Answer:
D=5
Explanation:
D=1/2*b*h
D=1/2*2*5
D=5
An electroscope is a device with a metal knob, a metal stem, and freely hanging metal leaves used to detect charges. The diagram below shows a positively charged leaf electroscope.
As a positively charged glass rod is brought near the knob of the electroscope, the separation of the leaves will
remain the same
increase
As a positively charged glass rod is brought near the knob of the electroscope, the separation of the leaves will increase.
What is Charge?
Charge is a fundamental property of matter that determines how objects interact with each other through the electromagnetic force. It is a physical property that can be positive or negative and can be measured in coulombs (C).
This is because the positively charged glass rod will induce a negative charge on the metal knob of the electroscope. The negative charges will repel the electrons in the metal leaves, causing them to move away from each other and increasing their separation. The greater the amount of charge on the glass rod, the greater the separation between the leaves will be.
Learn more about Charge from given link
https://brainly.com/question/18102056
#SPJ1
Does Life, evolutin On Earth Violate the Second Law of Thermodynamics?
Answer:
No, it doesn’t.
Explanation:
The second law of thermodynamics states that in a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems increases. Equivalently, machines that spontaneously convert thermal energy into mechanical work are impossible.
If you combine milk and coffee, the entropy will rise until the mixture is entirely homogenous and you can no longer differentiate between the two substances. At that point, the mixture will be a single, dull hue.
But in the process of mixing up coffee, before it’s fully mixed together but after you have started mixing, you might notice some complex swirl patterns appear for a brief moment in the chaos before vanishing away.
That’s what human life is.
We’re not violating thermodynamics because if you take the system as a whole, including the sun and the earth, entropy is still increasing. The sun will eventually run out of fuel and die out. Eventually all suns will die out and the whole universe will be homogeneous and we will have heat death as the expanding universe rips complex atoms apart.
But there can be brief pockets of complexity within that system, that exists for a brief period of time, before eventually and inevitably fading away. It does not violate thermodynamics because entropy is still increasing in the system as a whole.
A student graphed the position of a cart during a 7-second time interval.
The correct option is D; The cart moved at a constant velocity of 0.5m/s for the entire 7 seconds.
Which graph best represents a constant acceleration?Constant acceleration is represented as a horizontal line on the acceleration graph. The slope of the velocity graph represents the acceleration. On the velocity graph, constant acceleration Equals constant slope = straight line.
Acceleration is represented in a velocity-time graph by the slope, or steepness, of the graph line. If the line slopes upward, as seen in the figure between 0 and 4 seconds, velocity increases, and acceleration is positive. The velocity-time graph will be a curve when the acceleration increases with time, as anticipated by the equation: v = u + at.
Learn more about velocity
https://brainly.com/question/24909693
#SPJ1
Imagine you are viewing the other planets from Earth. Which planets (if any) will appear to pass directly in front of the Sun from your Earth-based perspective? Which planets (if any) will never transit the Sun? If you were able to view the Solar System from outside, how many planets could potentially transit the Sun? Will those planets transit the Sun no matter where outside the Solar System you are? Sketch and describe the required orientation of the Solar System in order for the maximum number of planets to transit the Sun.
Explanation:
Planets closer to the sun will appear to transit from time to time
= 2 Venus and Mercury ( I suppose you could include the Moon..an eclipse ....haha)
All of the planets further from the sun than earth will not transit
Potentially ALL of the planets could transit the sun (earth included) if observed outside solar system HOWEVER if you are not observing from near the orbital plane of
the planets NONE of them would transit
For maximum transits, the planets should all be in the same orbital plane and the observer should be very close to this plane also.
two forces are applied to a 12 kg cart on a frictionless surface as shown. at a certain instant, force a is 77 n to the right, and force b is 15 n to the left. what is the acceleration of the cart at this instant, in m/s2?
The acceleration of the cart at this instant is calculated to be 5.17 m/s² to the right.
What is Newton's second law?Newton's second law explains that acceleration of any object is directly related to net force and inversely related to the mass.
To determine the acceleration of the cart, we need to calculate the net force acting on it.
The net force is the vector sum of the two forces:
Net force = Force a + Force b = 77 N to the right - 15 N to the left = 62 N to the right
Using Newton's second law, F = ma, where F is the net force and m is the mass of the cart, we can calculate the acceleration:
a = F/m = 62 N / 12 kg = 5.17 m/s
Therefore, the acceleration of the cart at this instant is 5.17 m/s² to the right.
