Find the cost of fencing a square plot area 11025 sq m. at the rate of rupees 85 per sq m.

Answers

Answer 1

Answer:

Rate per meter=85 Rs. hence , the cost of fencing the square plot at rate of 85 rs. per meter is 937125 Rs.


Related Questions

will rate you brainliest

Answers

Answer:

third option is the first step

Answer:

C

Step-by-step explanation:

It is c bro

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

(DNE,DNE)

Step-by-step explanation:

-24x-12y = -16. Equation one

6x +3y = 4. Equation two

Multiplying equation two with +4 gives

4(6x +3y = 4)

24x +12y = 16...result of equation two

-24x -12y= -16...

A careful observation to the following equation will help us notice that the both equation are same thing.

Multiplying minus to equation one gives

-(-24x-12y=-16)

24x+12y = 16.

Since the both equation are same, there is no solution to it.

150,75,50 what number comes next

Answers

Answer:

35 or 25

Step-by-step explanation:

A portion of the quadratic formula proof is shown. Fill in the missing reason.

Answers

Answer:

Find a common denominator on the right side of the equation

Step-by-step explanation:

The equation before the problem is

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

The next step in solving the above equation is to fibd tge common denominator on the right side of the equation.

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

X² + b/a(x) + (b/2a)²= -4ac/4a² + b²/4a²

X² + b/a(x) + (b/2a)²=( b²-4ac)/4a²

The right side of the equation now has a common denominator

The next step is to factorize the left side of the equation.

(X+b/2a)²= ( b²-4ac)/4a²

Squaring both sides

X+b/2a= √(b²-4ac)/√4a²

Final equation

X=( -b+√(b²-4ac))/2a

Or

X=( -b-√(b²-4ac))/2a

I need help will rate you brainliest

Answers

Answer:

Yes you can

Step-by-step explanation:

To eliminate the denominator

Answer:

No

Step-by-step explanation:

We cannot be certain that x + 3 > 0

If it was negative then the sign of the inequality would change.

To solve find the critical values of the numerator/ denominator, that is

x = 2 and x = - 3

The domain is the split into 3 intervals

(- ∞, - 3 ), (- 3, 2), (2, + ∞ )

Use test points from each interval to determine valid solution

Find the length of segment YZ in the diagram below.

Answers

Answer:

2√2

Step-by-step explanation:

hope you understand.

On an exam, the average score is 76 with a standard deviation of 6 points What is the probability that an individual chosen at random will have a score below 67 on this exam

Answers

Answer:

P [ X < 67 ] =  0,66,81      or    66,81 %

Step-by-step explanation:

We assume Normal Distribution  N ( μ ; σ )    N ( 76 ; 6 )

z score for 67 is :

z(s) =  (  X - μ  ) /σ

z(s) =  (  67 - 76 ) / 6

z(s) =  - 9 / 6

z(s) = - 1,5

with 1,5 we fnd n z-table area undr the curve  α = 0,6681

Then  P [ X < 67 ] =  0,66,81      or    66,81 %

A string passing over a smooth pulley carries a stone at one end. While its other end is attached to a vibrating tuning fork and the string vibrates forming 8 loops. When the stone is immersed in water 10 loops are formed. The specific gravity of the stone is close to
 
A)  1.8
B)  4.2
C)  2.8
D)  3.2​

Answers

Answer:

correct option is C)  2.8

Step-by-step explanation:

given data

string vibrates form =  8 loops

in water loop formed =  10 loops

solution

we consider  mass of stone = m

string length = l

frequency of tuning = f

volume = v

density of stone = [tex]\rho[/tex]

case (1)  

when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]

so here

[tex]l = \frac{8 \lambda _1}{2}[/tex]      ..............1

[tex]l = 4 \lambda_1\\\\\lambda_1 = \frac{l}{4}[/tex]

and we know velocity is express as

velocity = frequency × wavelength   .....................2

[tex]\sqrt{\frac{Tension}{mass\ per\ unit \length }}[/tex]   =   f × [tex]\lambda_1[/tex]

here tension = mg

so

[tex]\sqrt{\frac{mg}{\mu}}[/tex]   =   f × [tex]\lambda_1[/tex]     ..........................3

and

case (2)  

when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]

