You are driving in such a way that the car is accelerating at a constant rate in the positive direction. When you pass the first sign, you are traveling at 4 m/s. When you pass the second sign 50 m down the road, you note that the seconds indicator of your clock reads 45 seconds. You also note that your velocity is now 9 m/s.

Required:
a. What is your acceleration?
b. What was the clock’s seconds indicator reading when you passed the first sign?

Answers

Answer 1

Answer:

Explanation:

a)

v² = u² + 2 a s

v = 9 m/s

u = 4 m/s

s = 50 m

9² = 4² + 2 x a x 50

a = 0.65 m /s²

Acceleration is 0.65 m /s²

b )  

time elapsed before velocity changed from 4 m/s to 9 m/s with acceleration of .65 m /s ²

(v - u ) / t = a

(v - u ) / a = t

(9 - 4 ) / .65 = t

t = 7.7

time when passing the first sign will be 7.7 s earlier .

Reading of time indicator = 45 - 7.7

= 37.3 seconds.

Answer 2

Answer:

(a) 0.45 m/s^2

(b) 33.9 s

Explanation:

initial velocity, u = 4 m/s

final velocity, v = 9 m/s

distance, s = 50 m

(a) Let the acceleration is a.

Use third equation of motion

[tex]v^2 = u^2 + 2 as \\\\9^2 = 4^2 + 2\times a\times 50\\\\a = 0.45 m/s^2[/tex]

(b) Let the time is t.

Use first equation of motion

v = u + at

9 = 4 + 0.45 x t

t = 11.1 s

So, the initial time, t' = 45 - 11.1 = 33.9 s  


Related Questions

Define simple harmonic motion. Write down the expressions for the velocity and aceraletion of such motion st different position along its path

Answers

Answer:

Simple harmonic motion is a special type of periodic motion or oscillation motion where the restoring force is directly proportional to the displacement and acts in the direction opposite to that of displacemen

A metal blade of length L = 300 cm spins at a constant rate of 17 rad/s about an axis that is perpendicular to the blade and through its center. A uniform magnetic field B = 4.0 mT is perpendicular to the plane of rotation. What is the magnitude of the potential difference (in V) between the center of the blade and either of its ends?

Answers

We are being given that:

The length of a metal blade = 300 cmThe angular velocity at which the metal blade is rotating about its axis is ω = 17 rad/sThe magnetic field (B) = 4.0 mT

A pictorial view showing the diagrammatic representation of the information given in the question is being attached in the image below.

From the attached image below, the potential difference across the conducting element of the length (dx) moving with the velocity (v) appears to be perpendicular to the magnetic field (B).

The magnitude of the potential difference induced between the center of the blade in relation to either of its ends can be determined by using the derived formula from Faraday's law of induction which can be expressed as:

[tex]\mathsf{E = B\times l\times v}[/tex]

where;

B = magnetic fieldl = lengthv = relative speed

From the diagram, Let consider the length of the conducting element (dx) at a distance of length (x) from the center O.

Then, the velocity (v) = ωx

The potential difference across it can now be expressed as:

[tex]\mathsf{dE = B*(dx)*(\omega x)}[/tex]

For us to determine the potential difference, we need to carry out the integral form from center point O to L/2.

[tex]\mathsf{E = \int ^{L/2}_{0}* B (\omega x ) *(dx)}[/tex]

[tex]\mathsf{E = B (\omega ) \times \Big[ \dfrac{x^2}{2}\Big]^{L/2}_{0}}[/tex]

[tex]\mathsf{E = B (\omega ) * \Big[ \dfrac{L^2}{8}\Big]}[/tex]

Recall that,

magnetic field (B) = 4 mT = 4 × 10⁻³  TLength L = 300 cm = 3mangular velocity (ω) = 17 rad/s

[tex]\mathsf{E = (4\times 10^{-3}) * (17) \Big[ \dfrac{(1.5)^2}{8}\Big]}[/tex]

[tex]\mathsf{E = 19.13 mV}[/tex]

Thus, we can now conclude that the magnitude of the potential difference as a result of the rotation caused by the metal blade from the center to either of its ends is 19.13 mV.

