Answer:
D
Step-by-step explanation:
I have attached the explanation above. hopefully this will help
Which of the following phrases are expressions?
6-1>L,
-6k = -8,
1/4<3/8,
3 + 5
Answer:
-6k = -8 is an expression
A and C are inequalities
D is arithmetic
A 90% confidence interval is found to be (120,140). What is the margin of error?
Answer:
There is 10% error in both minimum and extreme values i.e. 120 & 140 , Error in 120 is 10% i.e. = 12, Since value can be more or less in error ∴ Error in 120 is ±12.
whats 5 + 5 i need help my iq is 1 i need help pls pls pls pls
Answer:
Here are some activities you can do to improve various areas of your intelligence, from reasoning and planning to problem-solving and more.
Memory activities. ...
Executive control activities. ...
Visuospatial reasoning activities. ...
Relational skills. ...
Musical instruments. ...
New languages. ...
Frequent reading. ...
Continued education.
1
) Solve the equation
(85) for n.
8n
n =
?
Answer:
n = -10
Step-by-step explanation:
1 / 8^n = 8^5^2
We know that 1/a^b = a^-b
We also know that a^b^c = a^(b*c)
8^-n = 8^(5*2)
8^-n = 8^(10)
Since the bases are the same, the exponents are the same
-n = 10
n = -10
PLS HELP
Evaluate the piecewise function at the indicated values from the domain
==========================================================
Explanation:
Piecewise functions are admittedly a bit confusing at first if you aren't familiar with them.
However, they aren't too bad. Effectively we have two functions going on depending on what the input is.
If the input x is less than 0, then we go for the top row and say [tex]f(x) = x^2[/tex]
OR
If the input x is greater than 0, then we go for the bottom row to say [tex]f(x) = \sqrt[3]{x}[/tex]
-------------------------------
In this case, the input is x = -8. So we go for the first row since this x value satisfies x < 0.
We would then say:
[tex]f(x) = x^2\\\\f(-8) = (-8)^2\\\\f(-8) = 64\\\\[/tex]
Which points us to choice A as the final answer.
Answer:
f(-8) = 64
Step-by-step explanation:
Input -8 into one of the formulas (either will work) and the answer should be 64. therefore, if x is -8, f(-8) would equal 64.
Which of the following theorems verifies that AABC - ASTU?
A. AA
B. HL
C. HA
D. LL
Answer:
AA
Step-by-step explanation:
See In Triangle ABC and Triangle STU
[tex]\because\begin{cases}\sf \angle A=\angle S=90° \\ \sf \angle B=\angle T=31°\end{cases}[/tex]
Hence
[tex]\sf \Delta ABC~\Delta STU(Angle-Angle)[/tex]
By AA similarity triangle ABC is similar to triangle SUT. Therefore, option A is the correct answer.
What are similar triangles?Two triangles are similar if the angles are the same size or the corresponding sides are in the same ratio. Either of these conditions will prove two triangles are similar.
In the given triangle ABC, ∠C=180°-90°-31°
∠C=59°
In the given triangle SUT, ∠U=180°-90°-31°
∠U=59°
Here, ∠B=∠T (Given)
∠C=∠U (Obtained using angle sum property of a triangle)
So, by AA similarity ΔABC is similar to ΔSUT.
Therefore, option A is the correct answer.
To learn more about the similar triangles visit:
https://brainly.com/question/25882965.
