Answer:
b
Step-by-step explanation:
b is correct.
a triangle has sides of 6 m 8 m and 11 m is it a right-angled triangle?
Answer:
No
Step-by-step explanation:
If we use the Pythagorean theorem, we can find if it is a right triangle. To do that, set up an equation.
[tex]6^{2}+8^{2}=c^2[/tex]
If the triangle is a right triangle, c would equal 11
Solve.
[tex]36+64=100[/tex]
Then find the square root of 100.
The square root of 100 is 10, not 11.
So this is not a right triangle.
I hope this helps!
A group of rowdy teenagers near a wind turbine decide to place a pair of pink shorts on the tip of one blade, they notice the shorts are at its maximum height of 16 meters at a and it’s minimum height of 2 meters at s.
Determine the equation of the sinusoidal function that describes the height of the shorts in terms of time.
Determine the height of the shorts exactly t=10 minutes, to the nearest tenth of a meter
The equation of the sinusoidal function is 7 × sin((π/15)·(x - 2.5)) + 9
Question: The likely missing parameters in the question are;
The time at which the shorts are at the maximum height, t₁ = 10 seconds
The time at which the shorts are at the minimum height, t₂ = 25 seconds
The general form of a sinusoidal function is A·sin(B(x - h)) + kWhere;
A = The amplitude
The period, T = 2·π/B
The horizontal shift = h
The vertical shift = k
The parent equation of the sine function = sin(x)
We find the values of the variables, A, B, h, and k as follows;
The given parameters of the sinusoidal function are;
The maximum height = 16 meters at time t₁ = 10 seconds
The minimum height = 2 meters at time t₂ = 25 seconds
The time it takes the shorts to complete a cycle, (maximum height to maximum height), the period, T = 2 × (t₂ - t₁)
∴ T = 2 × (25 - 10) = 30
The amplitude, A = (Maximum height- Minimum height)/2
∴ A = (16 m - 2 m)/2 = 7 m
The amplitude of the motion, A = 7 meters
T = 2·π/B
∴ B = 2·π/T
T = 30 seconds
∴ B = 2·π/30 = π/15
B = π/15
At t = 10, y = Maximum
Therefore;
sin(B(x - h)) = Maximum, which gives; (B(x - h)) = π/2
Plugging in B = π/15, and t = 10, gives;
((π/15)·(10 - h)) = π/2
10 - h = (π/2) × (15/π) = 7.5
h = 10 - 7.5 = 2.5
h = 2.5
The minimum value of a sinusoidal function, having a centerline of which is on the x-axis, and which has an amplitude, A, is -A
Therefore, the minimum value of the motion of the turbine blades before, the vertical shift = -A = -7
The given minimum value = 2
The vertical shift, k = 2 - (-7) = 9
Therefore, k = 9
Therefore;
The equation of the sinusoidal function is 7 × sin((π/15)·(x - 2.5)) + 9
More can be learned about sinusoidal functions on Brainly here;
https://brainly.com/question/14850029
!!!!Please Answer Please!!!!
ASAP!!!!!!
!!!!!!!!!!!!!
Answer:
False
Step-by-step explanation:
well i think that the answer from my calculations
Solve the equation by completing the square.
0 = 4x2 − 72x
Answer:
B
Step-by-step explanation:
Given
4x² - 72x = 0 ← factor out 4 from each term
4(x² - 18x) = 0
To complete the square
add/subtract (half the coefficient of the x- term)² to x² - 18x
4(x² + 2(- 9)x + 81 - 81) = 0
4(x - 9)² - 4(81) = 0
4(x - 9)² - 324 = 0 ( add 324 to both sides )
4(x - 9)² = 324 ( divide both sides by 4 )
(x - 9)² = 81 ( take the square root of both sides )
x - 9 = ± [tex]\sqrt{81}[/tex] = ± 9 ( add 9 to both sides )
x = 9 ± 9
Then
x = 9 - 9 = 0
x = 9 + 9 = 18
Answer:0,18
Step-by-step explanation:
its right
Graph the inequality.
7 <= y - 2x < 12
Answer:
X(-12,-7)
Step-by-step explanation:
This is the answer to your problem. I hope it helps. I don't know how to explain it sorry.
X+34>55
Solve the inequality and enter your solution as an inequality comparing the variable to a number
Answer:
x > 21
General Formulas and Concepts:
Pre-Algebra
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
x + 34 > 55
Step 2: Solve for x
[Subtraction Property of Equality] Subtract 34 on both sides: x > 21Pleaseee Help. What is the value of x in this simplified expression?
(-1) =
(-j)*
1
X
What is the value of y in this simplified expression?
