Answer:
65 solve theprob
Step-by-step explanation:
sinolove ko po yan paki brainly
Assume that when blood donors are randomly selected, 45% of them have blood that is Group O (based on data from the Greater New York Blood Program).
1. If the number of blood donors is n = 16 equation, find the probability that the number with Group O blood is equation x = 6.
2. If the number of blood donors is n = 8, find the probability that the number with group O is x = 3.
3. if the number of blood donors is n = 20, find the probability that the number with group O blood is x = 16.
4. if the number of blood donors is n = 11, find the probability that the number with group O blood is x = 9.
Answer:
1. 0.1684 = 16.84%.
2. 0.2568 = 25.68%
3. 0.0013 = 0.13%
4. 0.0126 = 1.26%.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they have blood that is Group O, or they do not. The probability of a person having blood that is Group O is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
45% of them have blood that is Group O
This means that [tex]p = 0.45[/tex]
Question 1:
This is P(X = 6) when n = 16. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{16,6}.(0.45)^{6}.(0.55)^{10} = 0.1684[/tex]
So 0.1684 = 16.84%.
Question 2:
This is P(X = 3) when n = 8. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{8,3}.(0.45)^{3}.(0.55)^{5} = 0.2568[/tex]
So 0.2568 = 25.68%.
Question 3:
This is P(X = 16) when n = 20. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 16) = C_{20,16}.(0.45)^{16}.(0.55)^{4} = 0.0013[/tex]
So 0.0013 = 0.13%.
Question 4:
This is P(X = 9) when n = 11. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{11,9}.(0.45)^{9}.(0.55)^{2} = 0.0126[/tex]
So 0.0126 = 1.26%.
What is the product (4.42 x 103)(5 x 10^) written in
scientific notation?
Answer:
2.2763 x 10 to the power of 4
for some reason it doesn't let me put in the explanation
I NEED HELP ILL MARK!!!
Answer:
c) tan
Step-by-step explanation:
For the 63-deg angle, YZ is the opposite leg. The unknown side, AY, is the adjacent leg. The trigonometric ratio that relates the opposite and adjacent legs is the tangent.
Answer: c) tan
From the table below, determine whether the data shows an exponential function. Explain why or why not.
x
3
2
1
–1
y
8
2
0.5
0.125
a. No; the domain values are at regular intervals and the range values have a common factor 0.25. b. No; the domain values are not at regular intervals although the range values have a common factor. c. Yes; the domain values are at regular intervals and the range values have a common factor 4. d. Yes; the domain values are at regular intervals and the range values have a common factor 0.25.
9514 1404 393
Answer:
b. No; the domain values are not at regular intervals although the range values have a common factor.
Step-by-step explanation:
The differences between x-values are ...
-1, -1, -1, -2 . . . . not a constant difference
The ratios of y-values are ...
2/8 = 0.5/2 = 0.125/0.5 = 0.25 . . . . a constant difference
The fact that the domain values do not have a common difference renders the common factor of the range values irrelevant. The relation is not exponential.
For any real number √a²
a
- |al
lal.
-a
Answer:
|a|
Step-by-step explanation:
For any positive or negative a, when you square it, the answer is positive.
The square root symbol means the principal square root. For a positive number, the principal square root is positive. To make sure the square root is always non-negative, use absolute value.
Answer: |a|
The function f is defined by f(x)=2x+5/x+4 find f (3x)
Answer:
[tex]\displaystyle f(3x) = \frac{6x + 5}{3x + 4}[/tex]
General Formulas and Concepts:
Algebra I
FunctionsFunction NotationStep-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \frac{2x + 5}{x + 4}[/tex]
Step 2: Find
Substitute in x [Function f(x)]: [tex]\displaystyle f(3x) = \frac{2(3x) + 5}{3x + 4}[/tex]Simplify: [tex]\displaystyle f(3x) = \frac{6x + 5}{3x + 4}[/tex]By visual inspection, determine the best-fitting regression model for the
scatterplot.
X
10
.
-10
A. No pattern
B. Exponential
C. Quadratic
D. Linear
Answer:
The answer is B since the chance is expontential since it gets bigger over time and each one is farther apart
The best-fitting regression model for the scatterplot is Exponential, the correct option is B.
