Answer:
is that the full question?
Answer:
Solution:-
Given,
ab =perpendicular (p)= 6cm
ac =hypotenuse (h)= 12cm
cd =base (b)= ?
using , Pythagoras theorem we have ,
b²=√h²-p²
or,cd²=√ac²-ab²
= √12²-6²
= √144-36
=√108
=√10.8²
=10.8cm
the length of cd is 10.8 cm
hope it is helpful to you
b) solve by factorisation
[tex]x { }^{2} + x - 72 = 0[/tex]
QUESTION:- SOLVE EQUATION BY FACTORISATION
EQUATION:-
[tex] {x}^{2} + x - 72 = 0[/tex]
ANSWER:-
[tex] {x}^{2} + x - 72 = 0\\{x}^{2} + 9x - 8x - 72 = 0 \\ x(x + 9) - 8(x +9) = 0 \\ (x - 8)(x + 9) = 0 \\ [/tex]
NOW FOR VALUE OF X ->
[tex]x - 8 = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x + 9 = 0\\ x = 8 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x = - 9[/tex]
List the stem numbers below!!
Answer:
see below
Step-by-step explanation:
The stems are in the middle and the leaves are on the left and right
Stems are 0,1,2,3,4,5
You measure 49 turtles' weights, and find they have a mean weight of 80 ounces. Assume the population standard deviation is 6.1 ounces. Based on this, construct a 99% confidence interval for the true population mean turtle weight. Round your answers to 2 decimal places.
Answer:
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575\frac{6.1}{\sqrt{49}} = 2.24[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 80 - 2.24 = 77.76 ounces.
The upper end of the interval is the sample mean added to M. So it is 80 + 2.24 = 82.24 ounces.
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
What is the slope of the line through (-9,6)(−9,6)left parenthesis, minus, 9, comma, 6, right parenthesis and (-6,-9)(−6,−9)left parenthesis, minus, 6, comma, minus, 9, right parenthesis?
Answer:
Step-by-step explanation:
Slope of line through (-9,6) and (-6,-9) = (-9 - 6)/(-6 - (-9)) = (-15)/(3) = -5
point-slope equation for line of slope -5 that passes through (-9,6):
y-6 = -5(x+9)
Answer:
1/2
Step-by-step explanation:
because i answered it on khan academy and it was right
Slope=
Run
Rise
=
Change in x
Change in y
start text, S, l, o, p, e, end text, equals, start fraction, start text, R, i, s, e, end text, divided by, start text, R, u, n, end text, end fraction, equals, start fraction, start text, C, h, a, n, g, e, space, i, n, space, end text, y, divided by, start text, C, h, a, n, g, e, space, i, n, space, end text, x, end fraction
Hint #22 / 3
\begin{aligned} \text{Slope}&=\dfrac{9-6}{-3-(-9)} \\\\ &=\dfrac{3}{6} \\\\ &=\dfrac{1}{2} \end{aligned}
Slope
=
−3−(−9)
9−6
=
6
3
=
2
1
Hint #33 / 3
The slope is \dfrac{1}{2}
2
1
start fraction, 1, divided by, 2, end fraction.
Consider the given statement. Determine whether its is equivalent to the given statement, a negation, or neither. Attached is the photo reference.
Answer:
1. Negation
2. Equivalent
3. Neither
4. Neither
Step-by-step explanation:
p ^ ~q
~q → p~
~q ∨ p
~p ∨q
A plane flying horizontally at an altitude of 3 mi and a speed of 460 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 4 mi away from the station (Round your answer to the nearest whole number.) 368 X mi/h Enhanced Feedback Please try again. Keep in mind that distance - (altitude)2 + (horizontal distance)? (or y = x + n ). Differentiate with respect to con both sides of the equation, using the Chain Rule, to solve for the given speed of the plane is x.