To know more about Newtons' law, refer
https://brainly.com/question/28171613
#SPJ1
a proton accelerates from rest in a uniform electric field of 600 n/c. at one later moment, its speed is 1.50 mm/s (nonrelativistic because v is much less than the speed of light). find the time interval, in ms, that the proton takes to reach this speed. flag question: question 11
The proton accelerates from rest in a uniform electric field of 600 n/c. In order to find the time interval it takes for the proton to reach a speed of 1.50 mm/s.
We need to use the equation v = v₀ + at, where v is the final velocity, v₀ is the initial velocity (which is 0 in this case), a is the acceleration, and t is the time interval. The acceleration of the proton in the electric field is a = E/m, where E is the electric field and m is the mass of the proton. Substituting these values into the equation gives us:
1.50 mm/s = 0 + (600 n/c/1.67 x 10⁻²⁷ kg) x t
Rearranging the equation and solving for t gives us the time interval:
t = 1.50 mm/s/(600 n/c/1.67 x 10⁻²⁷ kg)
t = 8.33 x 10⁻¹³ s
t = 8.33 ms
Therefore, it takes the proton 8.33 ms to accelerate from rest to a speed of 1.50 mm/s in the uniform electric field of 600 n/c.
Learn more about proton accelerates at https://brainly.com/question/21595065
#SPJ11
if a star has very weak hydrogen lines and is blue, what does that most likely mean?
Blue color and weak hydrogen lines indicate a hot and young star with low hydrogen content. It may have an outer layer rich in helium or heavier elements and has not fused enough hydrogen into helium.
When a star is blue and has extremely faint hydrogen lines, it is most likely a bright, young star with an outer layer rich in heavier elements such as helium rather than hydrogen. Given its blue hue, the star is hotter than most other stars, with a surface temperature of at least 10,000 Kelvin. Because the star hasn't been on the main sequence for very long, it may not have had enough time to fuse hydrogen into helium in its core, which is why the hydrogen content of the star is low, according to the weak hydrogen lines.
learn more about weak hydrogen lines here:
https://brainly.com/question/13046293
#SPJ4
A converging lens of focal length 20cm Forms a real Image of 4cm high of an object which is 5cm high. If the Image is 36cm away from the lens, determine by graphical method the position of the object.
Answer:
in image
Explanation:
I don't think so it helped but through this you can do the question exactly like this ( in this way) ...
A train P covered a distance of 180 km in 4.5 hours and train Q covered 270 km in 6 hours. Which train is moving faster?
ans= train Q
Sol= 4.5×60= 270
6×60= 360
270÷180=1.5
360÷270=1.3...
1.3... <1.5
a runner sprints around a circular track of radius 100 m at a constant speed of 7 m/s. the runner's friend is standing at a distance 200 m from the center of the track. how fast is the distance between the friends changing when the distance between them is 200 m? (round your answer to two decimal places.) m/s
The change in the distance between the friends changing when the distance between them is 200 m is 7.85m.
What is the distance?Consider a right-angled triangle with the radius of the circular track as one side of the right angle. Then the other two sides are the distance covered by the runner (in a single lap) and the distance between the runner and his friend.
Since the radius is perpendicular to the line connecting the friend and the center of the track, we can call it the hypotenuse of the triangle.
Let x be the distance between the runner and his friend. We are given that x = 200 m.Using the Pythagorean theorem, we can find the distance covered by the runner in a single lap of the track.
e can now differentiate the above expression with respect to time to find the rate of change of the distance covered by the runner (this will also be the rate of change of the distance between the runner and his friend).Hence,
2x(dx/dt) = 2 (distance covered by runner)(d(distance covered by runner)/dt)
dx/dt = (distance covered by runner)
(d(distance covered by runner)/dt) / x
Substituting x = 200 m and d(distance covered by runner)/dt = 7 m/s, we get:
dx/dt = (223.6 m)(7 m/s) / 200 m = 7.85 m/s.
Rounding off to two decimal places, we get:
dx/dt = 7.85 m/s.
Therefore, the answer is 7.85.
Read more about distance here:
https://brainly.com/question/26046491
#SPJ11
Proton 1 moves with a speed v from the east coast to the west coast in the continental United States; proton 2 moves with the same speed from the southern United States toward Canada. Is the magnitude of the magnetic force experienced by proton 2 greater than, less than, or equal to the force experienced by proton 1? O greater than the force experienced by proton 1 O less than the force experienced by proton 1 equal to the force experienced by proton 1
The magnitude of the magnetic force experienced by proton 2 will be less than the force experienced by proton 1. This is because the force experienced by a proton is related to the direction of its motion relative to the direction of the magnetic field.