Learn more about Faraday's law of induction here:

https://brainly.com/question/13369951?referrer=searchResults

A very long straight wire carries a 12 A current eastward and a second very long straight wire carries a 14 A current westward. The wires are parallel to each other and are 42 cm apart. Calculate the force on a 6.4 m length of one of the wires.

Answers

Answer: 5.12x10∧-4N

Explanation:

Force = I B L

L = 6.4m

Let Current (I) I₁ = I₂= 14A

Distance of the wire = 42cm = 0.42m

BUT

B = μ₀I / 2πr

=(2X10∧-7 X 12) / 0.42

       B =5.714×10∧-6T

Force = I B L

Force = 14x [5.714×10-6]×6.4

Force = 5.12x10∧-4N

Imagine a spaceship traveling at a constant speed through outer space. The length of the ship, as measured by a passenger aboard the ship, is 28.2 m. An observer on Earth, however, sees the ship as contracted by 16.1 cm along the direction of motion. What is the speed of the spaceship with respect to the Earth

Answers

[tex]3.20×10^7\:\text{m/s}[/tex]

Explanation:

Let

[tex]L = 28.2\:\text{m}[/tex]

[tex]L' = 28.2\:\text{m} - 0.161\:\text{m} = 28.039\:\text{m}[/tex]

The Lorentz length contraction formula is given by

[tex]L' = L\sqrt {1 - \left(\dfrac{v^2}{c^2}\right)}[/tex]

where L is the length measured by the moving observer and L' is the length measured by the stationary Earth-based observer. We can rewrite the above equation as

[tex]\sqrt {1 - \left(\dfrac{v^2}{c^2}\right)} = \dfrac{L'}{L}[/tex]

Taking the square of the equation, we get

[tex]1 - \left(\dfrac{v^2}{c^2}\right) = \left(\dfrac{L'}{L}\right)^2[/tex]

or

[tex]1 - \left(\dfrac{L'}{L}\right)^2 = \left(\dfrac{v}{c}\right)^2[/tex]

Solving for v, we get

[tex]v = c\sqrt{1 - \left(\dfrac{L'}{L}\right)^2}[/tex]

[tex]\:\:\:\:=(3×10^8\:\text{m/s})\sqrt{1 - \left(\dfrac{28.039\:\text{m}}{28.2\:\text{m}}\right)^2}[/tex]

[tex]\:\:\:\:=3.20×10^7\:\text{m/s} = 0.107c[/tex]

Both of these questions are the same but their answers in the answer key are different. Why?

Answers

the person making the assignment must’ve made a mistake.

The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. Express your answer numerically in joules.

Answers

The question is incomplete. The complete question is :

A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 .

Find the energy U1 of the dielectric-filled capacitor. I got U1=2.99*10^-10 J which I know is correct. Now I need these:

1. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric.

2. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3.

Solution :

Given :

[tex]A = 10 \ cm^2[/tex]

   [tex]$=0.0010 \ m^2$[/tex]

d = 10 mm

  = 0.010 m

Then, Capacitance,

[tex]$C=\frac{k \epsilon_0 A}{d}$[/tex]

[tex]$C=\frac{8.85 \times 10^{12} \times 3 \times 0.0010}{0.010}$[/tex]

[tex]$C=2.655 \times 10^{12} \ F$[/tex]

[tex]$U_1 = \frac{1}{2}CV^2$[/tex]

[tex]$U_1 = \frac{1}{2} \times 2.655 \times 10^{-12} \times (15V)^2$[/tex]

[tex]$U_1=2.987 \times 10^{-10}\ J$[/tex]