#SPJ7
A line passes through the point (5,6) and is parallel to the line given by the equation y = 2x - 12. Which of these is an equation for the line? O A. y-5=-264-6) B. y - 6 = -2(x - 5) C. y + 6 = 2(x + 5) D. Y- 6 = 2(x - 5)
Answer: D
Step-by-step explanation:
(lines parallel to each other have the same slope)
slope = m = 2
y = mx + b, (5,6)
6 = 2(5) + b
6 = 10 + b
b = -4
y = 2x - 4
y - 6 = 2(x - 5)
y - 6 = 2x - 10
y = 2x -4
A lottery ticket has a grand prize of $41.7 million. The probability of winning the grand prize is .000000023. Determine the expected value of the lottery ticket. (Round your answer to 3 decimal places.) Expected value
Answer:
000023 because if we take three 0's we can get 000023 and 417 million
The domain for all variables in the expressions below is the set of real numbers. Determine whether each statement is true or false.(i)∀x ∃y(x+y≥0)
The domain of a set is the possible input values the set can take.
It is true that the domain of ∀x ∃y(x+y≥0) is the set of real numbers
Given that: ∀x ∃y(x+y≥0)
Considering x+y ≥ 0, it means that the values of x + y are at least 0.
Make y the subject in x+y ≥ 0
So, we have:
[tex]\mathbf{y \le -x}[/tex]
There is no restriction as to the possible values of x.
This means that x can take any real number.
Hence, it is true that the domain of ∀x ∃y(x+y≥0) is the set of real numbers.
Read more about domain at:
https://brainly.com/question/15110684
a) __m=10km 25m =___km
b) __m=__km__m=1.5 km
Example :
a) 7250m= 7km 250m = 7.250km
Please help me
Answer:
a) 10,025 m = 10km 25m = 10.025 km
b) 1,500 m = 1 km 500 m = 1.5 km
Answer:
a) 10025m = 10km 25m = 10.025km
b) 1500m = 1km 500m = 1.5km
Step-by-step explanation:
Concept:
Here, we need to know the idea of unit conversion.
Unit conversion is the conversion between different units of measurement for the same quantity.
1 km = 1000 m
Solve:
a)
10km 25m = 10×1000 + 25 = 10025 m10km 25m = 10 + 25/1000 = 10.025 kmb)
1.5km = 1 + 0.5 × 1000 = 1km 500m1.5km = 1.5 × 1000 = 1500mHope this helps!! :)
Please let me know if you have any questions
Given f(x) = 4x - 3 and g(x) = 9x + 2, solve for (f + g)(x).
[tex]\\ \sf\longmapsto (f+g)(x)[/tex]
[tex]\\ \sf\longmapsto f(x)+g(x)[/tex]
[tex]\\ \sf\longmapsto 4x-3+9x+2[/tex]
[tex]\\ \sf\longmapsto 4x+9x-3+2[/tex]
[tex]\\ \sf\longmapsto 13x-1[/tex]
Answer:
13x - 1
Step-by-step explanation:
f(x) + g(x) = 4x - 3 + 9x + 2
f(x) + g(x) = 4x+9x + 2 - 3
f(x) + g(x) = 13x - 1
give a coordinates of the Vertex y =(x + 2)
.
squared - 1
Given:
The equation of a parabola is:
[tex]y=(x+2)^2-1[/tex]
To find:
The coordinates of the vertex of the given equation.
Solution:
The vertex form of a quadratic function is:
[tex]y=a(x-h)^2+k[/tex] ...(i)
Where, a is a constant and (h,k) is the vertex.
We have,
[tex]y=(x+2)^2-1[/tex] ...(ii)
On comparing (i) and (ii), we get
[tex]a=1[/tex]
[tex]h=-2[/tex]
[tex]k=-1[/tex]
We know that the vertex of the parabola is (h,k).
Therefore, the vertex of the given equation is (-2,-1).
After leaving an airport, a plane flies for 2 hours on a course of 60 degrees at a speed of 200 kilometers per hour. The plane then flies for 3 hours on a course of 210 degrees at a speed of 100 kilometers per hour What is the distance of the airport from the plane in kilometers? Round to the nearest tenth
Answer: 205.3
I suppose all measures of angles are done from the same axis (for example x-axis)
Step-by-step explanation:
You just have to use the theorem of Al'Kashi:
[tex]d^2=400^2+300^2-2*300*400*cos(30^o)\\\\d\approx{205.3(km)}[/tex]
nine times a number
Answer:
if we do 9 times a number that will be
9x
Answer:
9x
Step-by-step explanation:
9 times a number (a variable) = 9x
What’s the answer to this?
