Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiiiii bro
Simplify the following completely, show all work. √-45
Answer:
[tex]3\sqrt{5}i[/tex]
Step-by-step explanation:
[tex]\sqrt{-45}[/tex]
[tex]\sqrt{-9*5}[/tex]
[tex]\sqrt{-9}\sqrt{5}[/tex]
[tex]3i\sqrt{5}[/tex]
[tex]3\sqrt{5}i[/tex]
Question 6 of 10
Which expression gives the volume of a sphere with radius 7?
A 4/3pi(7^2)
B. 4/3pi (7^3)
C. 4pi(7^3)
D. 4pi(7^2)
Answer:
B. 4/3pi (7^3)
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
We know the radius is 7
V = 4/3 pi 7^3
Think you can figure out the correct answer here
The answer would be 30 because the triangle is 10, the circle is 5, and each black triangle is 2 which would be 10 plus 5 which is 15 then times 2 which is 30.
Answer:
20?
Step-by-step explanation:
If 3 triangles = 30 they we could assume that each triangle = 10
10 + 10 + 10 = 30
If one triangle = 10 then the 2 circles would = 5 in the 2nd equation
10 + 5 + 5 = 20
If 1 circle = 5 then the 1 full squares would = 4
5 + 4 + 4 = 13
1 triangle = 10 , 1 circle = 5, Half a square = 2
10 + 5 * 2 = ?
Using PEMDAS we would multiply 2 and 5 first to get 10
10 + 10 = 20
One of the legs of a right triangle measures 15 cm and the other leg measures 6 cm.
Find the measure of the hypotenuse. If necessary, round to the nearest tenth.
Answer:
16.2 cm
Step-by-step explanation:
use the pythagoran theorem
a² + b² = c²
15² + 6² = c²
225 + 36 = c²
261 = c²
Take the square root of both sides
16.1554944214 = c
Rounded
16.2 cm
Determine whether the stochastic matrix P is regular. Then find the steady state matrix X of the Markov chain with matrix of transition probabilities P. P=
0.22 0.20 0.65
0.62 0.60 0.15
0.16 0.20 0.20
Answer:
Step-by-step explanation:
Given that:
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right][/tex]
For a steady-state of a given matrix [tex]\bar X[/tex]
[tex]\bar X = \left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
As a result P[tex]\bar X[/tex] = [tex]\bar X[/tex] and a+b+c must be equal to 1
So, if P[tex]\bar X[/tex] = [tex]\bar X[/tex]
Then;
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right]\left[\begin{array}{c}a\\b\\c\end{array}\right] =\left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
[tex]\implies \left\begin{array}{ccc}0.22a+&0.20b+&0.65c\\0.62a+&0.60b+&0.15c\\0.16a+&0.20b+&0.20c\end{array} \right = \left \begin{array}{c}a ---(1)\\b---(2)\\c---(3)\end{array}\right[/tex]
Equating both equation (1) and (3)
(0.22a+ 0.2b + 0.65c) - (0.16a + 0.2b + 0.2c) = a - c
0.06a + 0.45c = a - c
collect like terms
0.06a - a = -c - 0.45c
-0.94 a = -1.45 c
0.94 a = 1.45 c
[tex]c =\dfrac{ 0.94}{1.45}a[/tex]
[tex]c =\dfrac{ 94}{145}a --- (4)[/tex]
Using equation (2)
0.62a + 0.60b + 0.15c = b
where;
c = 94/145 a
[tex]0.62a + 0.60b + 0.15(\dfrac{94}{145}) a= b[/tex]
[tex]0.62a + 0.15(\dfrac{94}{145}) a= -0.60b+b[/tex]
[tex]0.62a + (\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](0.62+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{62}{100}+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= \dfrac{4}{10} b[/tex]
[tex](\dfrac{1043 \times 10}{1450 \times 4})a = \dfrac{4}{10} \times \dfrac{10}{4}[/tex]
[tex]b = (\dfrac{1043}{580}) a --- (5)[/tex]
From a + b + c = 1
[tex]a + \dfrac{1043}{580}a + \dfrac{94}{145} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{94*4}{145*4} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{376}{580} a = 1[/tex]
[tex]\dfrac{580+ 1043+376 }{580} a= 1[/tex]
[tex]\dfrac{1999}{580} a= 1[/tex]
[tex]a = \dfrac{580}{1999}[/tex]
∴
[tex]b = \dfrac{1043}{580} \times \dfrac{580}{1999}[/tex]
[tex]b = \dfrac{1043}{1999}[/tex]
[tex]c = \dfrac{94}{145} \times \dfrac{580}{1999}[/tex]
[tex]c= \dfrac{376}{1999}[/tex]
∴
The steady matrix of [tex]\bar X[/tex] is:
[tex]\bar X = \left[\begin{array}{c}\dfrac{580}{1999} \\ \\ \dfrac{1043}{1999}\\ \\ \dfrac{376}{1999}\end{array}\right][/tex]
A right cone has a radius of 5 cm and an altitude of 12 cm. Find its volume.
