Answer:
C. 16 m E
Explanation:
Applying,
The law of addition of vector: Vector in the same direction are added while vector in opposite direction are substracted
From the question above,
Step 1: Total distance covered towards east = 10+12 = 22 m E
Step2: Total distance covered towards west = 6 m W
Therefore, the resultant distance traveled = 22-6 = 16 m E
Hence the right option is C. 16 m E
What is the need for satellite communication elaborate
The high frequency radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.
Explanation:
hope it helps!!
a concave mirror has a radius of curvature of 60cm. How close to the mirror should an object be placed so that the rays travel parallel to each other after reflection
Answer:
Answer:30 cm
Answer:30 cmExplanation:
Answer:30 cmExplanation:Given=ROC= 60cm
Answer:30 cmExplanation:Given=ROC= 60cmObject be placed so that the rays that came from the object to them mirror are reflected from the mirror, and, then travel parallel to each other= 30cm at focus.
A simple model of the human eye ignores its lens entirely. Most of what the eye does to light happens at the outer surface of the transparent cornea. Assume that this surface has a radius of curvature of 6.50 mm and that the eyeball contains just one fluid, with a refractive index of 1.41. Determine the distance from the cornea where a very distant object will be imaged.
Answer:
the distance from the cornea where a very distant object will be imaged is 23.35 mm
Explanation:
Given the data in the question;
For a spherical refracting surface;
[tex]n_i[/tex]/[tex]d_0[/tex] + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
where [tex]n_i[/tex] is the index of refraction of the light of ray in the incident medium
[tex]d_0[/tex] is the object distance
[tex]n_t[/tex] is the index of refraction of light ray in the refracted medium
[tex]d_i[/tex] is the image distance
R is the radius of curvature
Now, let [tex]d_0[/tex] = ∞, such that;
[tex]n_i[/tex]/∞ + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
0 + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
we make [tex]d_i[/tex] subject of the formula
[tex]n_t[/tex]R = [tex]d_i[/tex]( [tex]n_t[/tex] - [tex]n_i[/tex] )
[tex]d_i[/tex] = ( [tex]n_t[/tex] × R ) / ( [tex]n_t[/tex] - [tex]n_i[/tex] )
given that; R = 6.50 mm, [tex]n_t[/tex] = 1.41, we know that [tex]n_i[/tex] = 1.00
so we substitute
[tex]d_i[/tex] = (1.41 × 6.50 mm ) / ( 1.41 - 1.00 )
[tex]d_i[/tex] = 9.165 / 0.41
[tex]d_i[/tex] = 23.35 mm
Therefore, the distance from the cornea where a very distant object will be imaged is 23.35 mm
The spectral lines of two stars in a particular eclipsing binary system shift back and forth with a period of 6 months. The lines of both stars shift by equal amounts, and the amount of the Doppler shift indicates that each star has an orbital speed of 64,000 m/s. What are the masses of the two stars
Answer:
the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg
Explanation:
Given the data in the question;
Time period = 6 months = 1.577 × 10⁷ s
orbital speed v = 64000 m/s
since its a circular orbit,
v = 2πr / T
we solve for r
r = vT/ 2π
r = ( 64000 × 1.577 × 10⁷ ) / 2π
r = 1.6063 × 10¹¹ m = ( (1.6063 × 10¹¹) / (1.496 × 10¹¹) )AU = 1.0737 AU
Now, from Kepler's law
T² = r³ / ( m₁ + m₂ )
T = 6 months = 0.5 years
we substitute
(0.5)² = (1.0737)³ / ( m₁ + m₂ )
0.25 = 1.2378 / ( m₁ + m₂ )
( m₁ + m₂ ) = 1.2378 / 0.25
( m₁ + m₂ ) = 4.9512
m₁ = m₂ = 4.9512 / 2 = 2.4756 solar mass
we know that solar mass = 1.989 × 10³⁰ kg
so
m₁ = m₂ = 2.4756 × 1.989 × 10³⁰ kg
m₁ = m₂ = 4.92 × 10³⁰ kg
Therefore, the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg
The position of a particle is given by ~r(t) = (3.0 t2 ˆi + 5.0 ˆj j 6.0 t kˆ) m
Answer:
[tex]v=(6ti+6k)\ m/s[/tex]
Explanation:
Given that,
The position of a particle is given by :
[tex]r(t) = (3.0 t^2 i + 5.0j+ 6.0 tk) m[/tex]
Let us assume we need to find its velocity.