[tex]l = \frac{10 \lambda _1}{2}[/tex]      ..............4

[tex]l = 5 \lambda_1\\\\\lambda_1 = \frac{l}{5}[/tex]

when block is immersed

equilibrium  eq will be

Tenion + force of buoyancy = mg

T + v × [tex]\rho[/tex] × g = mg

and

T = v × [tex]\rho[/tex] - v × [tex]\rho[/tex] × g    

from equation 2

f × [tex]\lambda_2[/tex] = f  × [tex]\frac{1}{5}[/tex]  

[tex]\sqrt{\frac{v\rho _{stone} g - v\rho _{water} g}{\mu}} = f \times \frac{1}{5}[/tex]     .......................5

now we divide eq 5 by the eq 3

[tex]\sqrt{\frac{vg (\rho _{stone} - \rho _{water})}{\mu vg \times \rho _{stone}}} = \frac{fl}{5} \times \frac{4}{fl}[/tex]

solve irt we get

[tex]1 - \frac{\rho _{stone}}{\rho _{water}} = \frac{16}{25}[/tex]

so

relative density [tex]\frac{\rho _{stone}}{\rho _{water}} = \frac{25}{9}[/tex]

relative density = 2.78 ≈ 2.8

so correct option is C)  2.8


Paula drives 130 miles in 2.5 hours. How far would she drive in 4.5 at the same speed?
*Please answer
I will award the Brainliest answer

Answers

Answer:

Paula will travel 234 miles in 4.5 hours

Step-by-step explanation:

Step 1: We first find the speed Paula is going in hours, we divide 130 mile by 2.5 hours to get 52 miles per hour

Step 2: We multiple 52 miles per hour with 4.5 hours to get 234 miles

Therefore Paula will travel 234 miles in 4.5 hours

What is the sum of the geometric sequence?

Answers

Answer:

B. 259

Step-by-step explanation:

6^(i - 1) for i = 1 to 4

sum = 6^(1 - 1) + 6^(2 - 1) + 6^(3 - 1) + 6^(4 - 1) =

= 6^0 + 6^1 + 6^2 + 6^3

= 1 + 6 + 36 + 216

= 259

Answer: B. 259

Find the value of the logarithm. log 122

Answers

Answer:

2.086

Step-by-step explanation:

Log 122 is equal to 2.086

What is the value of b.
C=25
s=9

B=4c-s2

Answers

4(25)-2(9)=100-18=82
b is 82

Answer:

82

Step-by-step explanation:

Plug in the variables into the equation and solve for B but remember your order of operations when solving multiplication/division before addition/subtraction.

B = 4*25-9*2

B = 100-18

B = 82

A wheel with radius 1 m is rolled in a straight line through one complete revolution on a flat horizontal surface. How many metres did the centre of the wheel travel horizontally from its starting location?

Answers

Answer:

6.28 m

Step-by-step explanation:

If a wheel travels with one full revolution, it would have travelled the circumference's distance from it's starting point.

The circumference of a circle is [tex]2\pi r[/tex]

Let's assume [tex]\pi[/tex] is 3.14 and solve for the equation.

[tex]2\cdot3.14\cdot1\\6.28[/tex]

Hope this helped!

Which of these functions could have been the graph shown below?

Answers

Answer:

B

Step-by-step explanation:

we take the only point we know

(0,20)

in A when x =0

[tex]f(x)=e^{20x} =e^{20*0}=1[/tex]

in B when x=0

[tex]f(x)=20e^x=20e^0=20*1=20[/tex]

fits

in C

[tex]f(x)=20^x=20^0=1[/tex]

in D

[tex]f(x)=20^{20x}=20^{20*0}=20^0=1[/tex]

so the only choice is B

Ben is tiling the floor in his bathroom the area he is tiling is 4m times 2m each tiles measures 400mm times 400mm he has 45 tiles is that enough

Answers

Answer:

No, it's not enough

Step-by-step explanation:

Given

Tilling Dimension = 4m by 2m

Tile Dimension = 400mm by 400mm

Required

Determine the 45 tiles is enough

First;

The area of the tiling has to be calculated

[tex]Area = Length * Breadth[/tex]