A)
300 cm3
B)
64.1 cm3
C)
942.5 cm3
D)
314.2 cm3
Answer:
D. V=314.2cm³
Step-by-step explanation:
The volume of the cone is:
V=pi×r²×h/3=pi×5²×12/3=100×pi=314.2cm³
Answer: D) 314.2 [tex]cm^3[/tex]
Step-by-step explanation:
The formula for finding the volume of a right cone is [tex]V=\pi r^2\frac{h}{3}[/tex]
r is the radius and h is the height/altitude.
We can sub these values in and solve
[tex]V=\pi (5^2)(\frac{12}{3} )\\V=\pi (25)(4)\\V=100\pi[/tex]
Let's sub in 3.14 for [tex]\pi[/tex] since that is a close estimate
[tex]V=(100)(3.14)\\V=314[/tex]
The volume is about 314.
Our closest answer to that is D so that is the correct choice.
Found out the answer please I can't do this
Answer:
530.929158457
Step-by-step explanation:
13x13= 169 x pi= 530.929158457
Complete the remainder of the table for the given function rule:
Y=3x-5
[X] -6 -3 0 3 6
[Y] -23 ? ? ? ?
answer is
(Y)=-23,-14, -5,4,13
hope this will help you
convert fraction to decimal 1/5 explanation
Answer: 0.2
Step-by-step explanation:
1 divided by 5 = 0.2
Answer:
0.2
Step-by-step explanation:
1/5 = 1 divided by 5.
This will also apply to any fraction
Fraction = Numerator divided by Denominator
. Seja (G, ·) um grupo tal que para todo x ∈ G temos x
2 = eG. Mostre
que G ´e abeliano.
What is the equation of the line that passes through the point (1,7)and has a slope of -1
?
Answer:
y = -x + 8
Step-by-step explanation:
First, plug in the slope.
y = mx + b
y = -1x + b
y = -x + b
Then, plug in the point.
7 = -(1) + b
7 = -1 + b
8 = b
A colony contains 1500 bacteria. The population increases at a rate of 115% each hour. If x represents the number of hours elapsed, which function represents the scenario?
f(x) = 1500(1.15)x
f(x) = 1500(115)x
f(x) = 1500(2.15)x
f(x) = 1500(215)x
Answer:
C) f(x) = 1500(2.15)x
Step-by-step explanation:
Got it right on Edge :)
A laptop company claims up to 8.1 hours of wireless web usage for its newest laptop battery life. However, reviews on this laptop shows many complaints about low battery life. A survey on battery life reported by customers shows that it follows a normal distribution with mean 7.5 hours and standard deviation 27 minutes. (a) What is the probability that the battery life is at least 8.1 hours
Answer:
0.0918 = 9.18% probability that the battery life is at least 8.1 hours.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean 7.5 hours
This means that [tex]\mu = 7.5[/tex]
Standard deviation 27 minutes.
An hour has 60 minutes, which means that [tex]\sigma = \frac{27}{60} = 0.45[/tex]
What is the probability that the battery life is at least 8.1 hours?