We know that,
[tex]v=\dfrac{dr}{dt}\\\\=\dfrac{d}{dt}(3.0 t^2 i + 5.0j+ 6.0 tk) \\\\=(6ti+6k)\ m/s[/tex]
So, the velocity of the particle is [tex](6ti+6k)\ m/s[/tex].
Electrons are emitted from a surface when light of wavelength 500 nm is shone on the surface but electrons are not emitted for longer wavelengths of light. The work function of the surface is
Explanation:
Given: [tex]\lambda = 500\:\text{nm} = 5×10^{-7}\:\text{m}[/tex]
[tex]\nu = \dfrac{c}{\lambda} = \dfrac{3×10^8\:\text{m/s}}{5×10^{-7}\:\text{m}}[/tex]
[tex]\:\:\:\:\:= 6×10^{14}\:\text{Hz}[/tex]
The work function [tex]\phi[/tex] is then
[tex]\phi = h\nu = (6.626×10^{-34}\:\text{J-s})(6×10^{14}\:\text{Hz})[/tex]
[tex]\:\:\:\:\:\:\:= 3.98×10^{-19}\:\text{J}[/tex]
The work function of the surface is equal to 3.98 × 10⁻¹⁹J.
What are frequency and wavelength?The frequency can be explained as the number of oscillations of a wave in one second. The frequency has S.I. units of hertz.
The wavelength can be explained as the distance between the two adjacent points such as two crests or troughs on a wave.
The expression between wavelength (λ), frequency, and speed of light (c) is:
c = νλ
Given, the wavelength of the light, ν = 500 nm
The frequency of the light can determine from the above-mentioned relationship:
ν = c/λ= 3 × 10⁸/500 × 10⁻⁹ = 6 × 10¹⁴ Hz
The work function = h ν = 6 × 10¹⁴ × 6.626 × 10⁻³⁴
φ = 3.98 × 10⁻¹⁹J
Therefore, the work function of the surface is 3.98 × 10⁻¹⁹J.
Learn more about wavelength and frequency, here:
brainly.com/question/18651058
#SPJ2
Solve numerical problem. Please give me step - step explanation Help me out plz
Answer:
You should multiply 60 kg*9.8 and answer will come.
Hope this will help you.
Answer:
yes she is right you should multiple 60*9.8
have a great day God bless you
A 15.0 g bullet traveling horizontally at 865 m>s passes through a tank containing 13.5 kg of water and emerges with a speed of 534 m>s. What is the maximum temperature increase that the water could have as a result of this event
Answer:
The rise in temperature is 0.06 K.
Explanation:
mass of bullet, m = 15 g
initial speed, u = 865 m/s
final speed, v = 534 m/s
mass of water, M = 13.5 kg
specific heat of water, c = 4200 J/kg K
The change in kinetic energy
[tex]K = 0.5 m(u^2 - v^2)\\\\K = 0.5\times 0.015\times (865^2-534^2)\\\\K = 3473 J[/tex]
According to the conservation of energy, the change in kinetic energy is used to heat the water.
K = m c T
where, T is the rise in temperature.
3473 = 13.5 x 4200 x T
T = 0.06 K
Flapping flight is very energy intensive. A wind tunnel test
on an 89 g starling showed that the bird used 12 W of
metabolic power to fly at 11 m/s. What is its metabolic power for starting flight?
Answer:
The metabolic power for starting flight=134.8W/kg
Explanation:
We are given that
Mass of starling, m=89 g=89/1000=0.089 kg
1 kg=1000 g
Power, P=12 W
Speed, v=11 m/s
We have to find the metabolic power for starting flight.
We know that
Metabolic power for starting flight=[tex]\frac{P}{m}[/tex]
Using the formula
Metabolic power for starting flight=[tex]\frac{12}{0.089}[/tex]
Metabolic power for starting flight=134.8W/kg
Hence, the metabolic power for starting flight=134.8W/kg
In the following experiments, identify the independent and dependent variable.