What is fitting of curve for a data plot?When the data shows some trend, either linear (making a line), or non-linear (a predictable curve), we fit a mathematical curve(exponential) on that data set, as a representative of the pattern in that data set, to predict the output based on the inputs.
We are given;
The graph representation
Now,
By visual inspection of the scatterplot, we can see that the points do not follow a clear pattern that suggests an exponential or quadratic relationship. However, there appears to be a linear relationship between the variables.
Therefore, the answer will be exponential.
Learn more about exponential regression here:
https://brainly.com/question/12608685
#SPJ7
Please help:
Given: ∠4 is congruent to ∠2
Prove: ∠3 and ∠1 are supplementary
Statements and Reasons
Answer:
See Below.
Step-by-step explanation:
We can write a two-column proof.
Statements: Reasons:
[tex]\displaystyle 1)\, \angle 4\cong \angle 2[/tex] Given
[tex]\displaystyle 2)\, \angle 3 \cong \angle 4[/tex] Vertical Angles are Congruent
[tex]\displaystyle 3) \, \angle 1 + \angle 2 = 180[/tex] Linear Pair
[tex]\displaystyle 4)\, \angle 1 + \angle 4 = 180[/tex] Substitution
[tex]\displaystyle 5) \, \angle 1 + \angle 3 = 180[/tex] Substitution
[tex]\displaystyle 6) \, \text{$\angle 3$ and $\angle 1$ are supplementary}[/tex] Definition of Supplementary Angles
Convert.
{} {}
minutes ==equals 888 hours 373737 minutes
9514 1404 393
Answer:
517 minutes
Step-by-step explanation:
There are 60 minutes in an hour, so 8×60 = 480 minutes in 8 hours.
In 8 hours 37 minutes, there are ...
480 min + 37 min = 517 minutes
Allen is looking through his weekly local grocery store newspaper ads he notices that Costco is advertising a pack of 60 eggs for $9.35 Safeway is advertising a dozen eggs for $4.79 and Trader Joe's is advertising a pack of 18 eggs for $6.18 which store is offering the better deal?
Answer:
Costco
Step-by-step explanation:
We find the cost per egg for each of the three stores.
Costco:
$9.35/(60 eggs) = $0.15583/egg
Safeway:
$4.79/(12 eggs) = $0.39917/egg
Trader Joe's:
$6.18/(18 eggs) = $0.34333/egg
The best deal is Costco.
Answer:
Costco
Step-by-step explanation:
[tex]\frac{60}{9.35}: \frac{1}{y}[/tex]
60 × y = 1 × 9.35
60y = 9.35
60y ÷ 60 = 9.35 ÷ 60
[tex]y=\frac{187}{1200}[/tex]
[tex]\frac{12}{4.79}: \frac{1}{y}[/tex]
12 × y = 1 × 4.79
12y = 4.79
12y ÷ 12 = 4.79 ÷ 12
[tex]y=\frac{479}{1200}[/tex]
[tex]\frac{18}{6.18}: \frac{1}{y}[/tex]
18 × y = 1 × 6.18
18y = 6.18
18y ÷ 18 = 6.18 ÷ 18
[tex]y=\frac{103}{300}=\frac{412}{1200}[/tex]
5/6 ÷ 1/3 - 2/3 (2/5)
Answer:
[tex] \frac{67}{30} \: \text{or} \:2 \frac{7}{30} [/tex]
Step-by-step explanation:
5/6 ÷ 1/3 - 2/3 (2/5)
= 5/6 ÷ 1/3 - 2/3 × 2/5= 5/2 - 2/3 × 2/5= 5/2 - 4/15= 67/30 or 2 7/30Hope it helps you! \(^ᴥ^)/
what is the slope of a line parallel to the line whose equation is 2x+5y=10
Answer:
1. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -1
I WILL GIVE BRAINLIEST FAST
TRUE OR FALSE?
The triangles shown below must be congruent
B is the answer.
The triangles doesnt creates a SSS,SAS,SAA, scenario.
This triangle isn't ASA because the triangles share the same side but it have different angles that include the side.