This is 1 subtracted by the p-value of Z when X = 8.1. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{8.1 - 7.5}{0.45}[/tex]
[tex]Z = 1.33[/tex]
[tex]Z = 1.33[/tex] has a p-value of 0.9082.
1 - 0.9082 = 0.0918
0.0918 = 9.18% probability that the battery life is at least 8.1 hours.
A rectangular field is covered by circular sprinklers as
shown in the diagram. What percentage of the field is not
being watered by the sprinklers?
Answer:
21%
Step-by-step explanation:
Area of one sprinkler
a = πr²
a = π10²
a = 314.159 ft²
8 sprinklers
a = 8 * 314.159
a = 2,513.272
---------------------
area of field
a = lw
a = 80 * 40
a = 3200
------------------------
area not watered
a = 3200 - 2,513.272
a = 686.728
------------------
percentage not watered
p = 686.728 / 3200 * 100%
p = 21.46025%
Rounded
21%
The base of a solid is a circular disk with radius 4. Parallel cross sections perpendicular to the base are squares. Find the volume of the solid.
Answer:
the volume of the solid is 1024/3 cubic unit
Step-by-step explanation:
Given the data in the question,
radius of the circular disk = 4
Now if the center is at ( 0,0 ), the equation of the circle will be;
x² + y² = 4²
x² + y² = 16
we solve for y
y² = 16 - x²
y = ±√( 16 - x² )
{ positive is for the top while the negative is for the bottom position }
A = b²
b = 2√( 16 - x² ) { parallel cross section }
A = [2√( 16 - x² )]²
A = 4( 16 - x² )
Now,
VOLUME = [tex]\int\limits^r -rA dx[/tex]
= [tex]\int\limits^4_4 {-4(16-x^2)} \, dx[/tex]
= 4[ 16x - (x³)/3 ] { from -4 to 4 }
= 4[ ( 64 - 64/3 ) - (-64 = 64/3 0 ]
= 4[ 64 - 64/3 + 64 - 64/3 ]
= 4[ (192 - 64 + 192 - 64 ) / 3 ]
= 4[ 256 / 3 ]
= 1024/3 cubic unit
Therefore, the volume of the solid is 1024/3 cubic unit
what weight remains when 5/9 of a cake weighing 450 grams is eaten.
Find the surface area of the square pyramid 8mm 6mm
Answer:
136 mm²
Step-by-step explanation:
[tex]A=a^{2} +2a\sqrt{\frac{a^{2} }{4} } +h^{2}[/tex]
[tex]A=6^{2} +2(6)\sqrt{\frac{6^{2} }{4} } +8^{2}[/tex]
[tex]A=36 +12\sqrt{\frac{36 }{4} } +64[/tex]
[tex]A=36 +12\sqrt{9 } +64[/tex]
[tex]A=36 +12(3)+64[/tex]
[tex]A=36 +36+64[/tex]
A = 136
Graph the image of kite JKLM after a translation 3 units up.
Five minivans and three trucks are traveling on a 3.0 mile circular track and complete a full lap in 98.0, 108.0, 113.0, 108.0, 102.0, 101.0, 85.0, and 95.0 seconds, respectively. Assuming all vehicles are traveling at constant speeds, what is the time-mean speed of the minivans
Answer:
The time-mean speed of the minivans is of 105.8 seconds.
Step-by-step explanation:
Mean of a data-set:
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
Five minivans, times of: 98.0, 108.0, 113.0, 108.0, 102.0, in seconds.
Thus, the mean is:
[tex]M = \frac{98 + 108 + 113 + 108 + 102}{5} = 105.8[/tex]
The time-mean speed of the minivans is of 105.8 seconds.
The symbols for elements with accepted names Group of answer choices consist of a single capital letter consist of a capital letter and a small letter consist of either a single capital letter or a capital letter and a small letter no answer is correct
Answer:
consist of either a single capital letter or a capital letter and a small letter.
Step-by-step explanation:
A chemical reaction can be defined as a reaction in which two or more atoms of a chemical element react to form a chemical compound.