Answer:
in what experements
Explanation:
Given that two vectors A = 5i-7j-3k, B = -4i+4j-8k find A×B
[tex]\textbf{A}×\textbf{B}= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
Explanation:
Given:
[tex]\textbf{A} = 5\hat{\textbf{i}} - 7\hat{\textbf{j}} - 3\hat{\textbf{k}}[/tex]
[tex]\textbf{B} = -4\hat{\textbf{i}} + 4\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
The cross product [tex]\textbf{A}×\textbf{B}[/tex] is given by
[tex]\textbf{A}×\textbf{B} = \left|\begin{array}{ccc}\hat{\textbf{i}} & \hat{\textbf{j}} & \hat{\textbf{k}} \\\:\:5 & -7 & -3 \\ -4 & \:\:4 & -8 \\ \end{array}\right|[/tex]
[tex]= \left|\begin{array}{cc}-7 & -3\\\:4 & -8\\ \end{array}\right|\:\hat{\textbf{i}}\:+\:\left|\begin{array}{cc}-3 & \:\:5\\-8 & -4\\ \end{array}\right|\:\hat{\textbf{j}}\:+\: \left|\begin{array}{cc}\:\:5 & -7\\-4 & \:\:4\\ \end{array}\right|\:\hat{\textbf{k}}[/tex]
[tex]= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
When you shine a beam of light, which is composed of just two different colors, red and green, onto a diffraction grating which color gets diffracted more
Answer:
The diffraction grating separates light into colors as the light passes through the many fine slits of the grating. This is a transmission grating. ... The prism separates light into colors because each color passes through the prism at a different speed and angle.
Steel railway tracks are laid at 8oC. What size of expansion gap are needed 10m long rail sections if the ambient temperature varies from -10oC to 50oC? [Linear expansivity of steel = 12 x]
Answer:
Gap left = Change in length on heating
Gap=Initial length×Coefficient of linear expansion×change in temperature
Gap=10×0.000012×15m
⟹Gap=0.0018 m
this is an example u have to put your equation in it
A wire, 0.60 m in length, is carrying a current of 2.0 A and is placed at a certain angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field
Answer:
[tex]\theta=30 \textdegree[/tex]
Explanation:
From the question we are told that:
Current [tex]I=2.0A[/tex]
Length [tex]L=0.60m[/tex]
Magnetic field [tex]B=0.30T[/tex]
Force [tex]F=0.18N[/tex]
Generally the equation for Force is mathematically given by
[tex]F = BIL sin\theta[/tex]
[tex]sin\theta=\frac{F}{BIL}[/tex]
[tex]\theta=sin^{-1}\frac{0.18}{0.3*2*0.6}[/tex]
[tex]\theta=30 \textdegree[/tex]
An airplane which intends to fly due south at 250 km/hr experiences a wind blowing westward at 40 km/hr. What is the actual speed of the airplane relative to the ground?
Answer:
simple is rumple a daily ok I'll be
A spherically mirrored ball is slowly lowered at New Years Eve as midnight approaches. The ball has a diameter of 8.0 ft. Assume you are standing directly beneath it and looking up at the ball. When your reflection is half your size then the mirror is _______ ft above you.
Answer:
The distance between mirror and you is 2 ft.
Explanation:
diameter, d = 8 ft
radius of curvature, R = 4 ft
magnification, m = 0.5
focal length, f = R/2 = 4/2 = 2 ft
let the distance of object is u and the distance of image is v.
[tex]\frac{1}{f}=\frac{1}{v}+\frac{1}{u}\\\\\frac{1}{2}=\frac{1}{v}+\frac{1}{u}\\\\v = \frac {2 u}{u - 2}[/tex]
Use the formula of magnification
[tex]m = \frac{v}{u}\\\\0.5 =\frac { u}{u - 2}\\ \\u - 2 = 2 u \\\\u = -2 ft[/tex]
1. A sequence of potential differences v is applied accross a wire (diameter =0.32 mm length = 11 cm and the resulting current I are measured as follows: V 0.1 0.2 0.3 0.4 0.5 I (MA) 72 144 216 288 360 2) a) plot a graph of v against I.
b) determine the wire's resistence , R.
c) State ohm's law and try to relate it . your results.
Answer:
a. Find the graph in the attachment
b. 720 kΩ
c. The ratio V/I gives us our resistance which is 720 kΩ
Explanation:
a) plot a graph of V against I.
To plot the graph of V against I, we plot the corresponding points against each other. With the voltage V measured in volts and the current I measured in mA, the plotted graph is in the attachment.
b) Determine the wire's resistance , R.
The resistance of the wire is determined as the gradient of the graph.