Which rectangle has an area of 18 square units? On a coordinate plane, a rectangle is 2 units high and 7 units wide. On a coordinate plane, a rectangle is 2 units high and 6 units wide. On a coordinate plane, a rectangle is 3 units high and 5 units wide. On a coordinate plane, a rectangle is 3 units high and 6 units wide.
Answer:
On a coordinate plane, a rectangle is 3 units high and 6 units wide.
Answer:
option "B"
You Welcome
Step-by-step explanation:
You are designing an experiment using human subjects. The study will include 30 participants. Of these, 16 will be placed in the experimental group and the remaining 14 will be placed in the control group. In how many ways can you assign participants to the two groups?
Answer:
The participants can be assigned in 224 different ways.
Step-by-step explanation:
Given that you are designing an experiment using human subjects, and the study will include 30 participants, of which 16 will be placed in the experimental group and the remaining 14 will be placed in the control group, to determine in how many ways can you assign participants to the two groups the following calculation must be performed:
16 x 14 = X
224 = X
Therefore, the participants can be assigned in 224 different ways.
Find the area of the surface generated when the given curve is revolved about the y-axis. The part of the curve y=4x-1 between the points (1, 3) and (4, 15)
Answer:
Step-by-step explanation:
Let take a look at the given function y = 4x - 1 whose point is located between (1,3) and (4,15) on the graph.
Here, the function of y is non-negative. Now, expressing y in terms of x in y = 4x- 1
4x = y + 1
[tex]x = \dfrac{y+1}{4}[/tex]
[tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
By integration, the required surface area in the revolve is:
[tex]S = \int^{15}_{ 3} 2 \pi g (y) \sqrt{1+g'(y^2) \ dy }[/tex]
where;
g(y) = [tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
∴
[tex]S = \int^{15}_{ 3} 2 \pi \Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big)'\Bigg)^2 \ dy }[/tex]
[tex]S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}\Big ) \Bigg)^2 \ dy } \\ \\ \\ S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \dfrac{\sqrt{17}}{4} \ dy[/tex]
[tex]S = \dfrac{\sqrt{17}}{8} \pi \int^{15}_{ 3} (y+1) \ dy[/tex]
[tex]S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(y+1)^2)\Big|^{15}_{3} \\ \\ S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(15+1)^2-\dfrac{1}{2}(3+1)^2 ) \\ \\ S = \dfrac{\sqrt{17} \pi}{8} *120 \\ \\\mathbf{ S = 15 \sqrt{17}x}[/tex]
8th Grade Which expression is equivalent to 1/27
Answer:
[tex]( \frac{1}{3})^{3} [/tex]
Step-by-step explanation:
There are many expressions that can be equivalent to 1/27.
For example, 2/54, 3/81 etc
But I think the expression you are looking for is
[tex] \frac{1}{27} = \frac{1 \times 1 \times 1}{3 \times 3 \times 3} = \frac{ {1}^{3} }{ {3}^{3} } = ( \frac{1}{3} )^{3} [/tex]
Hope this is helpful
Consider the quadratic function F(x)=-x^2-x+20
The line of symmetry has the equation ?
Answer:
[tex]x = - \frac{1}{2} [/tex]
Step-by-step explanation:
[tex]x = \frac{ - b}{2a} = \frac{1}{ - 2} [/tex]
what is the correct equation ?
Answer:
B
Step-by-step explanation:
B is the correct equation
A decorative wall in a garden is to be built using bricks that are 5 1/2 inches thick and mortar joints are 1/4 inch thick. What is the height of the wall?
Step-by-step explanation:
how many layers of bricks are used ?
also, I assume, the thickness of bricks means actually their height when laid.
but still, I cannot answer that, as nothing indicates if there is only one layer of bricks or 2 or 3 or 4 or ...
The frequency distribution below summarizes the home sale prices in the city of Summerhill for the month of June. Determine the lower class limits.
Answer:
79.5, 110.5, 141.5, 172.5, 203.5, 234.5
Step-by-step explanation:
Given
The attached distribution
Required
The lower class limits
To do this, we simply subtract 0.5 from the lower interval
From the attached distribution, the lower intervals are:
80.0, 111.0, 142.0, 173,0 .......