Answer:
[tex]f(3x)=9x^2-3[/tex]
Step-by-step explanation:
One is given the following function:
[tex]f(x)=x^2-3[/tex]
One is asked to evaluate the function for ([tex]f(3x)[/tex]). Substitute ([tex]3x[/tex]) in place of ([tex]x[/tex]) then simplify. Remember that a number raised to an exponent is the same as that number times itself the number of times that the exponent indicates. One can apply this logic here while simplifying,
[tex]f(x)=x^2-3[/tex]
[tex]f(3x)=(3x)^2-3[/tex]
[tex]f(3x)=(3x*3x)-3[/tex]
[tex]f(3x)=(9x^2)-3[/tex]
[tex]f(3x)=9x^2-3[/tex]
At which values of x does the function Fx) have a vertical asymptote? Check
all that apply.
F(x) =
2/3x(x - 1)(x + 5)
I A. -1
B. 2
C. 1
D. -5
E. 0
F. 3
9514 1404 393
Answer:
C, D, E
Step-by-step explanation:
Vertical asymptotes are found where the denominator is zero. The denominator will be zero when any of its factors is zero. Then the vertical asymptotes are ...
x = 0 ⇒ x = 0 . . . . . . choice E
x -1 = 0 ⇒ x = 1 . . . . . choice C
x +5 = 0 ⇒ x = -5 . . . choice D
1. Find the greatest number of 4-digits which is exactly divisible by each of 2,3,4,5,6 and 7.
Answer:
Step-by-step explanation:
The number which is divisible by 2, 3, 4, 5 and 6 will also be divisible by LCM of 2, 3, 4, 5 and 6. Let us divide 9999 by 60 and find the remainder, Remainder after dividing 9999 by 60 is 39. Therefore, the largest number which is divisible by these numbers should be 39 less than 9999.
Suppose that 22 inches of wire costs 66 cents.
At the same rate, how much (in cents) will 17 inches of wire cost?
cents
Х
?
Answer:
51 cents for 17 inches of wire
Step-by-step explanation:
22 = 66
17 = x
22x = 66 * 17
22x = 1122
x = 51 cents
or
22 inches costs 66 cents
1 inch costs 3 cents (66 / 22 = 3 cents)
17 inches costs 51 cents (17 * 3 = 51 cents)
A man purchased a magazine at the airport for $2.69. The tax on the purchase was $0.13. What is the tax rate at the airport? The tax rate is %. (Round to the nearest percent as needed.)
We need to find the percent, let's start but making the equation.
The price is 2.69
The tax cost is 0.13
So what percent of 2.69 is = 0.13.
Equation: X/100 x 2.69 = 0.13
Multiply each side by 100 so we can get x alone with the price: 2.69x = 13
Now to get x alone, we must divide both sides by 2.69: x = 4.8
Finally, we just round 4.8 to the nearest whole number, which is 5 (5 or above give it a shove, 4 or below let it go, we have 8 so we give it a shove). This means that the answer will be 5%.
I hope this helps! :)
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!!
Chapter 11 part 4:
Of the three functions {f(x), g(x), h(x))} featured on the graph below (on the following page), rank the functions in order of greatest rate of growth to least.
9514 1404 393
Answer:
g, h, f
Step-by-step explanation:
A graph of two exponential curves will have the one with the least growth rate crossing under the one with the greater growth rate. Here, f(x) is shown crossing under g(x) and is on its way to a point of intersection with h(x). So, f(x) has the least growth rate.
g(x) and h(x) start out at about the same level, but g(x) curves upward faster, indicating it has the higher growth rate.