R = ΔV/ΔI = (V₂ - V₁)/(I₂ - I₁)
Taking the first two corresponding measurements. V₁ = 72 V, I₁ = 0.1 mA, V₂ = 144 V and I₂ = 0.2 mA
R = (144 V - 72 V)/(0.2 - 0.1) mA
R = 72 V/0.1 mA
R = 72 V/(0.1 × 10⁻³ A)
R = 720 × 10³ V/A
R = 720 kΩ
c) State ohm's law and try to relate it your results.
Ohm's law states that the current flowing through a conductor is directly proportional to the voltage across it provided the temperature and all other physical conditions remain constant.
Mathematically, V ∝ I
V = kI
V/I = k = R
Since the ratio V/I = constant, from our results, the ratio of V/I for each reading gives us the resistance. Since we have a linear relationship between V and I, the gradient of the graph is constant and for each value of V and I, the ratio V/I is constant. So, the ratio V/I gives us our resistance which is 720 kΩ.
Since V/I is constant, we thus verify Ohm's law.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.
a) Draw a sankey diagram for a roller coaster's climb.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.
What is mechanical energy?Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
The expression for total mechanical energy is as follows
ME= KE+PE
As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,
Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.
Learn more about mechanical energy from here brainly.com/question/12319302
#SPJ2
how will be electric lines of force where intensity of electric field is maximum ?
a. wider
b. +ve to -ve
c. narrow
d. -ve to +ve
i'm pretty sure the answer is A wider
Electric lines of force where intensity of electric field is maximum when its wider.
What is Electric field?The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field. It can also refer to a system of charged particles' physical field.
Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
Electrical technology makes use of electric fields, which are significant in many branches of physics. For instance, in atomic physics and chemistry, the electric field acts as an attracting force to hold atoms' atomic nuclei and electrons together.
Therefore, Electric lines of force where intensity of electric field is maximum when its wider.
To learn more about electric field, refer to the link:
https://brainly.com/question/1443103
#SPJ2
A mass weighing 4 lb stretches a spring 4in. Suppose the mass is given an additional in displacement downwards and then released. Assuming no friction and no external force, the natural frequency W (measured in radians per unit time) for the system is? (Recall that the acceleration due to gravity is 32ft/sec2).
a) None of the other alternatives is correct.
b) W = v2 3
c)w=212
d) w = 4/6
e) w=213
Answer:
4√6 rad/s
Explanation:
Since the spring is initially stretched a length of x = 4 in when the 4 lb mass is placed on it, since it is in equilibrium, the spring force, F = kx equals the weight of the mass W = mg.
So, W = F
mg = kx where m = mass = 4lb, g = acceleration due to gravity = 32 ft/s², k = spring constant and x = equilibrium displacement of spring = 4 in = 4 in × 1ft /12 in = 1/3 ft
making k the spring constant subject of the formula, we have
k = mg/x
substituting the values of the variables into the equation, we have
k = mg/x
k = 4 lb × 32 ft/s² ÷ 1/3 ft
k = 32 × 4 × 3
k = 384 lbft²/s²
Now, assuming there is no friction and no external force, we have an undamped system.
So, the natural frequency for an undamped system, ω = √(k/m) where k = spring constant = 384 lbft²/s² and m = mass = 4 lb
So, substituting the values of the variables into the equation, we have
ω = √(k/m)
ω = √(384 lbft²/s² ÷ 4 lb)
ω = √96
ω = √(16 × 6)
ω = √16 × √6
ω = 4√6 rad/s
A sinewave has a period (duration of one cycle) of 645 μs (microseconds). What is the corresponding frequency of this sinewave, in kHz
The corresponding frequency of this sinewave, in kHz, expressed to 3 significant figures is: 155 kHz.
Given the following data:
Period = 645 μsNote: μs represents microseconds.
Conversion:
1 μs = [tex]1[/tex] × [tex]10^-6[/tex] seconds
645 μs = [tex]645[/tex] × [tex]10^-6[/tex] seconds
To find corresponding frequency of this sinewave, in kHz;
Mathematically, the frequency of a waveform is calculated by using the formula;
[tex]Frequency = \frac{1}{Period}[/tex]
Substituting the value into the formula, we have;
[tex]Frequency = \frac{1}{645 * 10^-6}[/tex]
Frequency = 1550.39 Hz
Next, we would convert the value of frequency in hertz (Hz) to Kilohertz (kHz);
Conversion:
1 hertz = 0.001 kilohertz
1550.39 hertz = X kilohertz
Cross-multiplying, we have;
X = [tex]0.001[/tex] × [tex]1550.39[/tex]
X = 155039 kHz
To 3 significant figures;
Frequency = 155 kHz
Therefore, the corresponding frequency of this sinewave, in kHz is 155.