Answer:
[tex]\frac{dy}{dt}=304mi/h[/tex]
Step-by-step explanation:
From the question we are told that:
Height of Plane [tex]h=3mi[/tex]
Speed [tex]\frac{dx}{dt}=460mi/h[/tex]
Distance from station [tex]d=4mi[/tex]
Generally the equation for The Pythagoras Theorem is is mathematically given by
[tex]x^2+3^2=y^2[/tex]
For y=d
[tex]x^2+3^2=d^2[/tex]
[tex]x^2+3^2=4^2[/tex]
[tex]x=\sqrt{7}[/tex]
Therefore
[tex]x^2+3^2=y^2[/tex]
Differentiating with respect to time t we have
[tex]2x\frac{dx}{dt}=2y\frac{dy}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{x}{y}\frac{dx}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{\sqrt{7}}{4} *460[/tex]
[tex]\frac{dy}{dt}=304.2614008mi/h[/tex]
[tex]\frac{dy}{dt}=304mi/h[/tex]
Jean can swim 100 meters in 1.86 minutes. Sean can swim the same distance in 2.12 minutes.
please where is the question
Find the area of the triangle with vertices (0,0,0),(−4,1,−2), and (−4,2,−3).
Answer:
0.5*sqrt33
Step-by-step explanation:
A(0,0,0) B(-4,1,-2), c(-4,2,-3)
Vector AB is (-4-0,-1-0, -2-0)= (-4,-1,-2) The modul of AB is sqrt (4squared+
+(-1) squared+ (-2) squared)= sqrt (16+1+4)=sqrt21
Vector AC is (-4,2,-3) The modul of vector AC is equal to sqrt ((-4)squared+ 2squared+(-3)squared)= sqrt(16+4+9)= sqrt29
Vector BC is equal to (-4-(-4), 2-1, -3-(-2))= (0,1,-1)
The modul of BC is sqrt (1^2+(-1)^2)=sqrt2
Find the angle B
Ac^2= BC^2+AB^2-2*BC*AB*cosB
29= 2+21-2*sqrt2*sqrt21*cosB
29= 2+21-2*sqrt42*cosB
cosB= -3/ sqrt42
sinB= sqrt( 1-(-3/sqrt42)^2)=sqrt33/42= sqrt11/14
s=1/2* (sqrt2*sqrt21*sqrt11/14)=1/2*sqrt(42*11/14)= 0.5*sqrt33
What is the area of a square with a side length of 32 yards?
Answer:
A=1024 yd.^2
Step-by-step explanation:
A=s^2
Substitute,
A=32^2
So,
A=1024 yd.^2
Answer:
1024 yd²
Step-by-step explanation:
Since it's a square, the side lengths will all be the same length. Due to this, you can square the given value to find the area.
A(Square) = 32² = 1024
If x/4-y/6=1/6 and y/z=1/2, then what is the value of 3x-z?
A. 4
B.6
C. 3
D. 2
E. None
***URGENT***
PLEASE HELP ME ASAP, ITS DUE TODAY!!!
............................................................
T is the point on AB such that AT:TB = 5: 1. Show that ot is parallel to the vector a + 2b.
Step-by-step explanation:
SO, OT is parallel to the vector a+2b
What is the simplified form of the following expression? Assume x > 0.
3
2x
16x
2x
4/24x²
2x
4/2443
16x4
124²
Answer:
fourth root of 24 x cubed/16x to the power four
What is the image point of (4, -6) after a translation right 5 units and up 4 units?