In order from greatest to least growth rate, the functions are ...
g(x), h(x), f(x)
Basketball A basketball player makes 8 of 12 free throws
in the first game of the season. If she shoots with the same
accuracy in the second game, how many of the 15 free
throws she attempts will she make?
100.331 divide 99.355
Answer:
1.009823361
Step-by-step explanation:
Just divide like this:
[tex] \frac{100.331}{99.355} = 1.009853361[/tex]
find the value of the trigonometric ratio
How much does college tuition cost? That depends, of course, on where you go to college. Construct a weighted average. Using the data from "College Affordable for Most," estimate midpoints for the cost intervals. Say 46% of tuitions cost about $4,500; 21% cost about $7,500; 7% cost about $12,000; 8% cost about $18,000; 9% cost about $24,000; and 9% cost about $31,000. Compute the weighted average of college tuition charged at all colleges.
Answer:
0.127
Step-by-step explanation:
This is Some next level Geometry
Step-by-step explanation:
Measure of Angle 1 is 115 due to corresponding angles postulate
Measure of Angle 2 is 65 is linear pair postulate.
If (3a+4b)=16 and ab=4, find the value of (9a^2+16b^2).
Answer:
160
Step-by-step explanation:
(3a+4b) = 16
ab = 4
Square (3a+4b)
(3a+4b)(3a+4b) = 16^2
9a^2 + 12ab+12ab+16b^2 = =256
9a^2 +16b^2 +24ab=256
9a^2 +16b^2 +24ab - 24 ab=256 -24ab
9a^2 +16b^2 =256- 24ab
We know ab = 4
9a^2 +16b^2 =256- 24*4
9a^2 +16b^2 =256- 96
9a^2 +16b^2 =160
What is the product?
(-2a² + s) (5a^2 - 6s)
Answer:
10a²+17a²s-6s²
Step-by-step explanation:
(-2a²+s)(5a²-6s)
= -10a²+12a²s+5a²s-6s²
= -10a²+17a²s-6s²
Answer:
b
Step-by-step explanation:
How many square inches of sheet metal are used to make the vent transition shown? (The ends are open.)
Answer:
Area of the metal sheet required = 364 square inches
Step-by-step explanation:
Area of the metal sheet required = Surface area of the lateral sides of the vent transition
Since, lateral sides of the vent is in the shape of a trapezoid,
Therefore, surface area of the vent = 4(Surface area of one lateral side)
= [tex]4[\frac{1}{2}(b_1+b_2)h][/tex]
Here, [tex]b_1[/tex] and [tex]b_2[/tex] are two parallel sides and [tex]h[/tex] is the distance between these parallel sides.
Surface area of the vent = [tex]4[\frac{1}{2}(8+5)14][/tex]
= 364 square inches
Therefore, area of the metal sheet required = 364 square inches
Follow the instructions on the image
Answer:
k=3
Step-by-step explanation:
Assuming the centre of dilation is 0,0, we can use the formula (kx,ky) to determine it.
Here,
The co-ordinates of pre-image=(0,1),(-1,-1) & (1,-1)
The co-ordinates of image=(0,3),(-3,-3) & (3,-3)
Now,
(kx,ky)=(0,3)
(k*0,k*1)=(0,3)
Equating,
k=3
You can use the other coordinates to further solidify your answer.
A sample of 50 elements from a population with a standard deviation of 20 is selected. The sample mean is 150. The 90% confidence interval for is: a.165.0 to 185.0. b.146.4 to 153.6. c.145.3 to 154.7. d.171.8 to 188.2.
Answer:
c.145.3 to 154.7.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.9}{2} = 0.05[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.05 = 0.95[/tex], so Z = 1.645.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 1.645\frac{20}{\sqrt{50}} = 4.7[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 150 - 4.7 = 145.3.
The upper end of the interval is the sample mean added to M. So it is 150 + 4.7 = 154.7.
Thus the correct answer is given by option c.