Now,

[tex]$C_k=\frac{1}{2} \frac{k \epsilon_0}{d} \times \frac{A}{2}$[/tex]

And

[tex]$C_{air}=\frac{1}{2} \frac{\epsilon_0}{d} \times \frac{A}{2}$[/tex]

In parallel combination,

[tex]$C_{eq}= C_k + C_{air}$[/tex]

[tex]$C_{eq} = \frac{1}{2} \frac{\epsilon_0 A}{d}(1+k)$[/tex]

[tex]$C_{eq} = \frac{1}{2} \times \frac{8.85 \times 10^{-12} \times 0.0010}{0.01} \times (1+3)$[/tex]

[tex]$C_{eq} = 1.77 \times 10^{-12}\ F$[/tex]

Then energy,

[tex]$U_2 =\frac{1}{2} C_{eq} V^2$[/tex]

[tex]$U_2=\frac{1}{2} \times 1.77 \times 10^{-12} \times (15V)^2$[/tex]

[tex]$U_2=1.99 \times 10^{-10} \ J$[/tex]

b). Now the charge on the [tex]\text{capacitor}[/tex] is :

[tex]$Q=C_{eq} V$[/tex]

[tex]$Q = 1.77 \times 10^{-12} \times 15 V$[/tex]

[tex]$Q = 26.55 \times 10^{-12} \ C$[/tex]

Now when the capacitor gets disconnected from battery and the [tex]\text{dielectric}[/tex] is slowly [tex]\text{removed the rest}[/tex] of the way out of the [tex]\text{capacitor}[/tex] is :

[tex]$C_3=\frac{A \epsilon_0}{d}$[/tex]

[tex]$C_3 = \frac{0.0010 \times 8.85 \times 10^{-12}}{0.01}$[/tex]

[tex]$C_3=0.885 \times 10^{-12} \ F$[/tex]

[tex]$C_3 = 0.885 \times 10^{-12} \ F$[/tex]

Without the dielectric,

[tex]$U_3=\frac{1}{2} \frac{Q^2}{C}$[/tex]

[tex]$U_3=\frac{1}{2} \times \frac{(25.55 \times 10^{-12})^2}{0.885 \times 10^{-12}}$[/tex]

[tex]$U_3=3.98 \times 10^{-10} \ J$[/tex]

which energy does a car travelling 30 m/ph as it slows have:

a). chemical energy
b). thermal energy
c). kinetic energy

please helpp

Answers

Answer:

c) kinetic energy

Explanation:

Answer: C)  kinetic energy

Explanation:

Unit of speed is a derived unit. Give reasons​

Answers

Answer:

as it 8s based upon to fundamental units distance and Time

An ideal double slit interference experiment is performed with light of wavelength 640 nm. A bright spot is observed at the center of the resulting pattern as expected. For the 2n dark spot away from the center, it is known that light passing through the more distant slit travels the closer slit.
a) 480 nm
b) 600 nm
c) 720 nm
d) 840 nm
e) 960 nm

Answers

Answer:

960 nm

Explanation:

Given that:

wavelength = 640 nm

For the second (2nd) dark spot;  the order of interference m = 1

Thus, the path length difference is expressed by the formula:

[tex]d sin \theta = (m + \dfrac{1}{2}) \lambda[/tex]

[tex]d sin \theta = (1 + \dfrac{1}{2}) 640[/tex]

[tex]d sin \theta = ( \dfrac{3}{2}) 640[/tex]

dsinθ = 960 nm

A light beam inside a container of some liquid hits the surface of the liquid/air interface. Depending on the angle, the light beam may or may not be able to get out into the air medium. At what angle will the beam of light be totally reflected back into the liquid in the container

Answers

Answer:

Following are the solution to the given question:

Explanation:

Applying the Snell Law:

when is the liquid's refractive index, is the air's refractive index.  

the liquid's refractive index,   the air's index of refraction.