So, the lower class limits are:
[tex]80.0-0.5 = 79.5[/tex]
[tex]111.0-0.5 = 110.5[/tex]
[tex]142.0-0.5 = 141.5[/tex]
[tex]173.0-0.5 = 172.5[/tex]
[tex]204.0-0.5 = 203.5[/tex]
[tex]235.0-0.5 = 234.5[/tex]
If llm and m<6 = 4x - 15 and m<7 = x + 30, then m<6=
Answer:
Step-by-step explanation:
There are only 2 angle values that <1 to <8 can be. The two values add up to 180
In this case <6 and <7 are equal.
<6 = 4x - 15
<7 = x + 30
4x - 15 = x + 30 Subtract x from both sides
4x-x - 15 = 30 Add 15 to both sides
3x = 30 + 15
3x = 45 Divide by 3
x = 45 / 3
x = 15
<6 = 4x - 15
<6 = 4*15 - 15
<6 = 60 - 15
<6 = 45
when 5 is added to 2 times a number , the results is 45. find the number
Answer:i think its 20
Step-by-step explanation: 20 x 2 is 40 plus 5 is 45
Answer:
✓ x - the number 5 + 2x = 45 2x = 45 - 5 2x = 40 x = 20 5 + 2(20) = 45 5 + 40 = 45 45 = 45 Hope this helps. :-) the answer is 20
Step-by-step explanation: Algebra.com
Each student at some college has a mathematics requirement M (to take at least one mathematics course) and a science requirement S (to take at least one science course). A poll of 150 sophomore students shows that: 60 completed M, 45 completed S, and 25 completed both M and S
Find the number of students who have completed
(a) At least one of the two requirements
(b) Exactly one of the two requirements
(c) Neither requirement.
all students = 150
M = 60
S = 45
M and S = 25
(a) At least one of the two requirements:
M or S = M + S - (M and S) = 60 + 45 - 25 = 80
(b) Exactly one of the two requirements:
(M or S) - (M and S) = 80 - 25 = 55
(c) Neither requirement:
(all students) - (M or S) = 150 - 80 = 70
PLS HELP please give an explanation if you don’t have one pls still give answer
Need the answers from a - e
Answer:
10
Step-by-step explanation:
Sorry. I needed to answer this question to get access.
Find the values of the sine, cosine, and tangent for ZA C A 36ft B
24ft
Find the values of the sine, cosine, and tangent for ∠A
a. sin A = [tex]\frac{\sqrt{13} }{2}[/tex], cos A = [tex]\frac{\sqrt{13} }{3}[/tex], tan A = [tex]\frac{2 }{3}[/tex]
b. sin A = [tex]3\frac{\sqrt{13} }{13}[/tex], cos A = [tex]2\frac{\sqrt{13} }{13}[/tex], tan A = [tex]\frac{3}{2}[/tex]
c. sin A = [tex]\frac{\sqrt{13} }{3}[/tex], cos A = [tex]\frac{\sqrt{13} }{2}[/tex], tan A = [tex]\frac{3}{2}[/tex]
d. sin A = [tex]2\frac{\sqrt{13} }{13}[/tex], cos A = [tex]3\frac{\sqrt{13} }{13}[/tex], tan A = [tex]\frac{2 }{3}[/tex]
Answer:d. sin A = [tex]2\frac{\sqrt{13} }{13}[/tex], cos A = [tex]3\frac{\sqrt{13} }{13}[/tex], tan A = [tex]\frac{2 }{3}[/tex]
Step-by-step explanation:The triangle for the question has been attached to this response.
As shown in the triangle;
AC = 36ft
BC = 24ft
ACB = 90°
To calculate the values of the sine, cosine, and tangent of ∠A;
i. First calculate the value of the missing side AB.
