Answer:
x²+12x+35
Step-by-step explanation:
in factored form it would just be
(x+7)(x+5)=0
expand this
x²+12x+35=0
The travel time on a section of a Long Island Expressway (LIE) is normally distributed with a mean of 80 seconds and a standard deviation of 6 seconds. What travel time separates the top 2.5% of the travel times from the rest
Answer:
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 80 seconds and a standard deviation of 6 seconds.
This means that [tex]\mu = 80, \sigma = 6[/tex]
What travel time separates the top 2.5% of the travel times from the rest?
This is the 100 - 2.5 = 97.5th percentile, which is X when Z has a p-value of 0.975, so X when Z = 1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.96 = \frac{X - 80}{6}[/tex]
[tex]X - 80 = 6*1.96[/tex]
[tex]X = 91.76[/tex]
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
The mortgage on your new house is $180,000. Your monthly mortgage payment is $839 for 30 years. How much interest will be paid if the house is kept for the full 30 years?
9514 1404 393
Answer:
$122,040
Step-by-step explanation:
The interest is the difference between the mortgage value and the total amount paid.
($839/mo)×(12 mo/yr)×(30 yr) -180,000 = $302,400 -180,000 = $122,040
$122,040 will be paid in interest.
Combine the expressions below
4x+(-2x)+6+(-9)
=4x-2x=2x
=6-9=-3
=2x-3
Help ASPPP!!!
Name a point that is represented on this graph. Use an ordered pair to give your answer. (Hint:
Look at the shaded region)
Answer:
(-5, -9)
Step-by-step explanation:
From the graph shown, the perfect ordered pair represented on the graph occurs when x = -5, y = -9. Therefore the required coordinate could be (-5, -9)
Josue leans a 26-foot ladder against a wall so that it forms an
angle of 80° with the ground. How high up the wall does the
ladder reach? Round your answer to the nearest hundredth of a
foot if necessary.
Answer:
25.61 feet
Step-by-step explanation:
First, we can draw a picture (see attached picture). With the wall representing the rightmost line, and the ground representing the bottom line, the ladder (the hypotenuse) forms a 80 degree angle with the ground and the wall and ground form a 90 degree angle.
Without solving for other angles, we know one angle and the hypotenuse, and want to find the opposite side of the angle.
One formula that encompasses this is sin(x) = opposite/hypotenuse, with x being 80 degrees and the hypotenuse being 26 feet. We thus have
sin(80°) = opposite / 26 feet
multiply both sides by 26 feet
sin(80°) * 26 feet = opposite
= 25.61 feet as the height of the wall the ladder reaches
The height of the wall does the ladder reach to the nearest hundredth of the foot is 25.61 feet.
What is a right-angle triangle?It is a type of triangle in which one angle is 90 degrees and it follows the Pythagoras theorem and we can use the trigonometry function. The Pythagoras is the sum of the square of two sides is equal to the square of the longest side.
Josue leans a 26 feet ladder against a wall so that it forms an angle of 80° with the ground.
The condition is shown in the diagram.
Then the height of the wall will be
[tex]\rm \dfrac{h }{26 } = sin 80 \\\\h \ \ = 26 \times sin 80\\\\h \ \ = 25.61 \ ft[/tex]
More about the right-angle triangle link is given below.
https://brainly.com/question/3770177
JK=8x+6 KL=6x+20 find JL
Answer:
14x + 26
Step-by-step explanation:
JL = JK + KL
= 8x + 6 + 6x + 20
= 8x + 6x + 6 + 20
JL = 14x + 26
Find x on this triangle
Answer:
3 sqrt(3) =x
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj / hyp
cos 30 = x/6
6 cos 30 = x
6 ( sqrt(3)/2) = x
3 sqrt(3) =x
If there is a 65% chance you will make a free throw, what percent of the
time you will miss? *
Given:
There is a 65% chance you will make a free throw.
To find:
The percent of the time you will miss.
Solution:
If p is the percent of success and q is the percent of failure, then
[tex]p+q=100\%[/tex]
[tex]q=100\%-p[/tex] ...(i)
It is given that there is a 65% chance you will make a free throw. It means the percent of success is 65%. We need to find the percent of the time you will miss. It means we have to find the percent of failure.
Substituting p=65% in (i), we get
[tex]q=100\%-65\%[/tex]
[tex]q=35\%[/tex]
Therefore, there is a 35% chance you will miss the free throw.
HELP PLZ<3
An international company has 28,300 employees in one country. If this represents 34.1% of the company's employees, how many employees does it have in
total?
Round your answer to the nearest whole number.