It is the limiting case when , Inside the interphase of two mediums, light is scattered. Thus,

[tex]n_l \sin \theta_l = n_a \sin 90^\circ = n_a[/tex]

[tex]\theta_l = \arcsin \dfrac{n_a}{n_l} =\arcsin \dfrac{1}{1.38} = 46.4^\circ[/tex]

From  the incident angles [tex]\theta_l[/tex] is greater than 46.4°, that is the light reflected back into the liquid.

An astronaut is traveling in a space vehicle that has a speed of 0.480c relative to Earth. The astronaut measures his pulse rate at 78.5 per minute. Signals generated by the astronaut's pulse are radioed to Earth when the vehicle is moving perpendicularly to a line that connects the vehicle with an Earth observer. (Due to vehicle's path there will be no Doppler shift in the signal.)
(a) What pulse rate does the Earth-based observer measure? beats/min
(b) What would be the pulse rate if the speed of the space vehicle were increased to 0.940c?
beats/min

Answers

Explanation:

The heart rate of the astronaut is 78.5 beats per minute, which means that the time between heart beats is 0.0127 min. This will be the time t measured by the moving observer. The time t' measured by the stationary Earth-based observer is given by

[tex]t' = \dfrac{t}{\sqrt{1 - \left(\dfrac{v^2}{c^2}\right)}}[/tex]

a) If the astronaut is moving at 0.480c, the time t' is

[tex]t' = \dfrac{0.0127\:\text{min}}{\sqrt{1 - \left(\dfrac{0.2304c^2}{c^2}\right)}}[/tex]

[tex]\:\:\:\:=0.0145\:\text{min}[/tex]

This means that time between his heart beats as measured by Earth-based observer is 0.0145 min, which is equivalent to 69.1 beats per minute.

b) At v = 0.940c, the time t' is

[tex]t' = \dfrac{0.0127\:\text{min}}{\sqrt{1 - \left(\dfrac{0.8836c^2}{c^2}\right)}}[/tex]

[tex]\:\:\:\:=0.0372\:\text{min}[/tex]

So at this speed, the astronaut's heart rate is 1/(0.0372 min) or 26.9 beats per minute.

If at a particular instant and at a certain point in space the electric field is in the x-direction and has a magnitude of 3.10 V/mV/m , what is the magnitude of the magnetic field of the wave at this same point in space and instant in time

Answers

Answer:

B = 1.03 10⁻⁸ T

Explanation:

For an electromagnetic wave, the electric and magnetic fields must oscillate in phase so that they remain between them at all times, otherwise the wave will extinguish

       

This relational is expressed by the relation

           E /B = c

           B = E / c

let's calculate

            B = 3.10 / 3 10⁸

            B = 1.03 10⁻⁸ T

A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.235 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.40 s.

Required:
a. What average emf is induced in the second coil if it has a diameter of 3.5 cm and N = 7?
b. What is the induced emf if the diameter is 7.0 cm and N = 10?

Answers

Answer:

a) ε = 14.7 μv

b) ε = 21 μv

Explanation:

Given the data in the question;

Diameter of solenoid; d = 3 cm

radius will be half of diameter,  so, r = 3 cm / 2 = 1.5 cm = 1.5 × 10⁻² m

Number of turns; N = 40 turns per cm = 4000 per turns per meter

Current; [tex]I[/tex] = 0.235 A

change in time Δt = 0.40 sec

Now,

We determine the magnetic field inside the solenoid;

B = μ₀ × N × [tex]I[/tex]  

we substitute

B = ( 4π × 10⁻⁷ Tm/A ) × 4000 × 0.235  

B = 1.1881 × 10⁻³ T

Now, Initial flux through the coil is;

∅₁ = NBA = NBπr²  

and the final flux  

∅₂ = 0        

so, the εmf induced ε = -Δ∅/Δt = -( ∅₂ - ∅₁ ) / Δt

= -( 0 - NBπr² ) / Δt  

= NBπr² / Δt    

a)

for N = 7

ε = [ 7 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 14.7 × 10⁻⁶ v

ε = 14.7 μv      

b)

for N = 10

ε = [ 10 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 21 × 10⁻⁶ v

ε = 21 μv  

 

1.An elevator is ascending with constant speed of 10 m/s. A boy in the elevator throws a ball upward at 20 m/ a from a height of 2 m above the elevator floor when the elevator floor when the elevator is 28 m above the ground.
a. What's the maximum height?
b. How long does it take for the ball to return to the elevator floor?​

Answers

(a) The maximum height reached by the ball from the ground level is 75.87m

(b) The time taken for the ball to return to the elevator floor is 2.21 s

The given parameters include:

constant velocity of the elevator, u₁ = 10 m/sinitial velocity of the ball, u₂ = 20 m/sheight of the boy above the elevator floor, h₁ = 2 mheight of the elevator above the ground, h₂ = 28 m

To calculate:

(a) the maximum height of the projectile

total initial velocity of the projectile = 10 m/s + 20 m/s  = 30 m/s (since the elevator is ascending at a constant speed)

at maximum height the final velocity of the projectile (ball), v = 0

Apply the following kinematic equation to determine the maximum height of the projectile.

[tex]v^2 = u^2 + 2(-g)h_3\\\\where;\\\\g \ is \ the \ acceleration \ due \ to\ gravity = 9.81 \ m/s^2\\\\h_3 \ is \ maximum \ height \ reached \ by \ the \ ball \ from \ the \ point \ of \ projection\\\\0 = u^2 -2gh_3\\\\2gh_3 = u^2 \\\\h_3 = \frac{u^2}{2g} \\\\h_3 = \frac{(30)^2}{2\times 9.81} \\\\h_3 = 45.87 \ m[/tex]

The maximum height reached by the ball from the ground level (h) = height of the elevator from the ground level + height of he boy above the elevator + maximum height reached by elevator from the point of projection

h = h₁ + h₂ + h₃

h = 28 m + 2 m  +  45.87 m

h = 75.87 m

(b) The time taken for the ball to return to the elevator floor

Final height of the ball above the elevator floor = 2 m + 45.87 m = 47.87 m

Apply the following kinematic equation to determine the time to return to the elevator floor.

[tex]h = vt + \frac{1}{2} gt^2\\\\where;\\\\v \ is \ the \ initial \ velocity \ of \ the \ ball \ at \ the \ maximum \ height = 0\\\\h = \frac{1}{2} gt^2\\\\gt^2 = 2h\\\\t^2 = \frac{2h}{g} \\\\t = \sqrt{\frac{2h}{g}} \\\\t = \sqrt{\frac{2\times 47.87}{9.81}} \\\\t = 2.21 \ s[/tex]

To learn more about projectile calculations please visit: https://brainly.com/question/14083704

đổi đơn vị
42 ft2/hr to cm2/s

Answers

Answer:

X = 10.8387 cm²/s

Explanation:

In this exercise, you're required to convert a value from one unit to another.

Converting 42 ft²/hr to cm²/s;

Conversion:

1 ft² = 929.03 cm²

42 ft² = X cm²

Cross-multiplying, we have;

X = 42 * 929.03

X = 39019.26 cm²

Next, we would divide by time in seconds.

1 hour = 3600 seconds

X = 39019.26/3600

X = 10.8387 cm²/s

What is the largest known star?

Answers

Answer:

UY Scuti is slightly larger than VY Canis Majoris

Explanation:

These stars are millions of miles away and cannot be seen by the naked eye.

Beetlejuice is another large star that can be seen by the eye.

the 2kg block slids down a firctionless curved ramp starting from rest at heiht of 3m what is the speed of the block at the bottemvof the ramp​

Answers

A

Explanation:

1qdeeeeeeeeeeehhhhhhhhhwilffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff.

Michelson and Morley concluded from the results of their experiment that Group of answer choices the experiment was successful in not detecting a shift in the interference pattern. the experiment was a failure since they detected a shift in the interference pattern. the experiment was a failure since there was no detectable shift in the interference pattern. the experiment was successful in detecting a shift in the interference pattern.

Answers

Answer:

The results of the experiment indicated a shift consistent with zero, and certainly less than a twentieth of the shift expected if the Earth's velocity in orbit around the sun was the same as its velocity through the ether.

Explanation:

Mass A, 2.0 kg, is moving with an initial velocity of 15 m/s in the x-direction, and it collides with mass M, 4.0 kg, initially moving at 7.0 m/s in the x-direction. After the collision, the two objects stick together and move as one. What is the change in kinetic energy of the system as a result of the collision, in joules

Answers

Answer:

the change in the kinetic energy of the system is -42.47 J

Explanation:

Given;

mass A, Ma = 2 kg

initial velocity of mass A, Ua = 15 m/s

Mass M, Mm = 4 kg

initial velocity of mass M, Um = 7 m/s

Let the common velocity of the two masses after collision = V

Apply the principle of conservation of linear momentum, to determine the final velocity of the two masses;

[tex]M_aU_a + M_mU_m = V(M_a + M_m)\\\\(2\times 15 )+ (4\times 7) = V(2+4)\\\\58 = 6V\\\\V = \frac{58}{6} = 9.67 \ m/s[/tex]

The initial kinetic of the two masses;

[tex]K.E_i = \frac{1}{2} M_aU_a^2 \ + \ \frac{1}{2} M_mU_m^2\\\\K.E_i = (0.5 \times 2\times 15^2) \ + \ (0.5 \times 4\times 7^2)\\\\K.E_i = 323 \ J[/tex]

The final kinetic energy of the two masses;

[tex]K.E_f = \frac{1}{2} M_aV^2 \ + \ \frac{1}{2} M_mV^2\\\\K.E_f = \frac{1}{2} V^2(M_a + M_m)\\\\K.E_f = \frac{1}{2} \times 9.67^2(2+ 4)\\\\K.E_f = 280.53 \ J[/tex]

The change in kinetic energy is calculated as;

[tex]\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 280.53 \ J \ - \ 323 \ J\\\\\Delta K.E = -42.47 \ J[/tex]

Therefore, the change in the kinetic energy of the system is -42.47 J

In the Bohr model of the hydrogen atom, an electron in the 3rd excited state moves at a speed of 2.43 105 m/s in a circular path of radius 4.76 10-10 m. What is the effective current associated with this orbiting electron

Answers

Answer:

Current =,charge / time

Charge = e = 1.6E-19 coulombs

t = T time for 1 revolution  (period)

v = S / T = distance traveled in 1 revolution / time for 1 revolution

T = S / v = 2 pi * 4.76E-10 / 2.43E5 = 1.23E-14

I = Q / T = 1.6E-19 / 1.23E-14 = 1.30E-5

Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 102 kg and a radius of 1.53 m. The merry-go-round is initially spinning at 9.71 revolutions/minute. The children have masses of 31.7 kg, 29.0 kg and 31.9 kg. If the child who has a mass of 29.0 kg moves to the center of the merry-go-round, what is the new angular velocity in revolutions/minute

Answers

Three children of masses and their position on the merry go round

M1 = 22kg

M2 = 28kg

M3 = 33kg

They are all initially riding at the edge of the merry go round

Then, R1 = R2 = R3 = R = 1.7m

Mass of Merry go round is

M =105kg

Radius of Merry go round.