Answer:
(9,-2)
Step-by-step explanation:
5 is the x coordinate, and 4 is the y coordinate. When you go right a certain amount of units, you add those units to your x coordinate. If you were to go left a certain amount of units, you'd subtract them. Since we're going right, 5 + 4 = 9. When you go up a certain amount of units, you add those units to you y coordinate. If you were to go down a certain amount of units, you'd subtract them. Since we're going up, -6 + 4 = -2. So, x = 9 and y = -2, or (9,-2)
how do you get rid of the fractions
Answer:
x = - 12/11
Step-by-step explanation:
Multiply by LCM (or LDC if you like that term better)
2 & 3 LCM = 6
6(3/2) x + 6(1/3)x + 5*6 = 3*6
9x + 2x + 30 = 18
11x = - 12
x = - 12/11
An object is moving at a speed of 5 kilometers every 4.5 hours. Express this speed in miles per minute
Answer:
Step-by-step explanation:
1 km = 0.621 mi
1 hr = 60 min
(5 km)/(4.5 hr) × (0.621 mi)/km × (1 hr)/(60 min) = (0.0115 mi)/min
A team wishes to purchase 10 shirts of the same color. A store sells shirts in 3 different colors. What must the inventory of the store be in order to conclude that there are at least 10 shirts in one of the three colors?
Answer:
30
Step-by-step explanation:
Use differentials to estimate the amount of paint needed to apply a coat of paint 0.07 cm thick to a hemispherical dome with diameter 50 m. (Round your answer to two decimal places.)
Answer:
2.75 m²
Step-by-step explanation:
From the information given:
the thickness of the paint = 0.07 cm = (0.07/100) m
= 0.0007 m thick
the diameter hemispherical dome = 50 m
∴
radius of the dome = 50m /2 = 25 m
The volume of a hemispherical dome is expressed as:
[tex]V = \dfrac{2}{3}\pi r^3[/tex]
Thus, the change in the volume now is:
[tex]\dfrac{dV}{dr} = \dfrac{2}{3}\pi *3 r^2[/tex]
[tex]{dV} = \dfrac{2}{3}\pi *3 r^2 (dr)[/tex]
[tex]{dV} = 2 \pi r^2 (dr)[/tex]
∴
dV = 2π × (25)² (0.0007)
where;
dr = 0.0007
dV = 2π × (25)² (0.0007)
dV = 2.75 m²
I need help ASAP please and thank you
9514 1404 393
Answer:
C. 4 +√(x+5)
Step-by-step explanation:
The sign between the terms changes to form the conjugate. The radical contents are unchanged.
The conjugate of 4 -√(x+5) is 4 +√(x+5).
_____
Additional comment
The utility of a conjugate is that the product of a number and its conjugate is the difference of two squares. The squares are intended to remove an undesirable feature of the number, its imaginary part or its irrational part, for example. Here, the product of the number and its conjugate would be ...
(a -b)(a +b) = a² -b²
4² -(√(x+5))² = 16 -(x +5) = 11 -x . . . . no longer contains a root
did from six times a certain number the result is 96 what is the number
Answer:
The number is 16
Step-by-step explanation:
Number : x
Procedure and resolution:
6x = 96
x = 96/6
x = 16
Good Luck!Venn diagrams: unions, intersections, and complements
Attached is the photo reference
Answer:
a) 0
b) 2,3,4,5,6,7
c)3,4,6,7
Step-by-step explanation:
Which best describes the relationship between the line that passes through the points (-6,5) and (-
2,7) and the line that passes through the points (4, 2) and (6, 6)?
Answer:
Slope passes through (-6, 5) and (-2, 7)
[tex]m_1=\frac{y_2-y_1}{x_2-x_1} =m_1=\frac{7-5}{-2+6}[/tex]
[tex]m_1=\frac{2}{4} =\frac{1}{2}[/tex]
Slope passes through (4, 2) and (6, 6)
[tex]m_2=\frac{6-2}{6-4}[/tex]
[tex]\frac{4}{2} =2[/tex]
[tex]m_1\times m_2 \neq -1[/tex] [tex]m_1\neq m_2[/tex]
Answer:- A) neither perpendicular nor parallel.
OAmalOHopeO
Solve for
x
Round to the nearest tenth, if necessary.
9514 1404 393
Answer:
x = 5.0
Step-by-step explanation:
The tangent relation is helpful:
Tan = Opposite/Adjacent
tan(50°) = x/4.2
x = 4.2·tan(50°) ≈ 5.0054 . . . . multiply by 4.2
x ≈ 5.0
MY NOTES Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) = 2x2 − 4x + 3, [−1, 3
Answer:
b) [tex]c=1[/tex]
Step-by-step explanation:
From the question, we are told that:
Function
[tex]F(x)=2x^2-4x+9[/tex]
Given
Rolle's theorem states that if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) such that f(a) = f(b), then f′(x) = 0 for some x with a ≤ x ≤ b.