Answer:
82991 employees
Step-by-step explanation:
One way to solve this would be to solve for 1% of the company's employees and use that value to solve for 100% (100%=the whole part, or the total). We know that
28300 = 34.1%
If we divide a number by itself, it turns into 1. Dividing both sides by 34.1, we get
829.912 = 1%
Then, we know that anything multiplied by 1 is equal to itself. We want to figure out 100%, or the whole part, so we can multiply both sides by 100 to get
100% = 82991
please help me its timed -H.M
Answer:
f(3) = g(3)
General Formulas and Concepts:
Algebra I
Functions
Function NotationGraphingStep-by-step explanation:
We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.
Rewriting this in terms of function notation:
f(3) = 6, g(3) = 6
∴ f(3) = g(3)
f(x) = 2x2 + 4x - 5
g(x) = 6x3 – 2x2 + 3
Find (f + g)(x).
Answer:
4x-5=4x-5
(f+g) (x)=6x³+3Step-by-step explanation:
Assume that in the absence of immigration and emigration, the growth of a country's population P(t) satisfies dP/dt = kP for some constant k > 0.
a. Determine a differential equation governing the growing population P(t) of the country when individuals are allowed to immigrate into the country at a constant rate r > 0.
b. What is the differential equation for the population P(t) of the country when individuals are allowed to emigrate at a constant rate r > 0?
Answer:
[tex](a)\ \frac{dP}{dt} = kP + r[/tex]
[tex](b)\ \frac{dP}{dt} = kP - r[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = kP[/tex]
Solving (a): Differential equation for immigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt + r \cdot dt[/tex] --- i.e. the population will increase with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP + r[/tex]
Solving (b): Differential equation for emigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt - r \cdot dt[/tex] --- i.e. the population will decrease with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP - r[/tex]
What is the value of x in the equation
-%y = 30, when y = 15?
Answer:
x not given
therefore no answer for x
15
Simplify
a
25
O A. a3
O B. a10
O c. a-10
O D. a-3
Answer:
B is the correct answer of your question.
I HOPE I HELP YOU....
Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by
The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is
[tex]\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt[/tex]
In this case, we have
x(t) = exp(t ) + exp(-t ) ==> dx/dt = exp(t ) - exp(-t )
y(t) = 5 - 2t ==> dy/dt = -2
and [a, b] = [0, 2]. The length of the curve is then
[tex]\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt[/tex]
[tex]=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}[/tex]
The exact length of the curve when the parametric equations are x = f(t) and y = g(t) is given below.
[tex]e^2 -\dfrac{1}{e^2 }[/tex]
What is integration?It is the reverse of differentiation.
The parametric equations are given below.
[tex]\rm x=e^t+e^{-t}, \ \ 0\leq t\leq 2\\\\y=5-2t, \ \ \ \ \ 0\leq t\leq 2[/tex]
Then the arc length of the curve will be given as
[tex]\int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}[/tex]
Then we have
[tex]\rm \dfrac{dx}{dt} = e^t-e^{-t}\\\\ \dfrac{dy}{dt} = -2[/tex]
Then
[tex]\rightarrow \int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}\ \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t-e^{-t})^2 + (-2)^2} \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t+e^{-t})^2} \ dt\\\\\rightarrow \int _0^2 (e^t+e^{-t}) \ dt\\\\\rightarrow (e^2-e^{-2}) \\\\\rightarrow e^2 - \dfrac{1}{e^2}[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211
Consider a uniform density curve defined from x = 0 to x = 8. What percent of observations fall between 1 and 5?
a) 0.20
b) 0.50
c) 0.62
d) 0.13
e) 0.63
f) None of the above
Answer: 0.50, which is choice b
Explanation:
The interval [tex]1 \le x \le 5[/tex] covers 5-1 = 4 units in the horizontal direction.
This is out of 8 units that span from x = 0 to x = 8 (we could say 8-0 = 8).
So we get the final result of 4/8 = 0.50
In other words, the interval from x = 1 to x = 5 covers exactly half of the interval from x = 0 to x = 8.
the length of a rectangle is twice its width the perimeter is 48 cm what are the dimensions of the rectangle
Answer:
The length=16cm and the width=8cm.
Step-by-step explanation:
Given that the length is twice the breadth or width of the rectangle
Let's assume that the breadth of the rectangle is x.
Thus the length is 2x.
Given perimeter=48cm
The formula for the perimeter of a rectangle is 2(l+b) where l is length and b is breadth.
2(x+2x)=48
(3x)=48/2
3x=24
x=8cm
2x=16cm
Step-by-step explanation:
length=2x
width=x
2x+x+2x+x=48
6x=48
6x÷6=48÷6
x=8
length=16
width=8
Зу = -2 - 6
3y = 2z - 6
Answer:
y = -8/3, z = -1
Not sure how to do this
What is the common difference in this sequence: 3, 11, 19, 27,35?
