prefer vanilla ice cream. Calculate the sample proportion of students who prefer vanilla ice cream.

Answers

Answer:

The sample proportion of students who prefer vanilla ice cream is 0.56.

Step-by-step explanation:

Sample proportion of students who prefer vanilla ice cream:

Sample of 375 students.

Of those, 210 said they prefer vanilla ice cream.

The proportion is:

[tex]p = \frac{210}{375} = 0.56[/tex]

The sample proportion of students who prefer vanilla ice cream is 0.56.

Other Questions
Which term of the AP. 8 , -4 , -16 , -28 ,......... is -880 ? Find 6 2/3 2/7. Simplify the answer and write as a mixed number, if possible. Suppose money invested in a hedge fund earns 1% per trading day. There are 250 trading days per year. What will be your annual return on $100 invested in the fund if the manager allows you to reinvest in the fund the 1% you earn each day The emotional and/or less literal meaning of a word in the context of a sentence is it During transcription, RNA polymerase synthesizes RNA from a DNA template with the help of accessory proteins. a. Trueb. False In this activity, you will describe ways in which you might practice the civic responsibilities of being a US citizen. Part A List three activities that you could engage in to participate in civic life in your community. Observe the given figure and find the the gravitational force between m1 and m2. To which of the following would abusiness most commonly owe adebt?A. To employeesB. To investorsC. To customersD. All of the AboveCopyright 2003 - 2021 Acellus Corporation. All Rights Reserved. Determine the [OH] of a solution that is 0.115 M in CO32. For carbonic acid (H2CO3), Ka1=4.3107 and Ka2=5.61011. what is 1 st genaration of computer Select the correct answer.John is a successful businessman. He always maintains a high bank balance. Hence the bank pays him interest. John uses this account frequently for various purchases. What type of bank account does John have?A. checking accountB. money market accountC. savings accountD. certificate of depositE. interest-bearing checking account Using complete sentences, explain how proximity to major rivers influenced the location of early cities. make a the subject of the relation p=2(a+b) Provided other eligibility requirements are met, who is eligible for Medicare? A ball was bounced 3 times between 3:15p and 3:18p, thrown 10 times between 3:20p and 3:30p and bounced 7 times between 4:15p and 4:20p. What is the rate per hour of ball bouncing based on a 2 hour data collection time period. Express as index formlog 2 64 = 6 g aqueous barium hydroxide (ba(oh)2) and nitric acid (hno3) participate in a complete neutralization reaction. in the molecular equation, what are the products 12 identical coins are placed in the cells on a chess board with 4 rows and 4 columns. If coins are notallowed to be placed in the same cell, how many ways are there so that there are 3 coins in every rowsand columns? describe the extraction of trona in lake magadi A light rag is striking the surface of earth. Which factor would make the light ray more likely to be absorbed than reflected?