1 1
ky
y =
-10
K+m
+
.10
m т
9514 1404 393
Answer:
x = 7
y = 5
Step-by-step explanation:
The applicable rule of exponents is ...
a^-b = 1/a^b
__
For a=-j and b=7,
(-j)^-7 = 1/(-j)^7 ⇒ x = 7
For a=k and b=-5,
k^-5 = 1/k^5 ⇒ y = 5
Suppose a sample of 1453 new car buyers is drawn. Of those sampled, 363 preferred foreign over domestic cars. Using the data, estimate the proportion of new car buyers who prefer foreign cars. Enter your answer as a fraction or a decimal number rounded to three decimal places
Answer:
"0.250" is the appropriate answer.
Step-by-step explanation:
Given:
New car sample,
= 1453
Preferred foreign,
= 363
Now,
The amount of new automobile purchasers preferring foreign cars will be approximated as:
= [tex]\frac{363}{1453}[/tex]
= [tex]0.250[/tex]
Which of the following is the differnce of two squares
The administration conducted a survey to determine the proportion of students who ride a bike to campus. Of the 123 students surveyed 5 ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus? Check all that apply.
a. The sample needs to be random but we don’t know if it is.
b. The actual count of bike riders is too small.
c. The actual count of those who do not ride a bike to campus is too small.
d. n*^p is not greater than 10.
e. n*(1−^p)is not greater than 10.
Answer:
b. The actual count of bike riders is too small.
d. n*p is not greater than 10.
Step-by-step explanation:
Confidence interval for a proportion:
To be possible to build a confidence interval for a proportion, the sample needs to have at least 10 successes, that is, [tex]np \geq 10[/tex] and at least 10 failures, that is, [tex]n(1-p) \geq 10[/tex]
Of the 123 students surveyed 5 ride a bike to campus.
Less than 10 successes, that is:
The actual count of bike riders is too small, or [tex]np < 10[/tex], and thus, options b and d are correct.
A sprinter travels a distance of 200 m in a time of 20.03 seconds.
What is the sprinter's average speed rounded to 4 sf?
Given:
Distance traveled by sprinter = 200 m
Time taken by sprinter = 20.03 seconds
To find:
The sprinter's average speed rounded to 4 sf.
Solution:
We know that,
[tex]\text{Average speed}=\dfrac{\text{Distance}}{\text{Time}}[/tex]
It is given that, the sprinter travels a distance of 200 m in a time of 20.03 seconds.
[tex]\text{Average speed}=\dfrac{200}{20.03}[/tex]
[tex]\text{Average speed}=9.985022466[/tex]
[tex]\text{Average speed}\approx 9.985[/tex]
Therefore, the average speed of the sprinter is 9.985 m/sec.
Answer:
9.985
Step-by-step explanation:
An isosceles right triangle has a hypotenuse that measures 4√2 cm. What is the area of the triangle?
PLEASE HELP
Answer:
8
Step-by-step explanation:
As it's an isosceles right triangle, it's sides are equal, say x. x^2+x^2=(4*sqrt(2))^2. x=4, Area is (4*4)/2=8
the point (-2,5) is reflected across the y-axis. which of these is the ordered pair of the image
Answer:(2,5)
Step-by-step explanation: watch this video
https://youtu.be/l78P2Xi68-k
The polynomial equation x cubed + x squared = negative 9 x minus 9 has complex roots plus-or-minus 3 i. What is the other root? Use a graphing calculator and a system of equations. –9 –1 0 1
9514 1404 393
Answer:
(b) -1
Step-by-step explanation:
The graph shows the difference between the two expressions is zero at x=-1.
__
Additional comment
For finding solutions to polynomial equations, I like to put them in the form f(x)=0. Most graphing calculators find zeros (x-intercepts) easily. Sometimes they don't do so well with points where curves intersect. Also, the function f(x) is easily iterated by most graphing calculators in those situations where the root is irrational or needs to be found to best possible accuracy.
Answer:
The answer is b: -1
Step-by-step explanation:
good luck!
If two marbles are selected in succession with replacement, find the probability that both marble is blue.
Answer:
1 / 9
Step-by-step explanation:
Choosing with replacement means that the first draw from the lot is replaced before another is picked '.
Number of Blue marbles = 2
Number of red marbles = 4
Total number of marbles = (2 + 4) = 6
Probability = required outcome / Total possible outcomes
1st draw :
Probability of picking blue = 2 / 6 = 1 /3
2nd draw :
Probability of picking blue = 2 / 6 = 1/3
P(1st draw) * P(2nd draw)
1/3 * 1/3 = 1/9
Write the standard form of the equation of the circle with center (−7,10) that passes through the point (−7,7)
Answer:
(x+7)^2+(y-10)^2=9
Step-by-step explanation:
The distance between the two points is sqrt((-7+7)^2+(10-7)^2)=3 which is in turn the radius of the circle
2/3y = 1/4 what does y equal?