Find more information: brainly.com/question/23460034
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m
Answer:
It will travel Vx * t = 30 m/s * 2 s = 60 m
What about Iceland's location makes it particularly well-suited to produce electricity from geothermal energy
Answer:
Iceland lies on a boundary where two plates are moving away from each other. Heat from Earth’s interior rises through this plate boundary at a fast rate. This fact makes Iceland well-suited to producing electricity using its abundance of geothermal energy.
Explanation:
Edmentum sample answer.
what Is accuracy ............
Answer:
Accuracy is how much the consequence of an estimation adjusts to the right worth or a norm' and basically alludes to how close an estimation is to its concurred esteem
《OAmalaOHopeO》
Answer:
In a set of measurements, accuracy is closeness of the measurements to a specific value, while precision is the closeness of the measurements to each other.
Explanation:
_Hope it helps you_
Large cockroaches can run as fast as 1.50 m/s in short bursts. Suppose you turn on the light in a cheap motel and
see one scurrying directly away from you at a constant 1.50 m/s. If you start 0.90 m behind the cockroach with
an initial speed of 0.80 m/s toward it, what minimum constant acceleration would you need to catch up with it
when it has traveled 1.20 m, just short of safety onder a counter?
Answer:
The time that you need to use 1.2/1.5 because this is how long it took the cockroach to travel the 1.2 meters to the counter. That is therefore how long you have to catch up to it.
Explanation:
Consider newtonian mechanics here.
Dynamic equation is
The time we have to use 1.2/1.5 this how long it took the cockroach to travel the 1.2 meters to the counter.
we'll consider newtonian mechanics here.
so the dynamic equations is S = ut + 0.5at^2
we know u=0.8
S=1.2+0.9
t=1.2/1.5
find a.
What is not one of the main uses of springs?
A. Car suspension
B. Bike suspension
C. The seasons
D. Clock making
Cho dòng điện xoay chiều trong sản xuất và sinh hoạt ở nước ta có tần số f = 50Hz. Tính chu kỳ T và tần số góc ω?
Answer:
T = 1/f = 1/50(s)
ω = 2πf = 100π (rad/s)
(vote 5 sao nhó :3 )
3. A microscope is focused on a black dot. When a 1.30 cm -thick piece of plastic is placed over the dot, the microscope objective has to be raised 0.410 cm to bring the dot back into focus. What is the index of refraction of the plastic
The index of refraction of the plastic is approximately 1.461
The known values in the question are;
The thickness of the piece of plastic placed on the dot = 1.30 cm
The height to which the microscope objective is raised to bring the dot back to focus = 0.410 cm
The unknown values in the question are;
The index of refraction
Strategy;
Calculate the refractive index by making use of the apparent height and real height method for the black dot under the thick piece of plastic
[tex]\mathbf{ Refractive \ index, n = \dfrac{Real \ depth}{Apparent \ depth}}[/tex]
The real depth of the dot below the piece of plastic, d₁ = 1.30 cm
The apparent depth of the dot, d₂ = The actual depth - The height to which the microscope is raised
Therefore;
The apparent depth of the dot, d₂ = 1.30 cm - 0.410 cm = 0.89 cm
[tex]The \ refractive \ index, \ n = \dfrac{d_1}{d_2}[/tex]
Therefore, n = 1.30/0.89 ≈ 1.461
The refractive index of the plastic block, n ≈ 1.461
Learn more about refractive index of light here;
https://brainly.com/question/24321580
Question 5 of 10
What must be the same for two resistors that are connected in parallel?
Answer:
in parallel combination : potential difference between two terminal of resistors are always constant. ... hence, potential difference ( voltage ) must be same across each resistor .
Explanation:
describe four energy changes that happen in the process.
Driving a motor........
chemical energy is converted into kinetic energy.
Falling off of cliff
.........gravitational potential energy is converted into kinetic energy.
Hydroelectric energy generation
.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.
Nuclear power generation
.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.