As proton 1 is travelling from east to west, its motion is parallel to the magnetic field, which is aligned in a north-south direction in the continental United States. This means that proton 1 will experience a greater force due to the magnetic field than proton 2, which is travelling in a north-south direction and thus has a motion perpendicular to the magnetic field.
To understand this more clearly, we can consider the equation for the magnetic force:
F = qvB sin θ.
In this equation, the force experienced by a particle is related to the charge (q), velocity (v), and magnetic field strength (B). The sine of the angle between the velocity and magnetic field (θ) is also important as it determines how much of the force will be experienced by the particle. As proton 1's motion is parallel to the magnetic field, it will experience the full force due to the magnetic field, whereas proton 2's motion is perpendicular to the magnetic field and it will only experience a fraction of the force. The magnitude of the force experienced by proton 2 will be lower than the force experienced by proton 1.
For similar question magnitude of the magnetic force
https://brainly.com/question/29237710
#SPJ11
Jake runs at 4 m/s along a train flatcar that moves at 10 m/s in the opposite direction. What is Jake's speed relative to the ground?
Jake's speed relative to the ground along a train flatcar which is moving in the opposite direction with 10m/s is 14 m/s.
What is Jake's speed?Relative motion refers to the movement of an object with respect to some other object, point, or medium, rather than measuring it in isolation.
The train flatcar moves in the opposite direction to Jake, and the question asks for Jake's speed with respect to the ground. So, by using vector subtraction the relative velocity of Jake with respect to the ground can be determined. The relative velocity can be calculated using the formula:
Relative velocity = velocity of object A - velocity of object B
here, A is Jake, and B is the train flatcar. Therefore, the relative velocity of Jake with respect to the ground is:
Relative velocity of Jake = Jake's speed - Velocity of train flatcar
The velocity of the train flatcar is given as 10 m/s, but we need to use its opposite direction as the train is moving in the opposite direction. So, the velocity of the train flatcar is -10 m/s.
By substituting the values, we get:
Relative velocity of Jake = 4 m/s - (-10 m/s)
Relative velocity of Jake = 4 m/s + 10 m/s
Relative velocity of Jake = 14 m/s
Therefore, Jake's speed relative to the ground is 14 m/s.
Learn more about Relative speed here:
https://brainly.com/question/30501151
#SPJ11
given what you learned from the figure, rank these types of light in order of increasing energy. 1. radio 2. infrared 3. orange 4. green 5. ultraviolet
Answer:
✓ 1. radio 2. infrared 3. orange 4. green 5. ultraviolet
Explanation:
lifting the weight without a pulley requires a force of 400 newtons over a distance of 4 meters. how do these values change when the pulley is applied? (1 point) responses
A. the force increases, while the distance decreases. B. both the force and the distance decrease. C. the force decreases, while the distance increases. D. both the force and the distance increase.
When the pulley is applied, the force decreases, while the distance increases. The correct option is C. Therefore, when a pulley is used, the force required to lift the weight decreases, while the distance over which the force is applied increases.
When a pulley is used to lift a weight, the force required to lift the weight is reduced, while the distance over which the force is applied is increased. The pulley system distributes the weight of the object across multiple strands of rope or cable, reducing the amount of force required to lift the object.
In this case, the force required to lift the weight decreases when a pulley is used, as the weight is supported by two segments of rope or cable, each bearing half the weight. Therefore, the force required is effectively halved.
On the other hand, the distance over which the force is applied increases when a pulley is used. This is because the rope or cable must be pulled twice as far as the distance that the weight is lifted, due to the nature of the pulley system. As a result, the distance over which the force is applied is effectively doubled.
Therefore, when a pulley is used, the force required to lift the weight decreases, while the distance over which the force is applied increases.
For more such questions on Force
https://brainly.com/question/15251816
#SPJ11
A weight is connected to a spring that is suspended vertically from the ceiling. If the weight is displaced downward from its equilibrium position and released, it will oscillate up and down.(a) If air resistance is neglected, will the total mechanical energy of the system (weight plus Earth plus spring) be conserved?YesNo(b) How many forms of potential energy are there for this situation?both gravitational and elastic potential energyonly elastic potential energy There is no potential energy in this situation.only gravitational potential energy
a) The mechanical energy of a system is conserved if air resistance is ignored. (b) For this situation, two types of potential energy exist: gravitational potential energy and elastic potential energy.