[tex]Area = 4m * 2m[/tex]

[tex]Area = 8m^2[/tex]

Next, determine the area of the tile

[tex]Area = Length * Breadth[/tex]

[tex]Area = 400mm * 400mm[/tex]

Convert measurements to metres

[tex]Area = 0.4m* 04m[/tex]

[tex]Area = 0.16\ m^2[/tex]

Next, multiply the above area result by the number of files

[tex]Total = 0.16m^2 * 45[/tex]

[tex]Total = 7.2m^2[/tex]

Compare 7.2 to 8

Hence, we conclude that the 45 tiles of 400mm by 400 mm dimension is not enough to floor his bathroom


Factor.
x2 + 11x

x2 + 11x
x(x + 11)
11(x + 11)
0(x2 + 11x)

Answers

Answer:

x(x + 11)

Step-by-step explanation:

x^2 + 11x when factored gives a result of x(x + 11)

Answer:

x(x+11)

Step-by-step explanation:

We are given the expression:

[tex]x^2+11x[/tex]

This can be factored using the Greatest Common Factor (GCF).

The GCF of x^2 and 11x is x.

Factor out an x.

[tex]x(x+11)[/tex]

x^2+11x factored is: x(x+11).

The graph shown below expresses a radical function that can be written in the form f(x)=a(x+k)^1/n + c. What does the graph tell you about the value of n in this function?

Answers

Answer: n is a positive odd number.

Step-by-step explanation:

Ok, we know that the function is something like:

f(x)=a(x+k)^1/n + c

In the graph we can see two thigns:

All the values of the graph are positive values (even for the negative values of x), but in the left side we can see that the function decreases and is different than the right side.

So this is not an even function, then n must be an odd number (n odd allows us to have negative values for y = f(x) that happen when x + k is negative).

Also, we can see that the function increases, if n was a negative number, like: n = -N

we would have:

[tex]f(x) = \frac{a}{(x+k)^{1/N}} + c[/tex]

So in this case x is in the denominator, so as x increases, we would see that the value of y decreases, but that does not happen, so we can conclude that the value of n must be positive.

Then n is a positive odd number.

Answer:

D) Positive Even Integer

Step-by-step explanation:

just did it

In this diagram, bac~edf. if the area of bac= 6 in.², what is the area of edf? PLZ HELP PLZ PLZ PLZ PLZ

Answers

Answer:

Area of ΔEDF = 2.7 in²

Step-by-step explanation:

It's given in the question,

ΔBAC ~ ΔEDF

In these similar triangles,

Scale factor of the sides = [tex]\frac{\text{Measure of one side of triangle BAC}}{\text{Measure of one side of triangle EDF}}[/tex]

                                        [tex]=\frac{\text{BC}}{\text{EF}}[/tex]

                                        [tex]=\frac{3}{2}[/tex]

Area scale factor = (Scale factor of the sides)²

[tex]\frac{\text{Area of triangle BAC}}{\text{Area of triangle EDF}}=(\frac{3}{2})^2[/tex]

[tex]\frac{6}{\text{Area of triangle EDF}}=(\frac{9}{4})[/tex]

Area of ΔEDF = [tex]\frac{6\times 4}{9}[/tex]

                       = 2.67

                       ≈ 2.7 in²

Therefore, area of the ΔEDF is 2.7 in²                            

Plaz guys help me on this question additional mathematics ​

Answers

Answer:

Step-by-step explanation:

vector OA=a

vector OB=b

vector OX= λ vector OA=λa

vector OY=μ vector OB=μb

a.

1.vector BX=(vector OX-vector OB)=λa-b

ii. vector AY=(vector OY-vector OA)=μb-a

b.

5 vector BP=2 vector BX

5(vector OP-vector OB)=2 (vector OX-vector OB)

5(vector OP-b)=2(λa-b)

5 vector OP-5b=2λa-2b

5 vector OP=2λa-2b+5b

vector OP=1/5(2λa+3b)

ii

complete it.

PLEASE HELP!!!!!!! FIRST CORRECT ANSWER WILL BE THE BRAINLIEST....PLEASE HELP
Lunch Choices of Students
The bar graph shows the percent of students that chose each food in the school
cafeteria. Which statement about the graph is true?

Answers

Answer:

(2) If 300 lunches were sold, then 120 chose tacos.

Step-by-step explanation:

We can evaluate each option and see if it makes it true.

For 1: If 200 lunches were served, 10 more students chose pizza over hotdogs.

We can find how many pizzas/hotdogs were given if 200 lunches were served by relating it to 100.

20% chose hotdog, which is [tex]\frac{20}{100}[/tex]. Multiply both the numerator and denominator by two: [tex]\frac{40}{200}[/tex] - so 40 students chose hotdogs.

Same logic for pizza: 30% chose pizza - [tex]\frac{30}{100} = \frac{60}{200}[/tex] so 60.

60 - 40 = 20, not 10, so 1 doesn't work.

2: If 300 lunches were sold, then 120 chose tacos.

Let's set up a proportion again. 40% of 100 is 40.

[tex]\frac{40}{100} = \frac{40\cdot3}{300} = \frac{120}{300}[/tex]

So 120 tacos were chosen - yes this works!

Hope this helped!

Two boys and three girls are auditioning to play the piano for a school production. Two students will be chosen, one as the pianist, the other as the alternate.


What is the probability that the pianist will be a boy and the alternate will be a girl? Express your answer as a percent.


30%

40%

50%

60%

Answers

Answer:

30% is the correct answer.

Step-by-step explanation:

Total number of boys = 2

Total number of girls = 3

Total number of students = 5

To find:

Probability that the pianist will be a boy and the alternate will be a girl?

Solution:

Here we have to make 2 choices.

1st choice has to be boy (pianist) and 2nd choice has to be girl (alternate).

[tex]\bold{\text{Required probability }= P(\text{boy as pianist first}) \times P(\text{girl as alternate})}[/tex]

Formula for probability of an event E is given as:

[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]

For [tex]P(\text{boy as pianist})[/tex], number of favorable cases are 2 (total number of boys).

Total number of cases = Total number of students i.e. 5

So, [tex]P(\text{boy as pianist})[/tex] is:

[tex]P(\text{boy as pianist}) = \dfrac{2}{5}[/tex]

For [tex]P(\text{girl as alternate})[/tex], number of favorable cases are 3 (total number of girls).

Now, one boy is already chosen as pianist so Total number of cases = Total number of students left i.e. (5 - 1) = 4

[tex]P(\text{girl as alternate}) = \dfrac{3}{4}[/tex]

So, the required probability is:

[tex]\text{Required probability } = \dfrac{2}{5}\times \dfrac{3}{4} = \dfrac{3}{10} = \bold{30\%}[/tex]

Answer:

30% A

Step-by-step explanation:

A box contains12 balls in which 4 are white,3 blue and 5 are red.3 balls are drawn at random from the box.Find the chance that all three balls are of sifferent color.(answer in three decimal places)

Answers

[tex]|\Omega|=_{12}C_3=\dfrac{12!}{3!9!}=\dfrac{10\cdot11\cdot12}{2\cdot3}=220\\|A|=4\cdot3\cdot5=60\\\\P(A)=\dfrac{60}{220}=\dfrac{3}{11}\approx0,273[/tex]

Answer:

0.273

Step-by-step explanation:

Total number of balls is 4+3+5 = 12

There are 6 ways to draw 3 different colors (WBR, WRB, BWR, BRW, RWB, RBW) each with a chance of 4/12 · 3/11 · 5/10 = 1/22

So the total chance is 6 · 1/22 = 6/22 = 3/11 ≈ 0.273

How many times does the digit 9 appear in the list of all integers from 1 to 500? (The number $ 99 $, for example, is counted twice, because $9$ appears two times in it.)

Answers

Answer:

95 times digit 9 appears in all integers from 1 to 500.

Step-by-step explanation:

No. of 9 from

1-9: 1 time

10-19:  1 time

20-29: 1 time

30-39: 1 time

40-49: 1 time

50-59: 1 time

60-69: 1 time

70-79: 1 time

80-89 : 1 time

from 90 to 99

there will be one in 91 to 98

then two 9 in 99

thus, no of 9 from 90 to 99 is 10

Thus, total 9's from 1 to 99 is 9+10 = 19

Thus there 19 9's in 1 to 99

similarly

there will be

19 9's in 100 to 199

19 9's in 200 to 299

19 9's in 300 to 399

19 9's in 400 to 499

Thus, total 9's will be

19 + 19 + 19+ 19 + 19 + 19 = 95

Thus, 95 times digit 9 appears in all integers from 1 to 500.

Question 18 i will maek the brainliest:)

Answers

Answer:

Median: 14.6, Q1: 6.1, Q3: 27.1, IR: 21, outliers:  none

Step-by-step explanation:

Step 1: order the data from the least to the largest.

2.8, 3.9, 5.3, 6.1, 6.5, 7.1, 12.5, 14.6, 16.4, 16.4, 20.8, 27.1, 28.1, 30.9, 53.5

Step 2: find the median.

The median is the middle value, which is the 8th value in the data set.

2.8, 3.9, 5.3, 6.1, 6.5, 7.1, 12.5, [14.6,] 16.4, 16.4, 20.8, 27.1, 28.1, 30.9, 53.5

Median = 14.6

Step 2: Find Q1,

Q1 is the middle value of the lower part of the data set that is divided by the median to your left.

2.8, 3.9, 5.3, (6.1), 6.5, 7.1, 12.5, [14.6], 16.4, 16.4, 20.8, 27.1, 28.1, 30.9, 53.5

Q1 = 6.1

Step 3: find Q3.

Q3 is the middle value of the upper part of the given data set.

2.8, 3.9, 5.3, 6.1, 6.5, 7.1, 12.5, [14.6], 16.4, 16.4, 20.8, (27.1), 28.1, 30.9, 53.5

Q3 = 27.1

Step 4: find interquartile range (IR)

IR = Q3 - Q1 = [tex] 27.1 - 6.1 = 21 [/tex]

Step 5: check if there is any outlier.

Formula for checking for outlier = [tex] Q1 - 1.5*IR [/tex]

Then compare the result you get with the given values in the data set. Any value in the data set that is less than the result we get is considered an outlier.

Thus,

[tex] Q1 - 1.5*IR [/tex]

[tex]6.1 - 1.5*21 = -25.4[/tex]

There are no value in the given data set that is less than -25.4. Therefore, there is no outlier.

the dot plot above identifies the number of pets living with each of 20 families in an apartment building .what fraction of families have more than two pets

Answers

Answer:

B. ⅕

Step-by-step explanation:

Fraction of families having more than 2 pets = families with pets of 3 and above ÷ total number of families in the apartment

From the dot plot above, 3 families have 3 pets, and 1 family has 4 pets.

Number of families with more than 2 pets = 3 + 1 = 4

Fraction of families with more than 3 pets = [tex] \frac{4}{20} = \frac{1}{5} [/tex]

The fraction of families that have more than two pets is B. [tex]\frac{1}{5}[/tex]

Calculations and Parameters

Given that:

Fraction of families having more than 2 pets = families with pets of 3 and above/total number of families in the apartment

From the dot plot above:

3 families have 3 pets,  1 family has 4 pets.

Number of families with more than 2 pets

= 3 + 1

= 4

Fraction of families with more than 3 pets = [tex]\frac{4}{20} = \frac{1}{5}[/tex]

Read more about dot plots here:

https://brainly.com/question/25957672

#SPJ5

A test-preparation company advertises that its training program raises SAT scores by an average of at least 30 points. A random sample of test-takers who had completed the training showed a mean increase smaller than 30 points.
(a) Write the hypotheses for a left-tailed test of the mean.
(b) Explain the consequences of a Type I error in this context.

Answers

Answer:

(a) Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \geq[/tex] 30 points

    Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 30 points

(b) Type I error is that we conclude that test-takers who had completed the training showed a mean increase smaller than 30 points but in actual, the program raises SAT scores by an average of at least 30 points.

Step-by-step explanation:

We are given that a test-preparation company advertises that its training program raises SAT scores by an average of at least 30 points.

A random sample of test-takers who had completed the training showed a mean increase smaller than 30 points.

Let [tex]\mu[/tex] = average SAT score.

(a) So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \geq[/tex] 30 points

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 30 points

Here, the null hypothesis states that the training program raises SAT scores by an average of at least 30 points.

On the other hand, the alternate hypothesis states that test-takers who had completed the training showed a mean increase smaller than 30 points.

(b) Type I error states the probability of rejecting the null hypothesis given the fact that null hypothesis is true.

According to the question, the Type I error is that we conclude that test-takers who had completed the training showed a mean increase smaller than 30 points but in actual, the program raises SAT scores by an average of at least 30 points.

The consequence of a Type I error is that we conclude the test-takers have low SAT scores but in actual they have an SAT score of at least 30 points.

Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
an = (−3^n)/(4n!)

Answers

Answer:

[tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.

Step-by-step explanation:

The convergence analysis of this sequence is done by Ratio Test. That is to say:

[tex]r = \frac{a_{n+1}}{a_{n}}[/tex], where sequence converges if and only if [tex]|r| < 1[/tex].

Let be [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex], the ratio for the expression is:

[tex]r =-\frac{3}{n+1}[/tex]

[tex]|r| = \frac{3}{n+1}[/tex]

Inasmuch [tex]n[/tex] becomes bigger, then [tex]r \longrightarrow 0[/tex]. Hence, [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.

Was it evaluated correctly?
Explain your reasoning
help i need to turn it in a hour ​

Answers

Answer:

no

Step-by-step explanation:

2(4+10)+20

2(14)+20

28+20

48

A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.

Answers

Answer:

[tex]V(m) = (2 + 5m)^3[/tex]

Step-by-step explanation:

Given

Solid Shape = Cube

Edge = 2 feet

Increment = 5 feet per minute

Required

Determine volume as a function of minute

From the question, we have that the edge of the cube increases in a minute by 5 feet

This implies that,the edge will increase by 5m feet in m minutes;

Hence,

[tex]New\ Edge = 2 + 5m[/tex]

Volume of a cube is calculated as thus;

[tex]Volume = Edge^3[/tex]

Substitute 2 + 5m for Edge

[tex]Volume = (2 + 5m)^3[/tex]

Represent Volume as a function of m

[tex]V(m) = (2 + 5m)^3[/tex]

Consider the differential equation:


2y'' + ty' − 2y = 14, y(0) = y'(0) = 0.


In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients.


If F(s) = ℒ{f(t)} and n = 1, 2, 3, . . . ,then

ℒ{tnf(t)} = (-1)^n d^n/ds^n F(s)


to reduce the given differential equation to a linear first-order DE in the transformed function Y(s) = ℒ{y(t)}.


Requried:

a. Sovle the first order DE for Y(s).

b. Find find y(t)= ℒ^-1 {Y(s)}

Answers

(a) Take the Laplace transform of both sides:

[tex]2y''(t)+ty'(t)-2y(t)=14[/tex]

[tex]\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\dfrac{14}s[/tex]

where the transform of [tex]ty'(t)[/tex] comes from

[tex]L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)[/tex]

This yields the linear ODE,

[tex]-sY'(s)+(2s^2-3)Y(s)=\dfrac{14}s[/tex]

Divides both sides by [tex]-s[/tex]:

[tex]Y'(s)+\dfrac{3-2s^2}sY(s)=-\dfrac{14}{s^2}[/tex]

Find the integrating factor:

[tex]\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C[/tex]

Multiply both sides of the ODE by [tex]e^{3\ln|s|-s^2}=s^3e^{-s^2}[/tex]:

[tex]s^3e^{-s^2}Y'(s)+(3s^2-2s^4)e^{-s^2}Y(s)=-14se^{-s^2}[/tex]

The left side condenses into the derivative of a product:

[tex]\left(s^3e^{-s^2}Y(s)\right)'=-14se^{-s^2}[/tex]

Integrate both sides and solve for [tex]Y(s)[/tex]:

[tex]s^3e^{-s^2}Y(s)=7e^{-s^2}+C[/tex]

[tex]Y(s)=\dfrac{7+Ce^{s^2}}{s^3}[/tex]

(b) Taking the inverse transform of both sides gives

[tex]y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right][/tex]

I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that [tex]\frac{7t^2}2[/tex] is one solution to the original ODE.

[tex]y(t)=\dfrac{7t^2}2\implies y'(t)=7t\implies y''(t)=7[/tex]

Substitute these into the ODE to see everything checks out:

[tex]2\cdot7+t\cdot7t-2\cdot\dfrac{7t^2}2=14[/tex]

Other Questions
I NEED HELP FINDING THE QUOTATIONS FROM THE TEXT Hamlet Quotation Scavenger Hunt Collections: Act I, Scene 5 (p. 256261) Which punctuation mark is missing from the following sentence?Since mybest friend lives next door we get to see each other every day. A solution of LiCl in water has XLiCl = 0.0800. What is the molality? A solution of LiCl in water has XLiCl = 0.0800. What is the molality? 4.44 m LiCl 8.70 m LiCl 4.83 m LiCl 4.01 m LiCl Sarah had a balance of $155 in her bank account at the start of the week. She withdrew $65.50 on Monday, $23.25 on Wednesday, and $26.45 on Thursday. On Friday she deposited $165.30. Write an expression that represents Sarah's spending. Tasty Doughnuts has computed the net present value for capital expenditure at two locations. Relevant data related to the computation are as follows: Des Moines Cedar Rapids Total present value of net cash flow $712,500 $848,000 Amount to be invested (750,000) (800,000) Net present value $(37,500) $ 48,000 a. Determine the present value index for each proposal. Round your answers for the present value index to two decimal places. i dont know how to speak spanish. why? How would the Chinese Communist Party most likely respond to political opposition groups today?by challenging the groups in free electionsby repressing communications from the groupsby sending group representatives to labor campsby deporting high-ranking members of the groups The world on a turtles back Answer the following questions properly (complete sentences and direct citations/quotations where necessary) 5. Summarize a part of the story that explains the origin of something (how something came to be). Find the work W done by a force of 7pounds acting in the direction 30 degreesto the horizontal in moving an object 7feet from (0 comma 0 )to (7 comma 0 ). Question 9Read the sentence from the passage.Yes, there was the sea with the dawning sun making a golden dazzle over it, and toward thglorious east flew two hawks with slow-moving pinions.What is the meaning of the word pinions?flowersBfeathersCmothsDtracks Trevor Company discloses supplementary operating segment information for its three reportable segments. Data for 20X8 are available as follows: Segment A Segment B Segment CSales $500,000 $300,000 $200,000Traceable operating expenses 250,000 120,000 90,000Allocable costs for the year was $180,000. Allocable costs are assigned based on the ratio of a segment's income before allocable costs to total income before allocable costs. The 20X8 operating profit for Segment B was:a. $180,000 b. $120,000 c. $126,000 d. $110,000 x power 8 + x power 4 + 1factorize how did the discovery of the Minoan culture most likely impact historical conclusions about Atlantis? Which operation involving complex numbers requires the use of a conjugate to be carried out? I. Stress incontinence is(A) Involuntary voiding from a sudden urge to void(B) The loss of urine due to an increase in intra-abdominal pressure, such as from sneezing orcoughing(C) Involuntary voiding when a specific blad- dervolume is reached(D) The loss of urine due to overflow or over-distention of the bladder what is the reciprical of 4/7? A schoolteacher would like to know whether or not toothpaste brands are used differentially in her classroom (in other words, is one brand preferred over the others?). She asks her students to report which of three brands they use: Crest, Colgate, or Aquafresh. Below are the numbers of students who use each type of toothpaste (notice there are 45 students total in her class). Test her hypothesis using an alpha level of .05. Crest Colgate Aquafresh 24 13 8 a. What test is appropriate for this analysis? b. State the null hypothesis: c. State the alternative hypothesis: d. Find the critical value: e. Calculate the test statistic: f. Make a decision: Many elementary school students in a school district currently have ear infections. A random sample of children in two different schools found that 16 of 42 at one school and 18 of 34 at the other have ear infections. At the 0.05 level of significance, is there sufficient evidence to support the claim that a difference exists between the proportions of students who have ear infections at the two schools? Group of answer choices The sum of two consecutive odd integers is at least 36, find the integers Chelsea played her tuba from 4:25 pm until 5:07