Answer:
Step-by-step explanation:
2/3y=1/4 this means 3y=8 then you divide both sides by 8 you will get the value of y =8/3
(4-1) + (6 + 5) = help plz
What is the measure of F?
G
65
10
H H
10
A. Cannot be determined
B. 55
C. 75
D65
Answer:
D. 65°
Step-by-step explanation:
It is so because the triangle is isosceles, two identical sides and two equal angles.
What is the value of x?
Enter your answer in the box.
units
Answer:
25
Step-by-step explanation:
40/24 = x/15
x = 15•40/24
x = 25
Answer:
25
Step-by-step explanation:
just use the facts that both triangles are similar
What is the value of x in the triangle? 45, 45, x
Answer:
90
Step-by-step explanation:
it its a 45 45 90 triangle
40% of what number is 16.6?
According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. Assume the population st. dev. is $0.50 and that a sample of 30 theaters was randomly selected. What is the probability that the sample mean will be between $7.75 and $8.20
Answer:
0.985 = 98.5% probability that the sample mean will be between $7.75 and $8.20.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The average price for a movie in the United States in 2012 was $7.96. Assume the population st. dev. is $0.50.
This means that [tex]\mu = 7.96, \sigma = 0.5[/tex]
Sample of 30:
This means that [tex]n = 30, s = \frac{0.5}{\sqrt{30}}[/tex]
What is the probability that the sample mean will be between $7.75 and $8.20?
This is the p-value of Z when X = 8.2 subtracted by the p-value of Z when X = 7.75.
X = 8.2
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{8.2 - 7.96}{\frac{0.5}{\sqrt{30}}}[/tex]
[tex]Z = 2.63[/tex]
[tex]Z = 2.63[/tex] has a p-value of 0.9957
X = 7.75
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{7.75 - 7.96}{\frac{0.5}{\sqrt{30}}}[/tex]
[tex]Z = -2.3[/tex]
[tex]Z = -2.3[/tex] has a p-value of 0.0107.
0.9957 - 0.0157 = 0.985
0.985 = 98.5% probability that the sample mean will be between $7.75 and $8.20.
Which side of the polygon is exactly 6 units long?
Answer:
AB is correct as It is the shorter parallel line
as the line measures 6 units.
Step-by-step explanation:
The polygon is a trapezoid / (trapezium Eng/Europe)
We see the given coordinates (2, 6) - (-4, 6) = x-6 y 0 = x = 6units
as x always is shown as x - 6 as x= 6
We can also show workings as y2-y1/x2-x1 = 6-6/-4-2 0/-6
y = 0 x = 6 = 6 units as its horizontal line.
when y is 6-6 = 0 then we know the line is horizontal for y = 0.
The difference of the measures -4 to 2 is 6units so if no workings we just add on from -4 to 2 and find the answer is 6 units long.
When looking at diagonal lines we still group the x's and y's and make the fraction whole.
When looking for solid vertical lines that aren't shown here we use the y values if showing workings and show x =0 to cancel out.
Describe the transformation of f(x) to g(x). Pleaseee helllp thank youuuu!!!
The transformation set of [tex]y[/tex] values for function [tex]f[/tex] is [tex][-1,1][/tex] this is an interval to which sine function maps.
You can observe that the interval to which [tex]g[/tex] function maps equals to [tex][-2,0][/tex].
So let us take a look at the possible options.
Option A states that shifting [tex]f[/tex] up by [tex]\pi/2[/tex] would result in [tex]g[/tex] having an interval [tex][-1,1]+\frac{\pi}{2}\approx[0.57,2.57][/tex] which is clearly not true that means A is false.
Let's try option B. Shifting [tex]f[/tex] down by [tex]1[/tex] to get [tex]g[/tex] would mean that has a transformation interval of [tex][-1,1]-1=[-2,0][/tex]. This seems to fit our observation and it is correct.
So the answer would be B. If we shift [tex]f[/tex] down by one we get [tex]g[/tex], which means that [tex]f(x)=\sin(x)[/tex] and [tex]g(x)=f(x)-1=\sin(x)-1[/tex].
Hope this helps :)
Assuming that the sample mean carapace length is greater than 3.39 inches, what is the probability that the sample mean carapace length is more than 4.03 inches
Answer:
The answer is "".
Step-by-step explanation:
Please find the complete question in the attached file.