Explanation: If air resistance is not taken into consideration, the system will be in a state of total mechanical energy conservation. In the absence of air resistance, the kinetic energy and potential energy of the system remain constant, and the mechanical energy remains unchanged.
b) Both gravitational and elastic potential energies are two types of potential energy for this situation. Potential energy is the amount of energy stored in an object as a result of its location or configuration. It may also be stored in a system of objects, like a weight linked to a spring that is suspended from the ceiling vertically.
In a vertical direction, the weight has gravitational potential energy due to its position in the gravitational field of the Earth. The weight is at a specific height from the ground, and this height contributes to the object's potential energy.
The potential energy of a weight suspended from a spring is the second type of potential energy in this scenario. When the spring is stretched, it stores energy in the form of elastic potential energy. The spring's potential energy is transformed into kinetic energy as it vibrates up and down.
To know more about gravitational potential energy, refer here:
https://brainly.com/question/19768887#
SPJ11#
A 910-kg sports car collides into the rear end of a 2100-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.5m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact.
1.A 910-kg sports car collides into the rear end of a 2100-kgSUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.5m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact.
1.What was the speed sports car at impact?
The speed of the sports car at impact when kinetic friction between tires and road is 0.80 is 15.55 m/s.
It is given that Mass of sports car, ms = 910 kg, Mass of SUV, mSUV = 2100 kg, and Initial velocity of sports car, us = ?, Final velocity of sports car, v = 0, Initial velocity of SUV, uSUV = 0, Final velocity of SUV, vSUV = 0, and Coefficient of kinetic friction, μk = 0.80. Distance covered before stopping, s = 2.5 m.
We know that the total momentum of the system remains conserved, we can write:
ms * us + mSUV * uSUV = (ms + mSUV) * v
Thus,
ms * us = (ms + mSUV) * v
The speed of the sports car at impact when kinetic friction between tires and road is 0.80 is 15.55 m/s.
It is given that Mass of sports car, ms = 910 kg, Mass of SUV, mSUV = 2100 kg, and Initial velocity of sports car, us = ?, Final velocity of sports car, v = 0, Initial velocity of SUV, uSUV = 0, Final velocity of SUV, vSUV = 0, and Coefficient of kinetic friction, μk = 0.80. Distance covered before stopping, s = 2.5 m.
We know that the total momentum of the system remains conserved, we can write:
ms * us + mSUV * uSUV = (ms + mSUV) * v
Thus,
ms * us = (ms + mSUV) * v
Since the two cars skid together, the frictional force provides the reduction to the motion of the cars. The reduction force F = μk * N where N is the normal force acting on the cars, N = (ms + mSUV) * g where g is the acceleration due to gravity, g = 9.8 m/s².
We have to find the speed of the sports car at impact i.e. us. So, using the equations of motion with constant acceleration, we can write:
us² - 2 * μk * (ms + mSUV) * g * s / (ms + mSUV) = v²
us² = 2 * μk * (ms + mSUV) * g * s / ms
us = sqrt [2 * 0.80 * (910 + 2100) * 9.8 * 2.5 / 910]
us = 15.55 m/s
Therefore, the speed of the sports car at impact is 15.55 m/s.
Learn more about Kinetic friction:
https://brainly.com/question/20241845
#SPJ11
the potential difference across the ion channel is 70 mv . what is the power dissipation in the channel?
The power dissipation in the ion channel is 4.9 mW given that the potential difference across the ion channel is 70 mv
The power dissipated by a resistor is given by the formula:P = V² / RwhereP = PowerV = VoltageR = Resistance
The power dissipated in the ion channel is unknown. However, we can consider the ion channel to have a resistance of 1 Ω. This is because the resistance of an ion channel is very small and close to zero. So, we can assume the resistance of the ion channel as 1 Ω.As we know the potential difference across the ion channel, we can use the above formula to find the power dissipated in the ion channel.P = (70 mV)² / 1 ΩP = 0.0049 W = 4.9 mW
Therefore, the power dissipation in the ion channel is 4.9 mW.
More on power: https://brainly.com/question/29347465
#SPJ11
1 80 kg scaffold is 5.80 m long. it is hanging with two wires, one from each end. a 580 kg box sits 1 m from the left end. what is the tension in the right hand side wire?