1
ОА.1/8
O B. 3
O C. 8
O D. 12
Answer:
8
Step-by-step explanation:
To determine the common difference, take the second term and subtract the first term
11-3 = 8
Check with the other terms in the sequence
19-11= 8
27-19 = 8
35-27=8
The common difference is 8
Answer:
C. 8
Step-by-step explanation:
There is a common difference between them and that’s 8.
3 + 8 = 11
11 + 8 = 19
19 + 8 = 27
27 + 8 = 35
The width of a rectangle measures (7k-2m)(7k−2m) centimeters, and its length measures (5k-m)(5k−m) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
Answer:
[tex]P = 24k-6m[/tex]
Step-by-step explanation:
The correct expressions are:
[tex]W = 7k - 2m[/tex]
[tex]L = 5k - m[/tex]
Required
The perimeter (P)
This is calculated as:
[tex]P = 2 *(L + W)[/tex]
So, we have:
[tex]P = 2 *(5k - m + 7k -2m)[/tex]
Collect like terms
[tex]P = 2 *(5k + 7k- m -2m)[/tex]
[tex]P = 2 *(12k-3m)[/tex]
Open bracket
[tex]P = 24k-6m[/tex]
Miller's Steakhouse offers 8 side dishes, 5 types of steak, and 4 toppings. How many different smothered steak dinners can be made if a smothered steak dinner consists of the customer's choice of steak served with 3 different toppings and 3 different side dishes?
Answer:
1120
Step-by-step explanation:
To find the possible number of steak dinners, you would multiply the number of choices for each part of the dinner. You would used combinations instead of permutations since the order of the toppings chosen or side dishes chosen do not matter. There are 5 choose 1 choices for types of steak, which is just 5. There are 8 choose 3 choices for side dishes, which is 56. There are 4 choose 3 choices for toppings, which is 4. 5*56*4 is 1120, so there are 1120 possible steak dinners.
Coefficient of y in the equation: 3(2x -1/3y) = 0 is equal to a) 3 b) 1 c)-3 d)-1
Answer:
d is the right answer because the coefficient of y is 3*(-1/3) which results -1 so d is the right answer
The coefficient of y in the given equation is 1. Therefore, option B is the correct answer.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
The given equation is 3(2x -1/3y)=0.
Now, 6x-1/y=0
A numerical or constant quantity placed before and multiplying the variable in an algebraic expression.
Here, coefficient of y is 1.
Therefore, option B is the correct answer.
To learn more about an equation visit:
https://brainly.com/question/14686792.
#SPJ2
Hii guys if you have time plz help me
Answer:
[tex]5 {x}^{2} + 21 + 5x[/tex]
Step-by-step explanation:
TOTAL AMOUNT earned = Tim money + Melina money
[tex]5 {x}^{2} - 4x + 8 + (9x + 13)[/tex]
[tex] = 5 {x}^{2} - 4x + 8 + 9x + 13[/tex]
[tex] = 5 {x}^{2} + 21 + 5x[/tex]
I need help with this
bing jhwwjwiwisisuwuwywywywfsfsahajai
a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by
Complete Question:
A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.
a. What is his maximum profit per day?
b. How many cans must be sold in order to obtain the maximum profit?
Answer:
a. $450
b. 1500 cans
Step-by-step explanation:
Given the following quadratic function;
P(x) = -0.001x² + 3x - 1800 ......equation 1
a. To find his maximum profit per day;
Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]
Note : the standard form of a quadratic equation is ax² + bx + c = 0 ......equation 2
Comparing eqn 1 and eqn 2, we have;
a = -0.001, b = 3 and c = -1800
Now, we determine the maximum profit;
[tex] x = \frac {-b}{2a} [/tex]
Substituting the values, we have;
[tex] x = \frac {-3}{2*(-0.001)} [/tex]
Cancelling out the negative signs, we have;
[tex] x = \frac {3}{2*0.001} [/tex]
[tex] x = \frac {3}{0.002} [/tex]
x at maximum = 1500
Substituting the value of "x" into equation 1;
P(1500) = -0.001 * 1500² + 3(1500) - 1800
P(1500) = -0.001 * 2250000 + 4500 - 1800
P(1500) = -2250 + 2700
P(1500) = $450
b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
In the picture the exponent says 5/3
Answer:
the answer is B
Step-by-step explanation:
[tex] {{ (- 2)}^{3}}^{5 \div 3} = { ( - 2)}^{5} = - 32[/tex]
write -8 form of 2 on up and complete other steps
What is the value of the expression 10(6 + 5)² when b = 3?
10(3+5)^2
10(8)^2
10(64)
=640
For a standard normal distribution, find:
P(z > -1.6)
Express the probability as a decimal rounded to 4 decimal places.
Answer:
P(z > -1.76) = 1 - P(z < -1.76) = 1 - 0.0392 = 0.960