In Chemistry, a chemical element can be defined as any pure substance that is typically made up of only atoms and cannot be broken down into simpler substances through chemical processes. Thus, the atomic number (the number of protons in the nuclei of an atom) of a particular chemical element distinguishes from other chemical elements.
Generally, all chemical elements are denoted or represented by a symbol, which may either be single capital letter or a capital letter and a small letter.
This ultimately implies that, the symbols for elements with accepted names consist of either a single capital letter or a capital letter and a small letter. For example, the symbol for sodium is Na, copper is Cu, carbon is C, oxygen is O, iron is Fe, nitrogen is N, magnesium is Mg, potassium is K, argon is Ag, hydrogen is H, helium is He, phosphorus is P, etc.
What is the value of x
Answer:
18°
Step-by-step explanation:
Know that the intersection of two lines and the angles opposite each other are equal
3t+12=66
Subtract 12 from both sides
3t=54
Divide 3 from both sides
t=18
On a coordinate plane, a polygon has points (negative 3, 4), (3, 4), (3, negative 3), (negative 3, negative 2).
What points are the vertices of this polygon? Select all that apply.
(–3, –2)
(–2, –3)
(3, 4)
(–3, 4)
(3, 3)
(3, –3)
Answer:
(-3,-2)
(-3,4)
(3,4)
(3,-3)
Step-by-step explanation:
Answer:
cant see nun mind showing it
Which table represents a linear function?
Answer:
Option 3 (C)
Step-by-step explanation:
It is the only one that changes the same amount every time ( times 2 )
If the value of a in the quadratic function f(x) = ax^2 + bx + c is -2, the function will_______.
a open down and have a minimum
b open down and have a maximum
c open up and have a maximum
d open up and have a minimum
Answer:
b open down and have a maximum
Step-by-step explanation:
A negative value for a will make the quadratic function open down
A downward facing parabola will have a maximum
Hurry which one ITS NOT 270
A.84
C.128
D.540
Answer:
84 cm^2
Step-by-step explanation:
The area of a triangle is
A = 1/2 bh where b is the length of the base and h is the height
A = 1/2 ( 5+9) * 12
A = 1/2 (14) * 12
A =84
For f(x) = 3x +1 and g(x) = x - 6, find (f- g)(x).
A. K - 3x-7
B. 3x - 17
c. -x + 3x + 7
D. -x + 3x - 5
SUBND
Answer:
c. -x + 3x + 7 = 2x+7
Step-by-step explanation:
f(x) = 3x +1 and g(x) = x - 6
f-g = 3x +1 - ( x - 6)
Distribute the minus sign
= 3x+1 - x+6
= 2x +7
Draw a model to represent each expression.
Answer:
OK
Step-by-step explanation:
The first screenshot is for #7 and the second screenshot is for #8
What is the greatest possible integer value of x for which StartRoot x minus 5 EndRoot is an imaginary number?
Answer:
The answer is 4.
Step-by-step explanation:
Edge 2021
Answer:
4
Step-by-step explanation:
EDGE2021
A multiple-choice test contains 25 questions, each with 4 answers. Assume a student just guesses on each question. (a) What is the probability that the student answers more than 20 questions correctly
Answer:
9.68*10^-10
Step-by-step explanation:
The problem above can be solved using the binomial probability relation :
Where ;
P(x = x) = nCx * p^x * q^(n-x)
n = number of trials = 25
p = 1/4 = 0.25
q = 1 - p = 0.75
x = 20
P(x > 20) = p(x = 21) + p(x = 22) +.. + p(x = 25)
Using the binomial probability calculator to save computation time :
P(x > 20) = 9.68*10^-10
pls help me on this ..
Given : Scale drawing of Angel's rectangular room is 5cm by 7 cm
We know that, Area of a rectangle is given by : Length × Width
⇒ Area of Angel's rectangular room = (5 cm × 7 cm) = 35 cm²
Given : The scale is 1 cm = 4 feet
⇒ Area of Angel's rectangular room in square feet = 35 × (4 feet)²
⇒ Area of Angel's rectangular room in square feet = 35 × 16 feet²
⇒ Area of Angel's rectangular room in square feet = 560 feet²