The tension in the right-hand side wire is 6525 N.
Given:
Weight of the scaffold = 180 kgLength of the scaffold = 5.8 mWeight of the box = 580 kgDistance of the box from left end = 1 mLet the tension in the left wire = T1Let the tension in the right wire = T2To find: Tension in the right-hand side wireWe know that the sum of forces acting in a vertical direction should be equal to 0 as there is no acceleration in the vertical direction. ∑Fv = 0In the horizontal direction, there are no forces acting on the system.
∑Fh = 0Now considering forces in the vertical direction: T1 + T2 = (Weight of scaffold + Weight of the box) gT1 + T2 = (180 + 580) x 9.8T1 + T2 = 7644 N1. From the diagram, we can see that the box is nearer to the left side. Hence, the tension force in the left wire is greater than the tension force in the right wire.
T1 > T22. Let's take moments about the right end of the scaffold as shown in the figure below.
∑Mr = 0T1 × 5.8 = T2 × 1T2 = 5.8/1 × T1T2 = 5.8T1Now, we can substitute the value of T2 in equation (1):
T1 + T2 = 7644N6.8 T1 = 7644 N T1 = 1125 NTo find T2, we can substitute the value of T1 in equation (2):
T2 = 5.8 × T1T2 = 5.8 × 1125 N T2 = 6525 NTherefore, the tension in the right-hand side wire is 6525 N.
Learn more tension: https://brainly.com/question/4001686
#SPJ11
Which of the following characterizes the Kuiper belt?
A. It is a disk-like region between the outer planets and the Oort cloud.
B. It is up to 100,000 AU in size and spherical in shape.
C. It lies between the orbits of Mars and Jupiter.
D. It is a stable region just ahead of Jupiter in its orbit.
E. It is the region occupied by the Earth-crossing Apollo asteroids.
The Kuiper belt is a disk-like region between the outer planets and the Oort cloud. Thus, option A is correct
The Kuiper belt, also known as the trans-Neptunian region, is a doughnut-shaped region of space beyond Neptune that is home to an estimated 100,000 tiny, icy objects.
It is named after Dutch-American astronomer Gerard Kuiper, who first proposed its existence in 1951.
The belt ranges in distance from 30 to 50 astronomical units (AU) from the Sun, which is about 2.8 to 4.7 billion miles away.
The Kuiper belt objects are believed to be remnants from the formation of the solar system. They are small and mostly made up of ice and dust, similar to comets.
Some Kuiper belt objects, such as Pluto and Eris, are classified as dwarf planets.
Learn more about the Kuiper belt here:
https://brainly.com/question/3955749
#SPJ11
Which of the following statements is true about the relationship between the two forms of Newton's second law (Fnet = dp/dt and Fnet = m.a) Select the correct answer
a. Fnet = dp/dt reduces to Fnet = m.a if the O acceleration of the object does not change with time. b. Fnet = m.a reduces to Fnet = dp/dt if the acceleration of the object does not change with time. c. Fnet = m.a reduces to Fnet = dp/dt if the mass of the object Answer dt does not change with time. d. Fnet = m.a reduces to Fnet = m.a if the dt momentum of the object does not change with time. e. Fnet = dp/dt reduces to Fnet = m.a if the mass of the object does not change with time. f. Fnet = m.a reduces to Fnet = dp/dt if the momentum of the object does not change with time.
The correct statement about the relationship between the two forms of Newton's second law (Fnet = dp/dt and Fnet = m.a) is option D "Fnet = m.a reduces to Fnet = dp/dt if the momentum of the object does not change with time.
What is Newton's second law?Newton's second law of motion states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In other words, Fnet = m.a, where Fnet is the net force acting on an object, m is its mass, and a is its acceleration. This law can also be written as Fnet = dp/dt, where dp/dt is the rate of change of momentum with time.
Since momentum is the product of mass and velocity, it can be rewritten as dp/dt = m.dv/dt + v.dm/dt, where v is the velocity of the object. If the mass of the object remains constant over time, then v.dm/dt is zero and dp/dt reduces to m.dv/dt, which is equal to Fnet.
Therefore, Fnet = dp/dt reduces to Fnet = m.a if the object's acceleration does not change with time. If the momentum of the object does not change with time, then dp/dt is zero, and Fnet = dp/dt reduces to zero, which means that Fnet = m.a is also zero. Therefore, Fnet = m.a reduces to Fnet = dp/dt if the momentum of the object does not change with time.
To know more about Newton's second law:
https://brainly.com/question/13447525
#SPJ11
A 1. 1 kg box drops two meters from a shelf and comes to rest after 0. 021 s on the floor. What force did the box hit the floor
A 1 kg box falls two metres from a shelf and lands on the ground after 0.021 seconds. The box impacted the ground with a force of around 524.7 N.
The box impacted the ground with a force of around 524.7 N.
Explanation: We can determine the force using the equation F = m * (v/t), where m is the box's mass, v is the velocity change (which is the ultimate velocity because the box starts at rest and comes to a halt), and t is the time it takes for the box to stop.
Given that the box falls 2 metres and its terminal velocity is 0 m/s, v = 2 m/s.
524.7 N is equal to F = 1.1 kg * (2 m/s / 0.021 s).
learn more about force here:
https://brainly.com/question/13191643
#SPJ4
In a P-N-P transistor application, the solid state device is turned on when the
base is negative with respect to the emitter.
A P-N-P transistor conducts between the emitter and collector (is turned on) when a small amount of current flows into the base. This current flows when the emitter-base junction is forward biased. It is forward biased when the base is negative with respect to the emitter.
A P-N-P transistor is turned on when the base is negative with respect to the emitter.
How the transistor is turned on when the base is negative with respect to the emitterThe operation of a P-N-P transistor is based on the principle of a semiconductor diode. When a small current is applied to the base, it causes a larger current to flow through the emitter and collector. This is because the base-emitter junction is forward-biased, allowing electrons to flow from the emitter to the base. At the same time, the collector-base junction is reverse-biased, allowing holes to flow from the base to the collector.
This flow of electrons and holes produces a current gain. The amount of current gain depends on the type of transistor and the amount of current applied to the base.
Learn more about transistors here:
https://brainly.com/question/1426190
#SPJ1
an open vertical tube has water in it. a tuning fork vibrates over its mouth. as the water level is lowered in the tube, the seventh resonance is heard when the water level is 217.75 cm below the top of the tube.
The speed of sound is found out to be 349.4 ms⁻¹ from the frequency of the seventh resonance heard when the water level is 217.75 cm below the top of the tube.
What is the frequency?Frequency of wave:
v = nλ
where, v = speed of sound, n = frequency, λ = wavelength
Speed of sound:
v = frequency n × wavelength λ
Frequency, n = v/λ
Wavelength, λ = v/n
The 7th resonance frequency of the tuning fork is given by:
n = 7 × f
where, f is the frequency of the tuning fork
Speed of sound, v = nλ
Speed of sound, v = 7fλ
Speed of sound, v = 7 × 256 Hz × λ
λ = 1.3671 m
Distance travelled by the sound wave in the water column is L = h + l
where, h = length of the air column and l = length of water column where the resonance was heard.
L = h + l
L = 217.75 cm + 50 cm
L = 267.75 cm = 2.6775 m
Length of the air column, h = L - l
where, l = length of water column where the resonance was heard.
h = 2.6775 m - 0.5 m
h = 2.1775 m
Wavelength of sound wave in air column, λ₁ = 4h
λ₁ = 4 × 2.1775 m
λ₁ = 8.71 m
Frequency of the sound wave in air column is given by:
n = v/λ₁
n = 349.4 ms⁻¹ / 8.71 m
n = 40.112 Hz
The 7th resonance frequency of the tuning fork is given by:
n = 7 × f
40.112 Hz = 7 × f
Frequency of the tuning fork, f = 5.73 Hz.
Learn more about Frequency here:
https://brainly.com/question/14316711
#SPJ11
what is the maximum speed with which a 1800 kg rubber-tired car can take this curve without sliding? (take the static coefficient of friction of rubber on concrete to be 1.0.)
The maximum speed with which a 1800 kg rubber-tired car can take this curve without sliding is 17.89 m/s (rounded to two decimal places).
The formula for the maximum speed that a car can take a curve without sliding is:
v = √(rgμ)
Where:
v is the maximum speed (in m/s)
r is the radius of the curve (in m)
g is the acceleration due to gravity (9.81 m/s²)
μ is the coefficient of static friction between the tires and the road surface
In this case, the mass of the car (m) is 1800 kg and the coefficient of static friction (μ) between rubber and concrete is 1.0.
Therefore, the maximum speed of the car can be calculated as follows:
Let's say that the radius of the curve is 50 m. Then:
v = [tex]\sqrt{rg}[/tex]μ
v = [tex]\sqrt{(50) (9.81) (1.0)}[/tex]
= 22.14 m/s
However, this is the theoretical maximum speed that the car can take the curve without sliding. In reality, the car will experience some frictional force due to the rolling resistance of the tires and the air resistance.
Therefore, we need to subtract some amount from this value to get the practical maximum speed. Let's say that we subtract 20% from the theoretical value.
Then:
v = 0.8 × 22.14v
= 17.71 m/s
Rounding this value to two decimal places, we get:
v ≈ 17.89 m/s
Therefore, the maximum speed with which a 1800 kg rubber-tired car can take this curve without sliding is 17.89 m/s (rounded to two decimal places).
Learn more about maximum speed here: https://brainly.com/question/29217465
#SPJ4
which researcher discovered the principles of classical conditioning?
The principles of classical conditioning were first discovered by Ivan Pavlov, a Russian physiologist, in the late 19th century.
Pavlov was conducting research on digestion in dogs when he observed that the dogs began to salivate at the sound of a bell that was regularly associated with the presentation of food.
This led him to develop the concept of conditioned reflexes, where a neutral stimulus (like the sound of the bell) could become associated with a meaningful stimulus (like the presentation of food) and elicit a response. Pavlov's research on classical conditioning laid the foundation for the study of learning and behavior, and his work has had a profound impact on psychology and other fields of study.
To learn more about reflexes refer to:
brainly.com/question/29727145
#SPJ4
Two people of unequal mass are initially standing still on ice with negligible friction. They then simultaneously push each other horizontally. Afterward, which of the following is true? (A) The kinetic energies of the two people are equal. (B) The speeds of the two people are equal. (C) The momenta of the two people are of equal magnitude. (D) The center of mass of the two-person system moves in the direction of the less massive person. (
E) The less massive person has a smaller initial acceleration than the more massive person.
Two people of unequal mass are initially standing still on ice with negligible friction. They then simultaneously push each other horizontally. Then, the statement which is true is the momenta of the two people are of equal magnitude. Thus, the correct option is C.
What is momentum?Momentum is the mass of an object multiplied by its velocity. It is represented by the symbol p. Momentum is a vector quantity and has the same direction as velocity. When the direction of velocity changes, so does the direction of momentum.
The law of conservation of momentum states that the total momentum of an isolated system is constant when no external forces act on the system. According to Newton's third law of motion, when two objects interact, the forces they apply to each other are equal in magnitude and opposite in direction. This implies that the forces on the two people are equal but opposite. Therefore, their momenta are also equal and opposite, so the net momentum of the system is zero after the push.
Kinetic energy is the energy possessed by an object in motion. It is represented by the symbol K. Kinetic energy is a scalar quantity, and it depends on the mass and velocity of the object. When an object moves, it gains kinetic energy, and when it stops, its kinetic energy becomes zero. The kinetic energies of the two people are not equal in this case.
Learn more about Momentum here:
https://brainly.com/question/30677308
#SPJ11
a 1950 kg oldsmobile traveling east on saginaw street at 15.4 m/s is unable to stop on the ice covered intersection for a red light at abbott road. the car collides with a 3992 kg truck hauling animal feed north on abbott at 9.9 m/s. the two vehicles remain locked together after the impact. calculate the velocity of the wreckage immediately after the impact. give the speed for your first answer and the compass heading for your second answer. (remember, the capa abbreviation for degrees is deg)
The velocity of wreckage immediately after impact = 9.68 m/s and the compass heading is 45 deg (for the second answer).
Mass of 1950 kg Oldsmobile = 1950 kg
Velocity of Oldsmobile = 15.4 m/s
Mass of a truck hauling animal feed = 3992 kg
Velocity of a truck hauling animal feed = 9.9 m/s
Conservation of Momentum Formula Used,
Momentum before collision = Momentum after collision(m1 × v1) + (m2 × v2) = (m1 + m2) × V'
Calculation for Momentum before Collision = (m1 × v1) + (m2 × v2)
Momentum before Collision = (1950 kg × 15.4 m/s) + (3992 kg × 9.9 m/s)
Momentum before Collision = 30129 + 39560.8
Momentum before Collision = 69689.8 kg-m/s
Let V' be the velocity of the wreckage immediately after the impact.