We select a sample size n from the confidence interval with the mean [tex]\mu[/tex]and default [tex]\sigma[/tex], then the mean take seriously given as the straight line with a z score given by the confidence interval
[tex]\mu=3.87\\\\\sigma=2.01\\\\n=110\\\\[/tex]
Using formula:
[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
The probability that perhaps the mean shells length of the sample is over 4.03 pounds is
[tex]P(X>4.03)=P(z>\frac{4.03-3.87}{\frac{2.01}{\sqrt{110}}})=P(z>0.8349)[/tex]
Now, we utilize z to get the likelihood, and we use the Excel function for a more exact distribution
[tex]=\textup{NORM.S.DIST(0.8349,TRUE)}\\\\P(z<0.8349)=0.7981[/tex]
the required probability: [tex]P(z>0.8349)=1-P(z<0.8349)=1-0.7981=\boldsymbol{0.2019}[/tex]
Below are the heights (in inches) of students in a third-grade class. Find the median height. 39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48
Given:
The heights (in inches) of students in a third-grade class are:
39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48
To find:
The median height.
Solution:
The given data set is:
39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48
Arrange the data set in ascending order.
37, 39, 40, 42, 42, 45, 47, 47, 48, 48, 48, 49, 49, 51, 52, 53
Here, the number of observations is 16. So, the median of the given data set is:
[tex]Median=\dfrac{\dfrac{n}{2}\text{th term}+\left(\dfrac{n}{2}+1\right)\text{th term}}{2}[/tex]
[tex]Median=\dfrac{\dfrac{16}{2}\text{th term}+\left(\dfrac{16}{2}+1\right)\text{th term}}{2}[/tex]
[tex]Median=\dfrac{8\text{th term}+9\text{th term}}{2}[/tex]
[tex]Median=\dfrac{47+48}{2}[/tex]
[tex]Median=\dfrac{95}{2}[/tex]
[tex]Median=47.5[/tex]
Therefore, the median height of the students is 47.5 inches.
Prove the following identities : i) tan a + cot a = cosec a sec a
Step-by-step explanation:
[tex]\tan \alpha + \cot\alpha = \dfrac{\sin \alpha}{\cos \alpha} +\dfrac{\cos \alpha}{\sin \alpha}[/tex]
[tex]=\dfrac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha\cos\alpha}=\dfrac{1}{\sin\alpha\cos\alpha}[/tex]
[tex]=\left(\dfrac{1}{\sin\alpha}\right)\!\left(\dfrac{1}{\cos\alpha}\right)=\csc \alpha \sec\alpha[/tex]
Question :
tan alpha + cot Alpha = cosec alpha. sec alphaRequired solution :
Here we would be considering L.H.S. and solving.
Identities as we know that,
[tex] \red{\boxed{\sf{tan \: \alpha \: = \: \dfrac{sin \: \alpha }{cos \: \alpha} }}}[/tex][tex] \red{\boxed{\sf{cot \: \alpha \: = \: \dfrac{cos \: \alpha }{sin \: \alpha} }}}[/tex]By using the identities we gets,
[tex] : \: \implies \: \sf{ \dfrac{sin \: \alpha }{cos \: \alpha} \: + \: \dfrac{cos \: \alpha }{sin \: \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin \: \alpha \times sin \: \alpha }{cos \: \alpha \times sin \: \alpha} \: + \: \dfrac{cos \: \alpha \times cos \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex] : \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \times sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \: sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha \: + \: cos {}^{2} \alpha}{cos \: \alpha \: sin \alpha} } [/tex]
Now, here we would be using the identity of square relations.
[tex]\red{\boxed{ \sf{sin {}^{2} \alpha \: + \: cos {}^{2} \alpha \: = \: 1}}}[/tex]By using the identity we gets,
[tex] : \: \implies \: \sf{ \dfrac{1}{cos \: \alpha \: sin \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{1}{cos \: \alpha } \: + \: \dfrac{1}{sin\: \alpha} }[/tex]
[tex]: \: \implies \: \bf{sec \alpha \: cosec \: \alpha}[/tex]
Hence proved..!!While out for a run, two joggers with an average age of 55 are joined by a group of three more joggers with an average age of m. if the average age of the group of five joggers is 45, which of the following must be true about the average age of the group of 3 joggers?
a) m=31
b) m>43
c) m<31
d) 31 < m < 43
Answer:
they have it on calculator soup
Step-by-step explanation:
Answer:
D. 31<m<43
Step-by-step explanation:
45 x 5 = 225 which is the age of the 5 joggers altogether.
55 x 2 = 110 which is the age of the 2 joggers together.
3m + 110 = 225 then solve for m so,
3m = 115
m = 38.3333
so hence, m is greater than 31 but less than 43.
answer: D
What is the complete factorization of the polynomial below?
x3 + 8x2 + 17x + 10
A. (x + 1)(x + 2)(x + 5)
B. (x + 1)(x-2)(x-5)
C. (x-1)(x+2)(x-5)
O D. (x-1)(x-2)(x + 5)
Answer: A (x+1)(x+2)(x+5)
Step-by-step explanation: