Answer:
30 minutes
Step-by-step explanation:
Walk rate = 88 paces/ minute
Average length of pace = 0.875 m
Time taken to walk 2.31 km ;
The distance in metres :
1000 m = 1 km
2.31 km = (1000 * 2.31) = 2310 m
Recall :
Time taken = distance / speed
Distance walked in a minute = 88 * 0.875 = 77 m
Time taken = 2310 / 77
Time taken = 30 minutes
Do not round your answer. Type in the number with the decimal. 15% of 25 is
Answer:
to add on to what the other dude said its 4
Step-by-step explanation:
Find the length of the segment indicated. Round your answer to the nearest 10th if necessary.
Answer:
x=13.6
Step-by-step explanation:
By Pythagoras theorem, 5.5^2+x^2=14.7^2. x^2=14.7^2-5.5^2. x=13.6
What is the order of rotational symmetry for the figure?
Answer:
it should be 3
Step-by-step explanation:
I hope this help
A house on the market was valued at $472,000. After several years, the value increased by 19%. By how much did the house's value increase in dollars? What is the current value of the house?
Step-by-step explanation:
Increase in dollars
19/100 x 472.000 = $89,670
and the current value house is $472,000 + $89,670 = $561,680
the tens digit of a two digit number is 5 greater the units digit. If you subtract double the reversed number from it, the result is a fourth of the original number. Find the original number.
Given:
The tens digit of a two digit number is 5 greater the units digit.
If you subtract double the reversed number from it, the result is a fourth of the original number.
To find:
The original number.
Solution:
Let n be the two digit number and x be the unit digit. Then tens digit is (x+5) and the original number is:
[tex]n=(x+5)\times 10+x\times 1[/tex]
[tex]n=10x+50+x[/tex]
[tex]n=11x+50[/tex]
Reversed number is:
[tex]x\times 10+(x+5)\times 1=10x+x+5[/tex]
[tex]x\times 10+(x+5)\times 1=11x+5[/tex]
If you subtract double the reversed number from it, the result is a fourth of the original number.
[tex]11x+50-2(11x+5)=\dfrac{1}{4}(11x+50)[/tex]
[tex]11x+50-22x-10=\dfrac{1}{4}(11x+50)[/tex]
[tex]40-11x=\dfrac{1}{4}(11x+50)[/tex]
Multiply both sides by 4.
[tex]160-44x=11x+50[/tex]
[tex]160-50=11x+44x[/tex]
[tex]110=55x[/tex]
Divide both sides by 55.
[tex]\dfrac{110}{55}=x[/tex]
[tex]2=x[/tex]
The unit digit is 2. So, the tens digit is [tex]2+5=7[/tex].
Therefore, the original number is 72.
Find cosθ+cos3θ+cos5θ+cos7θ by using the Sum-to-Product Formula.
Please also show your work as well. Thanks!
Answer:
[tex] \rm\displaystyle 4\cos( \theta) \cos \left( {2\theta} \right) \cos \left( {4 \theta } \right) [/tex]
Step-by-step explanation:
I assume the question want us to rewrite cosθ+cos3θ+cos5θ+cos7θ by using Sum-to-Product Formula and note that it's not an equation therefore θ can never be specified
===========================
so we want to rewrite cosθ+cos3θ+cos5θ+cos7θ by using Sum-to-Product Formula the good news is that the number of the function of the given expression is even so there's a way to do so, rewrite the expression in parentheses notation:
[tex] \rm\displaystyle \left( \cos( \theta) + \cos(3 \theta) \right) + \left(\cos(5 \theta) + \cos(7 \theta) \right)[/tex]
recall that,Sum-to-Product Formula of cos function:
[tex] \rm \boxed{\displaystyle \cos( \alpha ) + \cos( \beta ) = 2 \cos \left( \frac{ \alpha + \beta }{2} \right) \cos \left( \frac{ \alpha - \beta }{2} \right) }[/tex]
notice that we have two pair of function with which we can apply the formula thus do so,
[tex] \rm\displaystyle \left( 2\cos \left( \frac{ \theta + 3 \theta}{2} \right)\cos \left( \frac{ \theta - 3 \theta}{2} \right) \right) + \left(2\cos \left( \frac{5 \theta + 7 \theta}{2} \right) \cos \left( \frac{5 \theta - 7 \theta}{2} \right) \right)[/tex]
simplify addition:
[tex] \rm\displaystyle \left( 2\cos \left( \frac{4 \theta}{2} \right)\cos \left( \frac{ - 2\theta }{2} \right) \right) + \left(2\cos \left( \frac{12 \theta }{2} \right) \cos \left( \frac{ - 2 \theta}{2} \right) \right)[/tex]
simplify division:
[tex] \rm\displaystyle \left( 2\cos \left( {2 \theta} \right)\cos \left( { - \theta } \right) \right) + \left(2\cos \left( {6 \theta } \right) \cos \left( { - \theta} \right) \right)[/tex]
By Opposite Angle Identities we acquire:
[tex] \rm\displaystyle \left( 2\cos \left( {2 \theta} \right)\cos \left( { \theta } \right) \right) + \left(2\cos \left( {6 \theta } \right) \cos \left( { \theta} \right) \right)[/tex]
factor out 2cosθ:
[tex] \rm\displaystyle 2 \cos( \theta) (\cos \left( {2 \theta} \right) + \cos \left( {6 \theta } \right) )[/tex]
once again apply Sum-to-Product Formula which yields:
[tex] \rm\displaystyle 2 \cos( \theta) (2\cos \left( {4\theta} \right) \cos \left( {2 \theta } \right) )[/tex]
distribute:
[tex] \rm\displaystyle 4\cos( \theta) \cos \left( {2\theta} \right) \cos \left( {4 \theta } \right) [/tex]
and we're done!
When AG = 16 ft, find the area of the region that is NOT shaded. Round to the nearest tenth.
Answer:
730.88
Step-by-step explanation:
Area of the entire circle = pi * r^2
r = 16
Area = 3.14 * 16^2
Area = 803.84
1/4 of the circle contains the shaded area. It's area = 1/4 * 803.84
Area of 1/4 circle =
200.96
the area of the triangle
Area = 1/2 AG * G?
AG and G? are equal
Area = 1/2 * 16^2
Area = 128
Area of 1/4 circle - area of the triangle = area of the shaded portion
shaded portion = 200.95 - 128
Shaded Portion = 72.96
So the area of the unshaded part
unshaded = 803.84 - 72.96
Unshaded = 730.88
Grandma is making a quilt. She has 540 cm of fabric to border the quilt. What is the greatest possible area for the quilt?
Question 1 options:
11 664 cm^2
18225 cm^2
72900 cm^2
291600 cm^2
Show your work:
Answer:
18225 cm²
Step-by-step explanation:
Divide 540 by 4 to get the length of all sides
540/4 = 135
Square 135 to get the max possible size
135² = 18225
18225 cm² is the greatest possible area for the quilt.
What is area?The measurement that expresses the size of a region on a plane or curved surface is called area. Surface area refers to the area of an open surface or the boundary of a three-dimensional object, whereas the area of a plane region or plane area refers to the area of a form or planar lamina.
Given
Divide 540 by 4 to obtain the length of all sides
540/4 = 135
Square 135 to acquire the max possible size
135² = 18225
18225 cm² is the greatest possible area for the quilt.
To learn more about area refer to:
https://brainly.com/question/25292087
#SPJ2
If the speed of an object in motion is doubled, its kinetic energy becomes how many times the original kinetic energy
Answer: Becomes four times
Step-by-step explanation:
Given
Speed is doubled for a moving object
Suppose initial speed is u
Increased speed is 2u
Kinetic Energy is given by
[tex]\Rightarrow K=0.5mu^2[/tex]
When speed is doubled
[tex]\Rightarrow K'=0.5m(2u)^2\\\Rightarrow K'=(0.5mu^2)\times 4\\\Rightarrow K'=4K[/tex]
Kinetic energy becomes four times
cos theta / sec theta -1 - sin theta / 1+cos theta = 2 cot theta
Step-by-step explanation:
Explanation is in the attachmentHope it is helpful to you
At a coffee shop, the first 100 customers'
orders were as follows.
Small
Large
Medium
Hot
un
48
22
Cold
8
12
5
5
What is the probability that a customer ordered
a large given that he or she ordered a cold
drink?
Rounded to the nearest percent, [? ]%
Answer:
people who ordered a cold drink=
[tex]8+12+5=25[/tex]
people who ordered a large cold drink= 5
[tex]probability= \frac{5}{25}[/tex] [tex]=\frac{1}{5}[/tex]
[tex]=\frac{1}{5} \times100=20~\%[/tex]
[tex]Answer: 20\%[/tex]
-----------------------
Hope it helps...
Have a great day!!
The probability that the customer ordered a large given that he or she ordered a cold drink is 5%.
What is Probability?Probability is simply the possibility of getting an event. Or in other words, we are predicting the chance of getting an event.
The value of probability will be always in the range from 0 to 1.
Given the order of the first 100 customers in a coffee shop.
Number of customers who ordered a large which is also a cold drink = 5
Total number of customers = 100
Probability = Number of desired outcomes / Total number of outcomes
Substituting,
Probability = 5 / 100 = 0.05 = 5%
Hence the required percent is 5%.
Learn more about Probability here :
https://brainly.com/question/30034780
#SPJ7
State what additional information is required in order to know that the triangle in the image below are congruent for the reason given…
Reason: HL Postulate
Answer:
FG ≈ FL (Both are hypotenuse, supposed to be equal in order to the congruency to become HL)
Answered by GAUTHMATH
A 12-member jury is to be selected from 15 men and 13 women. Find the probability that this jury has 6 or 7 males.
Answer:
The right solution is "0.5545".
Step-by-step explanation:
According to the question,
The probability of having 6 or 7 males will be:
= [tex]P(6 \ males)+ P(7 \ males)[/tex]
= [tex]\frac{15_C_6\times 13_C_6}{28_C_{12}} + \frac{15_C_7\times 13_C_5}{28_C_{12}}[/tex]
= [tex]\frac{5005\times 1716+6435\times 1287}{30421755}[/tex]
= [tex]\frac{16870425}{30421755}[/tex]
= [tex]0.5545[/tex]
Three red balls, 5 green balls and a number of blue balls are put together in a sac. One ball is picked at random from the sac. If the probability of picking a red ball is 1|6, find the a) The number of blue balls in sac. B) the probability of picking a green ball
Answer:
total balls = 18 .... 3/x = 1/6
blue = 10 ... 18-(5+3) = 10
p of green = 5/18 = .277
Step-by-step explanation:
Correct and fastest answer gets brainest! 12 divided 2/5
30
Answer:
12÷2/5=12*5/2=30 is a required answer
Answer:
30
Step-by-step explanation:
Find cos 0
A. 15/8
B. 15/17
C. 8/15
D. 8/17
Answer:
A.15/8
Step-by-step explanation:
the answer is 15/8
Answer:
D.
[tex]{ \tt{ \cos( \theta) = \frac{adjacent}{hypotenuse} }} \\ \\ { \tt{ \cos( \theta) = \frac{8}{ \sqrt{ {15}^{2} + {8}^{2} } } }} \\ \\ { \tt{ \cos( \theta) = \frac{8}{ \sqrt{289} } }} \\ \\ { \tt{ \cos( \theta) = \frac{8}{17} }}[/tex]
Logan was going to go to
Disneyland in America so he got
$450 from the bank. Then he
changed my travel plans, to go to
Eurodisney in Paris. How many
Euros will he have to spend?
Exchange Rate
GBP to Dollars £1: $1.50
GBP to Euros £1: €1.38
Given that PQ/ST = QR/TU= RS/US, select the postulate or theorem that you can use to conclude that the triangles are similar.
Answer: SSS Similarity Theorem (Choice A)
This is because we have three pairs of corresponding sides that form the same ratio, as shown by the given equation PQ/ST = QR/TU = RS/US.
That equation is basically the shorthand version of PQ/ST = QR/TU and QR/TU = RS/US combined together as one.
Given: x - 7 > -2.
Choose the solution set.
A. {x | x R, x > 14}
B. {x | x R, x > -5}
C. {x | x R, x > 5}
D. {x | x R, x > -9}
Given set:- x - 7 > - 2
Solving It:-
x - 7 > - 2
x > -2 + 7 [Here '7' is greater than '-2' So Sign Changes To Positive]
x > 5
So Correct Solution Set Will Be
Option C= {x | x R, x > 5}
Hope This Helps You
use a double angle or half angle identity to find the exact value of each expression
Answer:
Step-by-step explanation:
There are 2 very distinct and important things that we need to know before completing the problem. First is that we are given that the cos of an angle is 1/3 (adjacent/hypotenuse) and it is in the first quadrant. We also need to know that the identity for sin2θ = 2sinθcosθ.
We already know cos θ = 1/3, so we need now find the sin θ. The sin ratio is the side opposite the angle over the hypotenuse, and the side we are missing is the side opposite the angle (we do not need to know the angle; it's irrelevant). Set up a right triangle in the first quadrant and label the base with a 1 (because the base is the side adjacent to the angle), and the hypotenuse with a 3. Find the third side using Pythagorean's Theorem:
[tex]3^2=1^2+y^2[/tex] which simplifies to
[tex]9=1+y^2[/tex] and
[tex]y^2=8[/tex] so
[tex]y=\sqrt{8}=2\sqrt{2}[/tex] so that's the missing side. Now we can easily determine that
[tex]sin\theta=\frac{2\sqrt{2} }{3}[/tex]
Now we have everything we need to fill in the identity for sin2θ:
[tex]2sin\theta cos\theta=2(\frac{2\sqrt{2} }{3})(\frac{1}{3})[/tex] and multiply all of that together to get
[tex]2sin\theta cos\theta=\frac{4\sqrt{2} }{9}[/tex]
Convert to decimal degrees.
-(167° 31”)
[?]°
Enter your answer with three decimal places.
Answer:
The angle in decimal form is 167.009°.
Step-by-step explanation:
We know an angle in terms of integer angles, minutes and seconds, whose conversion into decimal degrees is expressed by the following formula:
[tex]\theta = n + \frac{m}{60}+\frac{s}{3600}[/tex] (1)
Donde:
[tex]n[/tex] - Integer angle, in sexagesimal degrees.
[tex]m[/tex] - Minutes.
[tex]s[/tex] - Seconds.
If we know that [tex]n = 167[/tex], [tex]m = 0[/tex] and [tex]s = 31''[/tex], then the angle in decimal form is:
[tex]\theta = 167^{\circ}+\frac{0}{60}^{\circ} + \frac{31}{3600}^{\circ}[/tex]
[tex]\theta = 167.009^{\circ}[/tex]
The angle in decimal form is 167.009°.
Aisha wants to paint the four walls of her living room.
Each wall is 2.2 m high and 5.5 m long.
One wall has a door of 1.8 m by 0.9 m.
Tins of paint cost £13 per 2 L tin.
Each litre of paint can cover 8 m2 of wall.
There is an offer of: Buy 2 tins get the 3rd at half price.
How much will Aisha pay to paint her living room?
Answer:
£32.50
Step-by-step explanation:
my first question to the teacher : so, no windows in the living room ?
so, it is a square living room with 5.5 m side length.
but each wall is a rectangle of 2.2 × 5.5 m.
for one wall we have to deduct a door area of 1.8×0.9 m.
so, one wall
2.2 × 5.5 = 12.1 m²
4 walls
4 × 12.1 = 48.4 m²
minus one door area
1.8 × 0.9 = 1.62 m²
48.4 - 1.62 = 46.78 m² total paint area
1 L paint covers 8 m².
so, we need 46.78/8 = 5.85 liters.
she gets the paint in 2 L tins. so, she needs 3 tins (6 L).
each tin costs £13.
and because she buys 3 tins, she gets the third one for half the price (13/2 = £6.50).
so, she has to pay
2×13 + 6.50 = 26 + 6.50 = £32.50
need some help with this
Answer:
y=4x-7
Step-by-step explanation:
here,
the equation of straight line in slope intercept form is;
y=mx+c
( m= slope
c= y-intercept )
soo..
the question has asked for slope 4 i.e. m=4
and y- intercept -7 i.e. c= -7
now.
the required equation is
y= 4x-7
mark me brainliest and follow me ... please
2/5(1/3x-15/8)-1/3(1/2-2/3x)
Answer:
[tex]\frac{16}{45}x-\frac{11}{12}[/tex]
Step-by-step explanation:
We are given that an expression
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)[/tex]
We have to find the equivalent expression.
[tex]\frac{2}{5}(\frac{1}{3}x-\frac{15}{8})-\frac{1}{3}(\frac{1}{2}-\frac{2}{3}x)[/tex]
[tex]\frac{2}{5}\times \frac{1}{3}x-\frac{2}{5}\times \frac{15}{8}-\frac{1}{3}\times \frac{1}{2}-\frac{1}{3}\times (-\frac{2}{3}x)[/tex]
Using the the property
[tex]a\cdot (c-b)=a\cdot c-a\cdot b[/tex]
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)[/tex]
[tex]=\frac{2}{15}x-\frac{3}{4}-\frac{1}{6}+\frac{2}{9}x[/tex]
[tex]=\frac{6x+10x}{45}+\frac{-9-2}{12}[/tex]
[tex]=\frac{16}{45}x-\frac{11}{12}[/tex]
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)=\frac{16}{45}x-\frac{11}{12}[/tex]
Please help! Identify an equation in point-slope form for the line parallel to y=3/4x-4 that passes through (-1,7).
ILL GIVE BRAINLEST!!! An ice cream shop sold a combined total of 429 ice cream cones in the flavors of
chocolate or vanilla. They sold 105 more chocolate cones than vanilla. How many vanilla
ice cream cones did they sell?
Answer:
They sold 162 vanilla cones.
Step-by-step explanation:
429-105=324
324/2=162
162+105=267 (chocolate)
267(chocolate)+162(vanilla)=429(total)
y = -4(x + 6)(x - 8)
How do you write this in standard form?
Answer:
[tex]y = -4x^2 + 8x + 192[/tex]
Step-by-step explanation:
Hi there!
Standard form: [tex]y=ax^2+bx+c[/tex]
[tex]y = -4(x + 6)(x - 8)[/tex]
Use the distributive property to multiply (x+6) and (x-8)
[tex]y = -4(x(x - 8) + 6(x - 8))\\y = -4(x^2 - 8x + 6x - 48)\\y = -4(x^2 - 2x - 48)[/tex]
Multiply the parentheses by -4
[tex]y = -4x^2 + 8x + 192[/tex]
I hope this helps!
A school in Delhi has its own flag, which is rectangular and divided into 4 rows and 6 columns. The word ‘SCHOOL' is inscribed in the first row, ‘FLAG' in the fourth row, and a purple coloured rhombus is in the middle
The question is incomplete. The complete question is :
A school in Delhi has its own flag, which is rectangular and divided into 4 rows and 6 columns. The word ‘SCHOOL’ is inscribed in the first row, ‘FLAG’ in the fourth row, and a purple colored rhombus is in the middle, as shown in the given figure.
Based on this picture of the school flag, answer the following questions:
(a) What fraction of the flag has the purple rhombus?
Solution :
From the figure, the total number of squares in the flag of 4 rows and 6 columns are : 4 x 6 = 24 blocks
The purple colored rhombus is made on the half of the 4 blocks.
i.e. [tex]$\frac{1}{2} \times 4 = 2\ \text{blocks}$[/tex]
Therefore, the fraction of the flag that has the purple rhombus is :
[tex]$=\frac{2}{24}$[/tex]
[tex]$=\frac{1}{12}$[/tex]
If f is continuous for all x, which of the following integrals necessarily have the same value?
Answer:
B
Step-by-step explanation:
Given the three integrals, we want to determine which integrals necessarily have the same value.
We can let the first integral be itself.
For the second integral, we can perform a u-substitution. Let u = x + a. Then:
[tex]\displaystyle du = dx[/tex]
Changing our limits of integration:
[tex]u_1=(0)+a=a \text{ and } u_2 = (b+a)+a = b+2a[/tex]
Thus, the second integral becomes:
[tex]\displaystyle \int_{0}^{b+a}f(x+a)\, dx = \int_a^{b+2a} f(u)\, du[/tex]
For the third integral, we can also perform a u-substitution. Let u = x + c. Then:
[tex]\displaystyle du = dx[/tex]
And changing our limits of integration:
[tex]\displaystyle u_1=(a-c)+c=a \text{ and } u_2=(b-c)+c=b[/tex]
Thus, our third integral becomes:
[tex]\displaystyle \int_{a-c}^{b-c}f(x+c)\, dx = \int_{a}^{b} f(u)\, du[/tex]
Since the only difference between f(x) and f(u) is the variable and both the first and third integral have the same limits of integration, our answer is B.
An angle measures 73.6° less than the measure of its supplementary angle. What is the measure of each angle?
Answer:
Smaller angle = 53.2
Larger angle = 126.8
Step-by-step explanation:
Lets say x is the measure of the supplement. Since we know they're supplementary, we know their angle measure sum will equal 180. We can set up our equation like this [tex]x + (x-73.6) = 180[/tex]. Note: (x - 73.6) is the measure of the smaller angle. By solving, we get 126.8 degrees for the measure of the supplement. If we plug in the value of x into (x-73.6), we get 53.2 degrees as the angle measure of the smaller angle.