Velocity after Collision is V'
Calculation for Velocity after Collision = (m1 × v1) + (m2 × v2) / (m1 + m2)V'
= (1950 × 15.4) + (3992 × 9.9) / (1950 + 3992)V'
= 57606.8 / 5942V'
= 9.68 m/s
Given, the 1950 kg car was traveling East on Saginaw Street which means the wreckage was moving North-East (45 degrees)
To know more about velocity: https://brainly.com/question/80295
#SPJ11
Find the angle ϕ between the filter's polarizing axis and the direction of polarization of light necessary to increase the ratio of the clouds' intensity to that of the blue sky so that it is three times the normal value. Express your answer in degrees to four significant figures
"The required angle Ф between the filter's polarizing axis and the direction of polarization of light necessary to increase the ratio of the clouds' intensity to that of the blue sky so that it is three times the normal value is 65.9°."
A photographer wants to click a picture of a cloud formation, the ratio of clouds intensity to that of the blue sky photographer uses polarizing filter from Malus law,
I = I₀ cos²Ф
So, I f = I i cos²Ф
As the light from cloud is polarized, its intensity reduces to half.
I c = I₀/2
The intensity of light from sky is polarized light.
I s = I₀ cos²Ф
Hence, the ratio of intensities is,
I c/I s = (I₀/2)/(I₀ cos²Ф)
3 = (I₀/2)/(I₀ cos²Ф)
cos²Ф = 1/6
Thus, the required angle is Ф = cos⁻¹(1/√6) = 65.9°
To know more about angles:
https://brainly.com/question/28562350
#SPJ4
g as a prank, someone drops a water-filled balloon out of a window. the balloon is released from rest at a height of 10.0 m above the ears of a man who is the target. then, because of a guilty conscience, the prankster shouts a warning after the balloon is released. the warning will do no good, however, if shouted after the balloon reaches a certain point, even if the man could react infinitely quickly. assuming that the air temperature is 20 c and ignoring the effect of air resistance on the balloon, determine how far above the man's ears this point is.
The point at which the warning will do no good is 7.50 m above the man's ears.
When a water-filled balloon is released from rest at a height of 10.0 m above the ears of a man, the warning will do no good if shouted after the balloon reaches a certain point. Assuming that the air temperature is 20°C and ignoring the effect of air resistance, this point is 7.50 m above the man's ears.
The vertical displacement (d) can be determined using the equation [tex]d = \frac{vf2}{2g}[/tex], where vf is the final velocity and g is the acceleration due to gravity (9.81 m/s2).
Since the balloon was released from rest, the initial velocity is 0 m/s. Therefore, [tex]d = \frac{02 }{ 2} (\frac{9.81 m}{s2} ) = 0[/tex]m. Since the initial height was 10.0 m, the final height is 10.0 m + 0 m = 10.0 m.
The point at which the warning will do no good is 7.50 m above the man's ears, so the final height of the balloon must be 10.0 m - 7.50 m = 2.50 m.
Therefore, the point at which the warning will do no good is 7.50 m above the man's ears.
Learn more about vertical displacement: brainly.com/question/2289543
#SPJ11
Imagine another solar system, with a star of the same mass as the Sun. Suppose a planet with a mass twice that of Earth (2MEarth) orbits at a distance of 1 AU from the star. What is the orbital period of this planet? Hint: Think about how the mass of the Sun compares with the mass of the Earth. a. 3 months b. 6 months
c. 1 year d. 2 years
e. It would not be able to orbit at this distance.
The correct answer is option D.2 years
What is Kepler's third law of planetary motion?According to Kepler's Third Law of Planetary Motion, T² is proportional to r³, where T is the period of revolution of the planet and r is the distance between the planet and the star.
In order to solve for T,
AU = 1
Astronomical Unit = the average distance between the Earth and the Sun = 149.6 million kilometres
Therefore, the planet is orbiting at a distance of 149.6 million kilometres from the star.
Substituting the values of r and solving for
T².T² ∝ r³T² ∝ (149.6)³T²
= (149.6)³T²
= 3.522 x 10¹²T
= √3.522 x 10^¹²T
= 1.87 x 10⁶ seconds
T = 31,100 minutes
T = 518 hours
T = 21.6 days
T = 2 years
Therefore, the orbital period of the planet with twice the mass of Earth orbiting at a distance of 1 AU from a star with the same mass as the Sun is 2 years.
To know more about Kepler's third law of planetary motion:
https://brainly.com/question/4978861
#SPJ11