Using Pythagoras' theorem;
⇒ (AB)² = (AC)² + (BC)²
Substitute the values of AC and BC
⇒ (AB)² = (36)² + (24)²
Solve for AB
⇒ (AB)² = 1296 + 576
⇒ (AB)² = 1872
⇒ AB = [tex]\sqrt{1872}[/tex]
⇒ AB = [tex]12\sqrt{13}[/tex] ft
From the values of the sides, it can be noted that the side AB is the hypotenuse of the triangle since that is the longest side with a value of [tex]12\sqrt{13}[/tex] ft (43.27ft).
ii. Calculate the sine of ∠A (i.e sin A)
The sine of an angle (Ф) in a triangle is given by the ratio of the opposite side to that angle to the hypotenuse side of the triangle. i.e
sin Ф = [tex]\frac{opposite}{hypotenuse}[/tex] -------------(i)
In this case,
Ф = A
opposite = 24ft (This is the opposite side to angle A)
hypotenuse = [tex]12\sqrt{13}[/tex] ft (This is the longest side of the triangle)
Substitute these values into equation (i) as follows;
sin A = [tex]\frac{24}{12\sqrt{13} }[/tex]
sin A = [tex]\frac{2}{\sqrt{13}}[/tex]
Rationalize the result by multiplying both the numerator and denominator by [tex]\sqrt{13}[/tex]
sin A = [tex]\frac{2}{\sqrt{13}} * \frac{\sqrt{13} }{\sqrt{13} }[/tex]
sin A = [tex]\frac{2\sqrt{13} }{13}[/tex]
iii. Calculate the cosine of ∠A (i.e cos A)
The cosine of an angle (Ф) in a triangle is given by the ratio of the adjacent side to that angle to the hypotenuse side of the triangle. i.e
cos Ф = [tex]\frac{adjacent}{hypotenuse}[/tex] -------------(ii)
In this case,
Ф = A
adjacent = 36ft (This is the adjecent side to angle A)
hypotenuse = [tex]12\sqrt{13}[/tex] ft (This is the longest side of the triangle)
Substitute these values into equation (ii) as follows;
cos A = [tex]\frac{36}{12\sqrt{13} }[/tex]
cos A = [tex]\frac{3}{\sqrt{13}}[/tex]
Rationalize the result by multiplying both the numerator and denominator by [tex]\sqrt{13}[/tex]
cos A = [tex]\frac{3}{\sqrt{13}} * \frac{\sqrt{13} }{\sqrt{13} }[/tex]
cos A = [tex]\frac{3\sqrt{13} }{13}[/tex]
iii. Calculate the tangent of ∠A (i.e tan A)
The cosine of an angle (Ф) in a triangle is given by the ratio of the opposite side to that angle to the adjacent side of the triangle. i.e
tan Ф = [tex]\frac{opposite}{adjacent}[/tex] -------------(iii)
In this case,
Ф = A
opposite = 24 ft (This is the opposite side to angle A)
adjacent = 36 ft (This is the adjacent side to angle A)
Substitute these values into equation (iii) as follows;
tan A = [tex]\frac{24}{36}[/tex]
tan A = [tex]\frac{2}{3}[/tex]
One urn contains 6 blue balls and 14 white balls, and a second urn contains 12 blue balls and 7 white balls. An urn is selected at random, and a ball is chosen from the urn. a. What is the probability that the chosen ball is blue? b. If the chosen ball is blue, what is the probability that it came from the first urn?
Answer:
a) 0.4658 = 46.58% probability that the chosen ball is blue
b) 0.322 = 32.2% probability that it came from the first urn
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
a. What is the probability that the chosen ball is blue?
6/20 = 0.3 of 0.5(first urn)
12/19 = 0.6316 out of 0.5(second urn).
So
[tex]P(A) = 0.3*0.5 + 0.6316*0.5 = 0.4658[/tex]
0.4658 = 46.58% probability that the chosen ball is blue.
b. If the chosen ball is blue, what is the probability that it came from the first urn?
Event A: Blue Ball
Event B: From first urn
From item a., [tex]P(A) = 0.4658[/tex]
Probability of blue ball from first urn:
0.3 of 0.5. So
[tex]P(A \cap B) = 0.3*0.5 = 0.15[/tex]
Probability:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.4658} = 0.322[/tex]
0.322 = 32.2% probability that it came from the first urn
Ms. Ambrose paid $10 for 1.25 pounds of almonds. How much did the almonds cost per pound???
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]