R = 1.7m

Angular velocity of Merry go round

ωi = 22 rpm

If M2 = 28 is moves to center of the merry go round then R2 = 0, what is the new angular velocity ωf

Using conservation of angular momentum

Initial angular momentum when all the children are at the edge of the merry go round is equal to the final angular momentum when the second child moves to the center of the merry go round  Then,

L(initial) = L(final)

Ii•ωi = If•ωf

So we need to find the initial and final moment of inertia

NOTE: merry go round is treated as a solid disk then I= ½MR²

I(initial)=½MR²+M1•R²+M2•R²+M3•R²

I(initial) = ½MR² + R²(M1 + M2 + M3)

I(initial) = ½ × 105 × 1.7² + 1.7²(22 + 28 + 33)

I(initial) = 151.725 + 1.7²(83)

I(initial) = 391.595 kgm²

Final moment of inertial when R2 =0

I(final)=½MR²+M1•R²+M2•R2²+M3•R²

Since R2 = 0

I(final) = ½MR²+ M1•R² + M3•R²

I(final) = ½MR² + (M1 + M3)• R²

I(final)=½ × 105 × 1.7² + ( 22 +33)•1.7²

I(final) = 151.725 + 158.95

I(final) = 310.675 kgm²

Now, applying the conservation of angular momentum

L(initial) = L(final)

Ii•ωi = If•ωf

391.595 × 22 = 310.675 × ωf

Then,

ωf = 391.595 × 22 / 310.675

ωf = 27.73 rpm

Answer: So, the final angular momentum is 27.73 revolution per minute

Explain why liquid particles at a high pressure would need more
energy to change to a gas than liquid particles at a low pressure.

Answers

Answer:

Liquids evaporate faster as they heat up and more particles have enough energy to break away. The particles need energy to overcome the attractions between them. ... At this point the liquid is boiling and turning to gas. The particles in the gas are the same as they were in the liquid they just have more energy.

 A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.​

Answers

Answer:

5 m/s I hope it will help you

Explanation:

mark me as a brainlist answer

A force cannot exist without an agent and a system.
True
False

Answers

Answer:

true

Explanation:

forces require an agent

you should always be able to identify what (the agent) is producing the force

If a bus travels 50 km in 10 hours, how fast was the
bus travelling?

Answers

Answer:

5 kilometers per hour

Explanation:

Speed = distance / time

Distance: 50km

Time: 10 hours

Speed = 50/10 = 5kph

Answer:

5kmph

Explanation:

if the bus traveled 50 km in 10 hours, we have to divide 50 by 10 to see how fast it traveled per hour.

50/10 = 5

therefore, the bus was traveling 5 km per hour

hope this helps :)

Two identical loudspeakers 2.30 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 4.50 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound.

Required:
What is the lowest possible frequency of sound for which this is possible?

Answers

Answer:

Abby is standing (4.5^2 + 2.3^2)^1/2   from the far speaker

D2 = 5.05 m from the far speaker

The difference in distances from the speakers is

5.05 - 4.5 = .55 m     (Let y be wavelength, lambda)

n y = 4.5

(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength

y = .55 m          subtracting equations

f = v / y = 340 / .55 = 618 / sec     should be the smallest frequency

A man throw a ball vertically up word with an intial speed 20m/s. What is the maximum height rich by the ball and how long does it take to return to the point it was trow​

Answers

Answer:

u=20 m/s, T=4s

Explanation:

Given final velocity v= 0 m/s and displacement h= 20 m; acceleration due to gravity = 10 m/ s 2

From equation of motion 

v2=u2+2gs−u2=−2(10).20u=20m/s

and time t can be determined by the formula

t=gv−u=−10−20=2s

total time = 2× time of ascend=2×2=4s

it is helpful for you

M
A boy of mass 60 kg and a girl of mass 40 kg are
together and at rest on a frozen pond and push
each other apart. The girl moves in a negative
direction with a speed of 3 m/s. What must be the
total final momentum of the boy AND girl
combined?
A. -120 kgm/s
B. 0 kgm/s
C. -100 kgm/s
D. 120 kgm/s

Answers

Answer:

option D thinking so

Explanation:

okay na your whish

A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop

Answers

This question is incomplete, the complete question is;

A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?