Generally, the Function above is a polynomial that can be Differentiated and it is continuous
Where
-F(x) is continuous at (-1,3)
-F(x) Can be differentiated at (-1.3)
-And F(-1)=F(3)
Therefore
F(x) has Satisfied all the Requirements for Rolle's Theorem
Differentiating F(x) we have
[tex]F'(x)=4x-4[/tex]
Equating F(c) we have
[tex]F'(c)=0[/tex]
[tex]4(c)-4=0[/tex]
Therefore
[tex]c=1[/tex]
Please explain the answer
Answer:
3.5
Step-by-step explanation:
in order to find the maximum, we are basically solving to find the vertex of the graph. to find the vertex use :
-b/2a
the 'b' is 112
the 'a' is -16
so :
-112/-32 = 3.5
the answer is B, 3.5
A certain freezing process requires that room temperature be lowered from 35oC at the rate of 6oC every hour. What will be the room temperature 8 hours after the process begins?
Answer:
-13 degrees celcius.
Step-by-step explanation:
6 degrees are lowered every hour. 6*8 = 48 degrees, 48 degrees are lowered.
35-48 is -13. The room temperature will be -13 eight hours after the process begins.
hi plz help ASAP tyyy ^^
Answer:
26.75 units²
Step-by-step explanation:
This shape can be split into 3 triangles and a square. Find the area of each shape then add them all up.
[tex]A(Square)=2(2)=4\\\\A(Triangle)=\frac{1}{2}(2)(2)=2\\\\A(Triangle)=\frac{1}{2}(5)(2)=5\\\\A(Triangle)=\frac{1}{2}(9)(3.5)=15.75\\\\A(Shape)=4+2+5+15.75=26.75[/tex]
Therefore, the area of the shape is 26.75 units².
A plot of land in the shape of a horizontal ellipse has a pole at each focus. The foci are 16 feet from the center. If the plot of land is 40 feet across one axis, how long is it across the other axis?
a. 34 feet
b. 46 feet
c. 24 feet
d. 30 feet
Answer: 24 feet
Step-by-step explanation: i just guessed it on pluto and got it right. please leave a like if it worked
The length of another axis for the given ellipse will be around 25.6125 feet so none of the options will be correct.
What is an ellipse?a regular oval form produced when a cone is cut by an oblique plane that does not intersect the base, or when a point moves in a plane so that the sum of its distances from two other points remains constant.
In another word, an ellipse is a curve that becomes by a point moving in such a way that the sum of its distances from two fixed points is a closed planar curve produced.
General equation of an ellipse
(x 2 / a 2 )+ (y2 / b 2 )= 1
Given that
the plot of land is 40 feet across one axis
so 2a = 40 feet
a = 20 feet
The foci are 16 feet from the center so
c = 16
Now we know that
c = √(b² - a²)
c² = b² - a²
16² = b² - 20²
b = 25.6125
So, the length of the minor axis will be around 25.6125 feet.
To learn more about ellipse,
https://brainly.com/question/14281133
#SPJ2
1% defective parts. 100,00 parts made in total. The number of defects made should equal?
Answer:
1,000 defects
Step-by-step explanation:
Find how many defects that should be made by finding 1% of 100,000:
100,000(0.01)
= 1000
So, there should be 1,000 defects
a day? 6. If 18 pumps can raise 2150 tonnes of water in 50 days, working 8 hours a day, how much water will be raised in 60 days by 16 out of which 10 are working 9 hours a day and the rest 7 hours a day?
please help me with this
Evaluate -8 × |2|.
Answer:
-16
Step-by-step explanation:
The absolute value of 2 is 2 so -8*2=-16