Answer:

the current flows through the outer loop is 1.3 × 10⁻⁵ A

Explanation:

Given the data in the question;

Length [tex]l[/tex] = 11.34 cm = 0.1134 m

radius a = 1.85 cm = 0.0185 m

turns N = 1627

Net resistance [tex]R_{sol[/tex] = 144.9 Ω

radius b = 3.77 cm = 0.0377 m

[tex]R_o[/tex] = 1651.6 Ω

ε = 34.95 V

t = 2.58 μs = 2.58 × 10⁻⁶ s

Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]

so

L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134

L = 0.003576665 / 0.1134

L = 0.03154

Now,

ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) =  [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]

so

ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )

ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]

ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]

I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]

so we substitute in our values;

I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]

I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )

I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]

I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]

I = 1.3 × 10⁻⁵ A

Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A

Answer:

1.28 *10^-5 A

Explanation:

Same work as above answer. Needs to be more precise

Serena wants to play a trick on her friend Marion. She adds salt, sugar, and vinegar into her glass of water when Marion is out of the room. Why does she know that Marion will drink the water?

Answers

Maybe because they’re friends and the stuff she put in there will become clear again, leaving the water clear and the friend without any suspicions?
Other Questions
- 4 .' .' . .... She always forgets her purseChange into Negative Form While standing outside Carmen's Computer Store,Phyllis noticed that 14 people left the store and 10 people entered the store. Later, 5 more people entered and 13 people left.What was the net increase or decrease in the number of people in Carmen's Computer Store? A. An increase of 12 / B. decrease of 12 C. an increase of 42 / D . decrease of 42 Should MacArthur's advice about surrender have been followed? explain .. (1)similarities between backspace key and delete key. (2) different between backspace key and delete key. (3) explain the term ergonomics. (4) explain the following. a click b right click c double click d triple click e drag and drop HELP ASAP!!!!! Which statement is not always true for a parallelogram? HELPPPP ASSAPPPPPP PLZZZ help me in my hw,wt is physical change and chemical change Answer it asap plz don't spam Scientific laws attempt to explain natureTrueFalse rule. L1b)IR = (24, 28)S = (4, 20)Q = (28, 12)P = 8,4)R' = (36, 4)S = (16,-4)*Q' = (40, -12)P' = (20, -20)Determine the transformation rule for the translationfrom PQRS to P'QR'S' what is the purest form of iron The entrance fee to a local waterpark is $28 per person. At the waterpark, you can rent a raft for $2.50 per hour. Which expression is equivalent to the amount it would cost Colton for h hours in the park if he rented a raft? 2.50h - 28 2.50 (h - 28) 2.50h + 28 2.50 (h + 28) If you had have no special training what type of the month or should you use to check a two-year-old Which of the following crimes is a low-profile crime that typically involves stealing a large amount of money over a long period of time?burglarylarcenyfraudembezzlement A 40-turn coil has a diameter of 11 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.40 T so that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf induced in the coil (in V) if the magnetic field is reduced to zero uniformly in the following times.(a) 0.30 s V(b) 3.0 s V(c) 65 s V What are some hooks for a persuasive essay on Outsourcing?How do i make a hook?!? PLEASE ITS DUE IN 10 MIN!! I NEED HELP!!! Ziggurats served what purpose in Sumerian city-states?O tombsO palacesO templesO schools How tall is a stack of cube-shaped blocks whose volumes are 375 in3, 648 in3 and 1,029 in3? Round your answer to the nearest tenth. Hint: Volume = s3 What formal command would you use with your supervisor for the verb recaudar?a)Recaudab)recaude c)recaudend)recaudes PLZZ HELP!! YOU GET 20 IF YOU DO!!! Find the root and its meaning in the word below. Use a dictionary if necessary.Diseaseroot: 1.dis2.sease3.ease4.seameaning:5.pain6.comfort7.absence of8.health